Properties

Label 121.4.e
Level $121$
Weight $4$
Character orbit 121.e
Rep. character $\chi_{121}(12,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $320$
Newform subspaces $1$
Sturm bound $44$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 1 \)
Sturm bound: \(44\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(121, [\chi])\).

Total New Old
Modular forms 340 340 0
Cusp forms 320 320 0
Eisenstein series 20 20 0

Trace form

\( 320 q - 13 q^{2} - 18 q^{3} - 123 q^{4} - 17 q^{5} - 73 q^{6} - 31 q^{7} + q^{8} + 2618 q^{9} - 193 q^{10} - 143 q^{11} - 368 q^{12} + 217 q^{13} + 265 q^{14} - 372 q^{15} - 455 q^{16} + 113 q^{17} - 488 q^{18}+ \cdots - 14773 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(121, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
121.4.e.a 121.e 121.e $320$ $7.139$ None 121.4.e.a \(-13\) \(-18\) \(-17\) \(-31\) $\mathrm{SU}(2)[C_{11}]$