Properties

Label 121.4.c.g.9.1
Level $121$
Weight $4$
Character 121.9
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,4,Mod(3,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.3"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(1.40126 - 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 121.9
Dual form 121.4.c.g.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37948 + 4.24561i) q^{2} +(6.03859 - 4.38729i) q^{3} +(-9.65012 - 7.01122i) q^{4} +(-2.61555 - 8.04984i) q^{5} +(10.2966 + 31.6897i) q^{6} +(-16.3816 - 11.9019i) q^{7} +(14.1868 - 10.3073i) q^{8} +(8.87275 - 27.3075i) q^{9} +37.7846 q^{10} -89.0333 q^{12} +(19.0156 - 58.5241i) q^{13} +(73.1289 - 53.1313i) q^{14} +(-51.1112 - 37.1345i) q^{15} +(-5.29766 - 16.3045i) q^{16} +(-21.4315 - 65.9594i) q^{17} +(103.697 + 75.3405i) q^{18} +(-5.80625 + 4.21848i) q^{19} +(-31.1988 + 96.0201i) q^{20} -151.138 q^{21} +50.3154 q^{23} +(40.4472 - 124.484i) q^{24} +(43.1683 - 31.3636i) q^{25} +(222.239 + 161.466i) q^{26} +(-3.95066 - 12.1589i) q^{27} +(74.6371 + 229.709i) q^{28} +(115.828 + 84.1542i) q^{29} +(228.166 - 165.772i) q^{30} +(-78.7415 + 242.341i) q^{31} +216.818 q^{32} +309.603 q^{34} +(-52.9615 + 162.999i) q^{35} +(-277.082 + 201.312i) q^{36} +(-272.367 - 197.886i) q^{37} +(-9.90043 - 30.4704i) q^{38} +(-141.935 - 436.830i) q^{39} +(-120.079 - 87.2424i) q^{40} +(-144.063 + 104.668i) q^{41} +(208.493 - 641.675i) q^{42} -55.7898 q^{43} -243.028 q^{45} +(-69.4092 + 213.620i) q^{46} +(207.525 - 150.776i) q^{47} +(-103.523 - 75.2139i) q^{48} +(20.7073 + 63.7306i) q^{49} +(73.6078 + 226.542i) q^{50} +(-418.799 - 304.275i) q^{51} +(-593.829 + 431.442i) q^{52} +(65.9593 - 203.002i) q^{53} +57.0718 q^{54} -355.079 q^{56} +(-16.5538 + 50.9474i) q^{57} +(-517.070 + 375.673i) q^{58} +(645.185 + 468.754i) q^{59} +(232.871 + 716.704i) q^{60} +(52.1303 + 160.441i) q^{61} +(-920.265 - 668.612i) q^{62} +(-470.360 + 341.737i) q^{63} +(-256.715 + 790.089i) q^{64} -520.846 q^{65} -366.105 q^{67} +(-255.639 + 786.777i) q^{68} +(303.834 - 220.748i) q^{69} +(-618.971 - 449.708i) q^{70} +(-241.648 - 743.716i) q^{71} +(-155.592 - 478.862i) q^{72} +(774.665 + 562.827i) q^{73} +(1215.87 - 883.384i) q^{74} +(123.074 - 378.784i) q^{75} +85.6077 q^{76} +2050.41 q^{78} +(180.956 - 556.926i) q^{79} +(-117.393 + 85.2906i) q^{80} +(549.986 + 399.588i) q^{81} +(-245.647 - 756.024i) q^{82} +(-202.922 - 624.530i) q^{83} +(1458.50 + 1059.67i) q^{84} +(-474.907 + 345.040i) q^{85} +(76.9610 - 236.862i) q^{86} +1068.65 q^{87} +72.6819 q^{89} +(335.253 - 1031.80i) q^{90} +(-1008.05 + 732.394i) q^{91} +(-485.549 - 352.772i) q^{92} +(587.734 + 1808.86i) q^{93} +(353.859 + 1089.06i) q^{94} +(49.1447 + 35.7057i) q^{95} +(1309.27 - 951.243i) q^{96} +(-302.713 + 931.655i) q^{97} -299.141 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 8 q^{3} - 10 q^{4} + 10 q^{5} - 32 q^{6} + 8 q^{7} + 42 q^{8} - 2 q^{9} + 136 q^{10} - 352 q^{12} - 130 q^{13} + 160 q^{14} - 64 q^{15} + 62 q^{16} + 14 q^{17} + 194 q^{18} + 48 q^{19} + 98 q^{20}+ \cdots + 3288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37948 + 4.24561i −0.487721 + 1.50105i 0.340280 + 0.940324i \(0.389478\pi\)
−0.828001 + 0.560727i \(0.810522\pi\)
\(3\) 6.03859 4.38729i 1.16213 0.844334i 0.172081 0.985083i \(-0.444951\pi\)
0.990045 + 0.140749i \(0.0449510\pi\)
\(4\) −9.65012 7.01122i −1.20626 0.876403i
\(5\) −2.61555 8.04984i −0.233942 0.719999i −0.997260 0.0739765i \(-0.976431\pi\)
0.763318 0.646023i \(-0.223569\pi\)
\(6\) 10.2966 + 31.6897i 0.700595 + 2.15621i
\(7\) −16.3816 11.9019i −0.884521 0.642642i 0.0499229 0.998753i \(-0.484102\pi\)
−0.934444 + 0.356111i \(0.884102\pi\)
\(8\) 14.1868 10.3073i 0.626976 0.455524i
\(9\) 8.87275 27.3075i 0.328620 1.01139i
\(10\) 37.7846 1.19485
\(11\) 0 0
\(12\) −89.0333 −2.14181
\(13\) 19.0156 58.5241i 0.405691 1.24859i −0.514625 0.857415i \(-0.672069\pi\)
0.920316 0.391175i \(-0.127931\pi\)
\(14\) 73.1289 53.1313i 1.39604 1.01428i
\(15\) −51.1112 37.1345i −0.879790 0.639205i
\(16\) −5.29766 16.3045i −0.0827760 0.254758i
\(17\) −21.4315 65.9594i −0.305759 0.941030i −0.979393 0.201964i \(-0.935267\pi\)
0.673634 0.739065i \(-0.264733\pi\)
\(18\) 103.697 + 75.3405i 1.35787 + 0.986551i
\(19\) −5.80625 + 4.21848i −0.0701076 + 0.0509361i −0.622287 0.782789i \(-0.713796\pi\)
0.552179 + 0.833725i \(0.313796\pi\)
\(20\) −31.1988 + 96.0201i −0.348813 + 1.07354i
\(21\) −151.138 −1.57053
\(22\) 0 0
\(23\) 50.3154 0.456151 0.228076 0.973643i \(-0.426757\pi\)
0.228076 + 0.973643i \(0.426757\pi\)
\(24\) 40.4472 124.484i 0.344010 1.05875i
\(25\) 43.1683 31.3636i 0.345347 0.250909i
\(26\) 222.239 + 161.466i 1.67633 + 1.21793i
\(27\) −3.95066 12.1589i −0.0281595 0.0866659i
\(28\) 74.6371 + 229.709i 0.503753 + 1.55039i
\(29\) 115.828 + 84.1542i 0.741682 + 0.538864i 0.893238 0.449585i \(-0.148428\pi\)
−0.151555 + 0.988449i \(0.548428\pi\)
\(30\) 228.166 165.772i 1.38857 1.00886i
\(31\) −78.7415 + 242.341i −0.456206 + 1.40406i 0.413507 + 0.910501i \(0.364304\pi\)
−0.869713 + 0.493557i \(0.835696\pi\)
\(32\) 216.818 1.19776
\(33\) 0 0
\(34\) 309.603 1.56166
\(35\) −52.9615 + 162.999i −0.255775 + 0.787195i
\(36\) −277.082 + 201.312i −1.28279 + 0.932000i
\(37\) −272.367 197.886i −1.21019 0.879251i −0.214937 0.976628i \(-0.568955\pi\)
−0.995248 + 0.0973769i \(0.968955\pi\)
\(38\) −9.90043 30.4704i −0.0422648 0.130078i
\(39\) −141.935 436.830i −0.582762 1.79356i
\(40\) −120.079 87.2424i −0.474653 0.344856i
\(41\) −144.063 + 104.668i −0.548753 + 0.398692i −0.827326 0.561723i \(-0.810139\pi\)
0.278572 + 0.960415i \(0.410139\pi\)
\(42\) 208.493 641.675i 0.765980 2.35744i
\(43\) −55.7898 −0.197857 −0.0989286 0.995095i \(-0.531542\pi\)
−0.0989286 + 0.995095i \(0.531542\pi\)
\(44\) 0 0
\(45\) −243.028 −0.805078
\(46\) −69.4092 + 213.620i −0.222474 + 0.684706i
\(47\) 207.525 150.776i 0.644057 0.467935i −0.217185 0.976131i \(-0.569687\pi\)
0.861241 + 0.508196i \(0.169687\pi\)
\(48\) −103.523 75.2139i −0.311297 0.226171i
\(49\) 20.7073 + 63.7306i 0.0603712 + 0.185803i
\(50\) 73.6078 + 226.542i 0.208194 + 0.640756i
\(51\) −418.799 304.275i −1.14987 0.835433i
\(52\) −593.829 + 431.442i −1.58364 + 1.15058i
\(53\) 65.9593 203.002i 0.170947 0.526121i −0.828478 0.560022i \(-0.810793\pi\)
0.999425 + 0.0339002i \(0.0107928\pi\)
\(54\) 57.0718 0.143824
\(55\) 0 0
\(56\) −355.079 −0.847312
\(57\) −16.5538 + 50.9474i −0.0384667 + 0.118388i
\(58\) −517.070 + 375.673i −1.17060 + 0.850488i
\(59\) 645.185 + 468.754i 1.42366 + 1.03435i 0.991154 + 0.132718i \(0.0423704\pi\)
0.432506 + 0.901631i \(0.357630\pi\)
\(60\) 232.871 + 716.704i 0.501059 + 1.54210i
\(61\) 52.1303 + 160.441i 0.109420 + 0.336759i 0.990742 0.135756i \(-0.0433462\pi\)
−0.881323 + 0.472515i \(0.843346\pi\)
\(62\) −920.265 668.612i −1.88506 1.36958i
\(63\) −470.360 + 341.737i −0.940632 + 0.683409i
\(64\) −256.715 + 790.089i −0.501397 + 1.54314i
\(65\) −520.846 −0.993892
\(66\) 0 0
\(67\) −366.105 −0.667565 −0.333783 0.942650i \(-0.608325\pi\)
−0.333783 + 0.942650i \(0.608325\pi\)
\(68\) −255.639 + 786.777i −0.455895 + 1.40310i
\(69\) 303.834 220.748i 0.530105 0.385144i
\(70\) −618.971 449.708i −1.05687 0.767863i
\(71\) −241.648 743.716i −0.403920 1.24314i −0.921793 0.387682i \(-0.873276\pi\)
0.517873 0.855458i \(-0.326724\pi\)
\(72\) −155.592 478.862i −0.254676 0.783811i
\(73\) 774.665 + 562.827i 1.24202 + 0.902382i 0.997731 0.0673197i \(-0.0214447\pi\)
0.244291 + 0.969702i \(0.421445\pi\)
\(74\) 1215.87 883.384i 1.91003 1.38772i
\(75\) 123.074 378.784i 0.189485 0.583176i
\(76\) 85.6077 0.129209
\(77\) 0 0
\(78\) 2050.41 2.97645
\(79\) 180.956 556.926i 0.257711 0.793153i −0.735572 0.677446i \(-0.763087\pi\)
0.993283 0.115707i \(-0.0369134\pi\)
\(80\) −117.393 + 85.2906i −0.164061 + 0.119197i
\(81\) 549.986 + 399.588i 0.754439 + 0.548132i
\(82\) −245.647 756.024i −0.330819 1.01816i
\(83\) −202.922 624.530i −0.268356 0.825916i −0.990901 0.134592i \(-0.957028\pi\)
0.722545 0.691324i \(-0.242972\pi\)
\(84\) 1458.50 + 1059.67i 1.89447 + 1.37642i
\(85\) −474.907 + 345.040i −0.606011 + 0.440293i
\(86\) 76.9610 236.862i 0.0964991 0.296994i
\(87\) 1068.65 1.31691
\(88\) 0 0
\(89\) 72.6819 0.0865648 0.0432824 0.999063i \(-0.486218\pi\)
0.0432824 + 0.999063i \(0.486218\pi\)
\(90\) 335.253 1031.80i 0.392653 1.20846i
\(91\) −1008.05 + 732.394i −1.16124 + 0.843689i
\(92\) −485.549 352.772i −0.550239 0.399772i
\(93\) 587.734 + 1808.86i 0.655325 + 2.01688i
\(94\) 353.859 + 1089.06i 0.388274 + 1.19498i
\(95\) 49.1447 + 35.7057i 0.0530751 + 0.0385613i
\(96\) 1309.27 951.243i 1.39195 1.01131i
\(97\) −302.713 + 931.655i −0.316864 + 0.975208i 0.658116 + 0.752917i \(0.271354\pi\)
−0.974980 + 0.222292i \(0.928646\pi\)
\(98\) −299.141 −0.308345
\(99\) 0 0
\(100\) −636.477 −0.636477
\(101\) 316.567 974.292i 0.311877 0.959858i −0.665144 0.746715i \(-0.731630\pi\)
0.977021 0.213143i \(-0.0683700\pi\)
\(102\) 1869.56 1358.32i 1.81484 1.31856i
\(103\) 600.050 + 435.962i 0.574026 + 0.417054i 0.836565 0.547867i \(-0.184560\pi\)
−0.262539 + 0.964921i \(0.584560\pi\)
\(104\) −333.456 1026.27i −0.314405 0.967638i
\(105\) 395.310 + 1216.64i 0.367413 + 1.13078i
\(106\) 770.877 + 560.075i 0.706360 + 0.513201i
\(107\) 1050.00 762.871i 0.948669 0.689248i −0.00182288 0.999998i \(-0.500580\pi\)
0.950492 + 0.310750i \(0.100580\pi\)
\(108\) −47.1243 + 145.034i −0.0419865 + 0.129221i
\(109\) −691.844 −0.607951 −0.303975 0.952680i \(-0.598314\pi\)
−0.303975 + 0.952680i \(0.598314\pi\)
\(110\) 0 0
\(111\) −2512.89 −2.14877
\(112\) −107.271 + 330.146i −0.0905013 + 0.278534i
\(113\) 436.052 316.810i 0.363012 0.263743i −0.391296 0.920265i \(-0.627973\pi\)
0.754307 + 0.656522i \(0.227973\pi\)
\(114\) −193.467 140.562i −0.158946 0.115481i
\(115\) −131.602 405.030i −0.106713 0.328429i
\(116\) −527.734 1624.20i −0.422404 1.30003i
\(117\) −1429.43 1038.54i −1.12949 0.820624i
\(118\) −2880.17 + 2092.57i −2.24696 + 1.63251i
\(119\) −433.960 + 1335.59i −0.334295 + 1.02885i
\(120\) −1107.86 −0.842781
\(121\) 0 0
\(122\) −753.082 −0.558859
\(123\) −410.729 + 1264.09i −0.301091 + 0.926662i
\(124\) 2458.97 1786.55i 1.78083 1.29385i
\(125\) −1221.33 887.349i −0.873914 0.634935i
\(126\) −802.028 2468.39i −0.567066 1.74525i
\(127\) 217.470 + 669.305i 0.151948 + 0.467647i 0.997839 0.0657085i \(-0.0209308\pi\)
−0.845891 + 0.533356i \(0.820931\pi\)
\(128\) −1597.00 1160.29i −1.10278 0.801219i
\(129\) −336.891 + 244.766i −0.229935 + 0.167058i
\(130\) 718.498 2211.31i 0.484742 1.49188i
\(131\) 446.318 0.297672 0.148836 0.988862i \(-0.452447\pi\)
0.148836 + 0.988862i \(0.452447\pi\)
\(132\) 0 0
\(133\) 145.323 0.0947453
\(134\) 505.036 1554.34i 0.325585 1.00205i
\(135\) −87.5439 + 63.6044i −0.0558117 + 0.0405496i
\(136\) −983.912 714.854i −0.620366 0.450722i
\(137\) 608.602 + 1873.08i 0.379535 + 1.16809i 0.940367 + 0.340160i \(0.110481\pi\)
−0.560832 + 0.827930i \(0.689519\pi\)
\(138\) 518.077 + 1594.48i 0.319577 + 0.983558i
\(139\) 209.293 + 152.060i 0.127712 + 0.0927883i 0.649807 0.760099i \(-0.274850\pi\)
−0.522095 + 0.852887i \(0.674850\pi\)
\(140\) 1653.91 1201.63i 0.998433 0.725404i
\(141\) 591.661 1820.95i 0.353382 1.08760i
\(142\) 3490.88 2.06302
\(143\) 0 0
\(144\) −492.241 −0.284862
\(145\) 374.473 1152.51i 0.214471 0.660074i
\(146\) −3458.18 + 2512.52i −1.96028 + 1.42423i
\(147\) 404.647 + 293.994i 0.227039 + 0.164954i
\(148\) 1240.95 + 3819.25i 0.689226 + 2.12122i
\(149\) −30.5396 93.9912i −0.0167913 0.0516783i 0.942310 0.334742i \(-0.108649\pi\)
−0.959101 + 0.283064i \(0.908649\pi\)
\(150\) 1438.39 + 1045.05i 0.782961 + 0.568854i
\(151\) 1203.46 874.362i 0.648582 0.471222i −0.214206 0.976789i \(-0.568716\pi\)
0.862788 + 0.505566i \(0.168716\pi\)
\(152\) −38.8909 + 119.694i −0.0207531 + 0.0638714i
\(153\) −1991.34 −1.05223
\(154\) 0 0
\(155\) 2156.76 1.11765
\(156\) −1693.03 + 5210.60i −0.868914 + 2.67424i
\(157\) −1708.65 + 1241.41i −0.868569 + 0.631052i −0.930203 0.367047i \(-0.880369\pi\)
0.0616338 + 0.998099i \(0.480369\pi\)
\(158\) 2114.87 + 1536.54i 1.06487 + 0.773675i
\(159\) −492.327 1515.23i −0.245560 0.755756i
\(160\) −567.098 1745.35i −0.280207 0.862387i
\(161\) −824.244 598.848i −0.403475 0.293142i
\(162\) −2455.19 + 1783.80i −1.19073 + 0.865116i
\(163\) 427.981 1317.19i 0.205657 0.632947i −0.794029 0.607880i \(-0.792020\pi\)
0.999686 0.0250670i \(-0.00797991\pi\)
\(164\) 2124.08 1.01136
\(165\) 0 0
\(166\) 2931.44 1.37062
\(167\) 239.570 737.322i 0.111009 0.341651i −0.880085 0.474817i \(-0.842514\pi\)
0.991094 + 0.133166i \(0.0425143\pi\)
\(168\) −2144.18 + 1557.84i −0.984684 + 0.715414i
\(169\) −1286.07 934.383i −0.585374 0.425299i
\(170\) −809.781 2492.25i −0.365338 1.12439i
\(171\) 63.6789 + 195.984i 0.0284775 + 0.0876447i
\(172\) 538.378 + 391.154i 0.238668 + 0.173403i
\(173\) 361.320 262.514i 0.158790 0.115367i −0.505553 0.862796i \(-0.668712\pi\)
0.664343 + 0.747428i \(0.268712\pi\)
\(174\) −1474.18 + 4537.07i −0.642285 + 1.97675i
\(175\) −1080.45 −0.466711
\(176\) 0 0
\(177\) 5952.56 2.52781
\(178\) −100.263 + 308.579i −0.0422195 + 0.129938i
\(179\) 2271.11 1650.06i 0.948328 0.689001i −0.00208294 0.999998i \(-0.500663\pi\)
0.950411 + 0.310997i \(0.100663\pi\)
\(180\) 2345.25 + 1703.92i 0.971137 + 0.705572i
\(181\) −412.662 1270.04i −0.169464 0.521555i 0.829874 0.557951i \(-0.188412\pi\)
−0.999337 + 0.0363957i \(0.988412\pi\)
\(182\) −1718.87 5290.13i −0.700060 2.15456i
\(183\) 1018.69 + 740.124i 0.411497 + 0.298970i
\(184\) 713.816 518.618i 0.285996 0.207788i
\(185\) −880.562 + 2710.09i −0.349947 + 1.07703i
\(186\) −8490.49 −3.34706
\(187\) 0 0
\(188\) −3059.77 −1.18700
\(189\) −79.9958 + 246.202i −0.0307875 + 0.0947542i
\(190\) −219.387 + 159.394i −0.0837683 + 0.0608613i
\(191\) 1613.96 + 1172.61i 0.611426 + 0.444227i 0.849916 0.526918i \(-0.176652\pi\)
−0.238490 + 0.971145i \(0.576652\pi\)
\(192\) 1916.15 + 5897.30i 0.720241 + 2.21667i
\(193\) −646.359 1989.29i −0.241067 0.741928i −0.996258 0.0864236i \(-0.972456\pi\)
0.755192 0.655504i \(-0.227544\pi\)
\(194\) −3537.86 2570.40i −1.30930 0.951259i
\(195\) −3145.17 + 2285.10i −1.15503 + 0.839177i
\(196\) 247.001 760.191i 0.0900150 0.277038i
\(197\) 3777.20 1.36606 0.683032 0.730389i \(-0.260661\pi\)
0.683032 + 0.730389i \(0.260661\pi\)
\(198\) 0 0
\(199\) −1251.15 −0.445688 −0.222844 0.974854i \(-0.571534\pi\)
−0.222844 + 0.974854i \(0.571534\pi\)
\(200\) 289.146 889.901i 0.102229 0.314628i
\(201\) −2210.76 + 1606.21i −0.775795 + 0.563648i
\(202\) 3699.77 + 2688.04i 1.28869 + 0.936286i
\(203\) −895.854 2757.15i −0.309737 0.953272i
\(204\) 1908.12 + 5872.59i 0.654878 + 2.01551i
\(205\) 1219.36 + 885.920i 0.415435 + 0.301831i
\(206\) −2678.68 + 1946.18i −0.905984 + 0.658236i
\(207\) 446.435 1373.99i 0.149901 0.461346i
\(208\) −1054.95 −0.351670
\(209\) 0 0
\(210\) −5710.71 −1.87655
\(211\) −1422.81 + 4378.95i −0.464218 + 1.42872i 0.395745 + 0.918360i \(0.370486\pi\)
−0.859963 + 0.510356i \(0.829514\pi\)
\(212\) −2059.80 + 1496.54i −0.667302 + 0.484823i
\(213\) −4722.11 3430.81i −1.51903 1.10364i
\(214\) 1790.40 + 5510.27i 0.571911 + 1.76016i
\(215\) 145.921 + 449.099i 0.0462871 + 0.142457i
\(216\) −181.373 131.775i −0.0571337 0.0415101i
\(217\) 4174.23 3032.75i 1.30583 0.948741i
\(218\) 954.387 2937.30i 0.296510 0.912565i
\(219\) 7147.16 2.20530
\(220\) 0 0
\(221\) −4267.75 −1.29900
\(222\) 3466.50 10668.8i 1.04800 3.22541i
\(223\) 3756.63 2729.35i 1.12808 0.819601i 0.142670 0.989770i \(-0.454431\pi\)
0.985415 + 0.170169i \(0.0544313\pi\)
\(224\) −3551.81 2580.54i −1.05944 0.769731i
\(225\) −473.441 1457.10i −0.140279 0.431734i
\(226\) 743.527 + 2288.34i 0.218844 + 0.673532i
\(227\) 3446.38 + 2503.94i 1.00769 + 0.732126i 0.963722 0.266907i \(-0.0860017\pi\)
0.0439628 + 0.999033i \(0.486002\pi\)
\(228\) 516.949 375.586i 0.150157 0.109095i
\(229\) 1778.82 5474.64i 0.513308 1.57980i −0.273031 0.962005i \(-0.588026\pi\)
0.786339 0.617795i \(-0.211974\pi\)
\(230\) 1901.15 0.545034
\(231\) 0 0
\(232\) 2510.65 0.710483
\(233\) −1591.77 + 4898.97i −0.447555 + 1.37743i 0.432101 + 0.901825i \(0.357772\pi\)
−0.879657 + 0.475609i \(0.842228\pi\)
\(234\) 6381.11 4636.15i 1.78268 1.29519i
\(235\) −1756.51 1276.18i −0.487585 0.354251i
\(236\) −2939.57 9047.07i −0.810804 2.49540i
\(237\) −1350.68 4156.96i −0.370194 1.13934i
\(238\) −5071.77 3684.86i −1.38132 1.00359i
\(239\) −1683.78 + 1223.34i −0.455710 + 0.331093i −0.791846 0.610721i \(-0.790880\pi\)
0.336136 + 0.941814i \(0.390880\pi\)
\(240\) −334.690 + 1030.07i −0.0900173 + 0.277045i
\(241\) −6829.14 −1.82533 −0.912663 0.408714i \(-0.865977\pi\)
−0.912663 + 0.408714i \(0.865977\pi\)
\(242\) 0 0
\(243\) 5419.43 1.43069
\(244\) 621.821 1913.77i 0.163148 0.502117i
\(245\) 458.860 333.381i 0.119655 0.0869345i
\(246\) −4800.26 3487.59i −1.24412 0.903905i
\(247\) 136.474 + 420.023i 0.0351563 + 0.108200i
\(248\) 1380.80 + 4249.67i 0.353553 + 1.08812i
\(249\) −3965.35 2881.00i −1.00921 0.733236i
\(250\) 5452.15 3961.22i 1.37930 1.00212i
\(251\) 6.22067 19.1453i 0.00156432 0.00481450i −0.950271 0.311423i \(-0.899194\pi\)
0.951836 + 0.306609i \(0.0991943\pi\)
\(252\) 6935.03 1.73359
\(253\) 0 0
\(254\) −3141.60 −0.776070
\(255\) −1353.98 + 4167.11i −0.332507 + 1.02335i
\(256\) 1752.46 1273.24i 0.427847 0.310849i
\(257\) −122.154 88.7499i −0.0296488 0.0215411i 0.572862 0.819652i \(-0.305833\pi\)
−0.602511 + 0.798111i \(0.705833\pi\)
\(258\) −574.445 1767.96i −0.138618 0.426622i
\(259\) 2106.57 + 6483.36i 0.505390 + 1.55543i
\(260\) 5026.23 + 3651.77i 1.19890 + 0.871050i
\(261\) 3325.76 2416.31i 0.788733 0.573048i
\(262\) −615.688 + 1894.89i −0.145181 + 0.446820i
\(263\) 2609.68 0.611862 0.305931 0.952054i \(-0.401032\pi\)
0.305931 + 0.952054i \(0.401032\pi\)
\(264\) 0 0
\(265\) −1806.65 −0.418799
\(266\) −200.471 + 616.986i −0.0462093 + 0.142218i
\(267\) 438.896 318.876i 0.100599 0.0730896i
\(268\) 3532.96 + 2566.84i 0.805260 + 0.585056i
\(269\) −372.656 1146.92i −0.0844656 0.259959i 0.899900 0.436097i \(-0.143639\pi\)
−0.984365 + 0.176138i \(0.943639\pi\)
\(270\) −149.274 459.419i −0.0336464 0.103553i
\(271\) 4925.43 + 3578.53i 1.10405 + 0.802142i 0.981717 0.190347i \(-0.0609613\pi\)
0.122336 + 0.992489i \(0.460961\pi\)
\(272\) −961.900 + 698.861i −0.214426 + 0.155789i
\(273\) −2873.99 + 8845.24i −0.637150 + 1.96095i
\(274\) −8791.94 −1.93847
\(275\) 0 0
\(276\) −4479.74 −0.976989
\(277\) 2303.27 7088.73i 0.499603 1.53762i −0.310055 0.950719i \(-0.600348\pi\)
0.809658 0.586901i \(-0.199652\pi\)
\(278\) −934.304 + 678.812i −0.201568 + 0.146448i
\(279\) 5919.09 + 4300.47i 1.27013 + 0.922804i
\(280\) 928.728 + 2858.33i 0.198222 + 0.610064i
\(281\) 2076.55 + 6390.95i 0.440841 + 1.35677i 0.886981 + 0.461806i \(0.152798\pi\)
−0.446140 + 0.894963i \(0.647202\pi\)
\(282\) 6914.85 + 5023.93i 1.46019 + 1.06089i
\(283\) −551.008 + 400.330i −0.115739 + 0.0840890i −0.644149 0.764900i \(-0.722788\pi\)
0.528410 + 0.848989i \(0.322788\pi\)
\(284\) −2882.43 + 8871.20i −0.602256 + 1.85355i
\(285\) 453.415 0.0942386
\(286\) 0 0
\(287\) 3605.72 0.741600
\(288\) 1923.77 5920.76i 0.393609 1.21140i
\(289\) 83.3663 60.5692i 0.0169685 0.0123283i
\(290\) 4376.53 + 3179.74i 0.886202 + 0.643864i
\(291\) 2259.48 + 6953.97i 0.455165 + 1.40085i
\(292\) −3529.50 10862.7i −0.707358 2.17702i
\(293\) −4628.08 3362.49i −0.922782 0.670440i 0.0214328 0.999770i \(-0.493177\pi\)
−0.944215 + 0.329330i \(0.893177\pi\)
\(294\) −1806.39 + 1312.42i −0.358336 + 0.260346i
\(295\) 2085.88 6419.68i 0.411677 1.26701i
\(296\) −5903.71 −1.15928
\(297\) 0 0
\(298\) 441.179 0.0857612
\(299\) 956.779 2944.66i 0.185057 0.569546i
\(300\) −3843.42 + 2792.41i −0.739666 + 0.537399i
\(301\) 913.923 + 664.004i 0.175009 + 0.127151i
\(302\) 2052.05 + 6315.58i 0.391002 + 1.20338i
\(303\) −2362.88 7272.21i −0.448001 1.37880i
\(304\) 99.5399 + 72.3200i 0.0187796 + 0.0136442i
\(305\) 1155.17 839.282i 0.216869 0.157564i
\(306\) 2747.03 8454.47i 0.513193 1.57944i
\(307\) −185.674 −0.0345178 −0.0172589 0.999851i \(-0.505494\pi\)
−0.0172589 + 0.999851i \(0.505494\pi\)
\(308\) 0 0
\(309\) 5536.14 1.01922
\(310\) −2975.22 + 9156.77i −0.545100 + 1.67764i
\(311\) −2053.62 + 1492.04i −0.374438 + 0.272045i −0.759049 0.651034i \(-0.774336\pi\)
0.384611 + 0.923079i \(0.374336\pi\)
\(312\) −6516.16 4734.27i −1.18239 0.859055i
\(313\) −2745.05 8448.40i −0.495717 1.52566i −0.815836 0.578284i \(-0.803723\pi\)
0.320118 0.947378i \(-0.396277\pi\)
\(314\) −2913.48 8966.78i −0.523622 1.61154i
\(315\) 3981.18 + 2892.50i 0.712108 + 0.517377i
\(316\) −5650.99 + 4105.68i −1.00599 + 0.730894i
\(317\) −888.523 + 2734.59i −0.157427 + 0.484511i −0.998399 0.0565682i \(-0.981984\pi\)
0.840971 + 0.541079i \(0.181984\pi\)
\(318\) 7112.22 1.25419
\(319\) 0 0
\(320\) 7031.54 1.22836
\(321\) 2993.59 9213.33i 0.520517 1.60199i
\(322\) 3679.51 2673.32i 0.636804 0.462665i
\(323\) 402.685 + 292.568i 0.0693685 + 0.0503991i
\(324\) −2505.83 7712.15i −0.429669 1.32239i
\(325\) −1014.66 3122.79i −0.173178 0.532988i
\(326\) 5001.89 + 3634.09i 0.849783 + 0.617403i
\(327\) −4177.76 + 3035.32i −0.706515 + 0.513313i
\(328\) −964.952 + 2969.82i −0.162441 + 0.499941i
\(329\) −5194.10 −0.870396
\(330\) 0 0
\(331\) −8295.55 −1.37754 −0.688769 0.724981i \(-0.741848\pi\)
−0.688769 + 0.724981i \(0.741848\pi\)
\(332\) −2420.49 + 7449.51i −0.400126 + 1.23146i
\(333\) −7820.42 + 5681.87i −1.28696 + 0.935028i
\(334\) 2799.90 + 2034.25i 0.458694 + 0.333261i
\(335\) 957.567 + 2947.09i 0.156172 + 0.480646i
\(336\) 800.680 + 2464.24i 0.130002 + 0.400105i
\(337\) −8215.84 5969.16i −1.32803 0.964869i −0.999795 0.0202719i \(-0.993547\pi\)
−0.328233 0.944597i \(-0.606453\pi\)
\(338\) 5741.14 4171.18i 0.923895 0.671249i
\(339\) 1243.20 3826.17i 0.199178 0.613006i
\(340\) 7002.07 1.11688
\(341\) 0 0
\(342\) −919.915 −0.145448
\(343\) −1726.92 + 5314.92i −0.271851 + 0.836672i
\(344\) −791.480 + 575.044i −0.124052 + 0.0901288i
\(345\) −2571.68 1868.43i −0.401317 0.291574i
\(346\) 616.099 + 1896.16i 0.0957274 + 0.294619i
\(347\) 3679.17 + 11323.3i 0.569187 + 1.75178i 0.655170 + 0.755482i \(0.272597\pi\)
−0.0859821 + 0.996297i \(0.527403\pi\)
\(348\) −10312.6 7492.53i −1.58854 1.15414i
\(349\) 3673.30 2668.81i 0.563402 0.409335i −0.269301 0.963056i \(-0.586793\pi\)
0.832702 + 0.553721i \(0.186793\pi\)
\(350\) 1490.46 4587.18i 0.227625 0.700557i
\(351\) −786.712 −0.119634
\(352\) 0 0
\(353\) −722.250 −0.108899 −0.0544497 0.998517i \(-0.517340\pi\)
−0.0544497 + 0.998517i \(0.517340\pi\)
\(354\) −8211.46 + 25272.3i −1.23287 + 3.79437i
\(355\) −5354.75 + 3890.46i −0.800566 + 0.581645i
\(356\) −701.389 509.589i −0.104420 0.0758656i
\(357\) 3239.13 + 9969.00i 0.480204 + 1.47791i
\(358\) 3872.55 + 11918.5i 0.571705 + 1.75953i
\(359\) −9870.02 7170.99i −1.45103 1.05423i −0.985589 0.169155i \(-0.945896\pi\)
−0.465440 0.885080i \(-0.654104\pi\)
\(360\) −3447.80 + 2504.97i −0.504764 + 0.366733i
\(361\) −2103.63 + 6474.31i −0.306696 + 0.943914i
\(362\) 5961.37 0.865532
\(363\) 0 0
\(364\) 14862.8 2.14017
\(365\) 2504.49 7708.03i 0.359153 1.10536i
\(366\) −4547.55 + 3303.99i −0.649465 + 0.471864i
\(367\) 116.186 + 84.4142i 0.0165255 + 0.0120065i 0.596017 0.802972i \(-0.296749\pi\)
−0.579492 + 0.814978i \(0.696749\pi\)
\(368\) −266.554 820.368i −0.0377584 0.116208i
\(369\) 1579.99 + 4862.70i 0.222902 + 0.686021i
\(370\) −10291.3 7477.05i −1.44599 1.05058i
\(371\) −3496.62 + 2540.44i −0.489314 + 0.355507i
\(372\) 7010.62 21576.5i 0.977106 3.00722i
\(373\) 3676.93 0.510414 0.255207 0.966886i \(-0.417856\pi\)
0.255207 + 0.966886i \(0.417856\pi\)
\(374\) 0 0
\(375\) −11268.2 −1.55170
\(376\) 1390.03 4278.07i 0.190652 0.586767i
\(377\) 7127.60 5178.51i 0.973714 0.707445i
\(378\) −934.925 679.262i −0.127215 0.0924272i
\(379\) 720.339 + 2216.98i 0.0976289 + 0.300471i 0.987930 0.154902i \(-0.0495061\pi\)
−0.890301 + 0.455373i \(0.849506\pi\)
\(380\) −223.911 689.128i −0.0302274 0.0930303i
\(381\) 4249.65 + 3087.55i 0.571433 + 0.415170i
\(382\) −7204.90 + 5234.67i −0.965012 + 0.701123i
\(383\) −1145.28 + 3524.80i −0.152796 + 0.470258i −0.997931 0.0642954i \(-0.979520\pi\)
0.845135 + 0.534553i \(0.179520\pi\)
\(384\) −14734.2 −1.95807
\(385\) 0 0
\(386\) 9337.39 1.23124
\(387\) −495.008 + 1523.48i −0.0650199 + 0.200111i
\(388\) 9453.25 6868.19i 1.23690 0.898659i
\(389\) −5280.60 3836.58i −0.688270 0.500058i 0.187821 0.982203i \(-0.439858\pi\)
−0.876091 + 0.482146i \(0.839858\pi\)
\(390\) −5362.95 16505.4i −0.696316 2.14304i
\(391\) −1078.33 3318.77i −0.139472 0.429252i
\(392\) 950.665 + 690.698i 0.122489 + 0.0889937i
\(393\) 2695.13 1958.13i 0.345932 0.251334i
\(394\) −5210.59 + 16036.5i −0.666258 + 2.05053i
\(395\) −4956.47 −0.631359
\(396\) 0 0
\(397\) −11290.7 −1.42736 −0.713682 0.700470i \(-0.752974\pi\)
−0.713682 + 0.700470i \(0.752974\pi\)
\(398\) 1725.95 5311.91i 0.217371 0.669000i
\(399\) 877.547 637.575i 0.110106 0.0799967i
\(400\) −740.060 537.685i −0.0925075 0.0672107i
\(401\) 4267.73 + 13134.7i 0.531472 + 1.63570i 0.751151 + 0.660130i \(0.229499\pi\)
−0.219679 + 0.975572i \(0.570501\pi\)
\(402\) −3769.64 11601.8i −0.467693 1.43941i
\(403\) 12685.5 + 9216.55i 1.56801 + 1.13923i
\(404\) −9885.88 + 7182.51i −1.21743 + 0.884513i
\(405\) 1778.10 5472.44i 0.218160 0.671427i
\(406\) 12941.6 1.58198
\(407\) 0 0
\(408\) −9077.70 −1.10150
\(409\) −2870.58 + 8834.74i −0.347044 + 1.06809i 0.613436 + 0.789744i \(0.289787\pi\)
−0.960480 + 0.278348i \(0.910213\pi\)
\(410\) −5443.37 + 3954.84i −0.655680 + 0.476379i
\(411\) 11892.9 + 8640.66i 1.42733 + 1.03701i
\(412\) −2733.93 8414.17i −0.326920 1.00616i
\(413\) −4990.07 15357.8i −0.594540 1.82981i
\(414\) 5217.57 + 3790.78i 0.619395 + 0.450017i
\(415\) −4496.61 + 3266.98i −0.531879 + 0.386433i
\(416\) 4122.93 12689.1i 0.485921 1.49551i
\(417\) 1930.96 0.226762
\(418\) 0 0
\(419\) 3072.83 0.358276 0.179138 0.983824i \(-0.442669\pi\)
0.179138 + 0.983824i \(0.442669\pi\)
\(420\) 4715.34 14512.3i 0.547822 1.68602i
\(421\) −4832.93 + 3511.33i −0.559483 + 0.406488i −0.831270 0.555869i \(-0.812386\pi\)
0.271787 + 0.962358i \(0.412386\pi\)
\(422\) −16628.6 12081.4i −1.91817 1.39363i
\(423\) −2276.00 7004.79i −0.261614 0.805165i
\(424\) −1156.65 3559.82i −0.132481 0.407736i
\(425\) −2993.89 2175.19i −0.341706 0.248264i
\(426\) 21080.0 15315.5i 2.39748 1.74187i
\(427\) 1055.57 3248.72i 0.119632 0.368188i
\(428\) −15481.3 −1.74840
\(429\) 0 0
\(430\) −2107.99 −0.236411
\(431\) 72.1217 221.968i 0.00806028 0.0248070i −0.946945 0.321394i \(-0.895849\pi\)
0.955006 + 0.296587i \(0.0958485\pi\)
\(432\) −177.316 + 128.827i −0.0197479 + 0.0143477i
\(433\) 4507.29 + 3274.74i 0.500247 + 0.363450i 0.809111 0.587656i \(-0.199949\pi\)
−0.308865 + 0.951106i \(0.599949\pi\)
\(434\) 7117.62 + 21905.8i 0.787228 + 2.42284i
\(435\) −2795.11 8602.45i −0.308081 0.948174i
\(436\) 6676.37 + 4850.67i 0.733349 + 0.532810i
\(437\) −292.143 + 212.255i −0.0319797 + 0.0232346i
\(438\) −9859.39 + 30344.1i −1.07557 + 3.31027i
\(439\) 3533.06 0.384109 0.192054 0.981384i \(-0.438485\pi\)
0.192054 + 0.981384i \(0.438485\pi\)
\(440\) 0 0
\(441\) 1924.05 0.207759
\(442\) 5887.29 18119.2i 0.633552 1.94987i
\(443\) 12056.5 8759.54i 1.29305 0.939454i 0.293186 0.956055i \(-0.405284\pi\)
0.999862 + 0.0166010i \(0.00528450\pi\)
\(444\) 24249.7 + 17618.5i 2.59198 + 1.88319i
\(445\) −190.103 585.077i −0.0202511 0.0623266i
\(446\) 6405.57 + 19714.3i 0.680073 + 2.09305i
\(447\) −596.783 433.588i −0.0631473 0.0458792i
\(448\) 13608.9 9887.48i 1.43518 1.04272i
\(449\) −2221.88 + 6838.23i −0.233534 + 0.718744i 0.763778 + 0.645479i \(0.223342\pi\)
−0.997312 + 0.0732656i \(0.976658\pi\)
\(450\) 6839.39 0.716471
\(451\) 0 0
\(452\) −6429.18 −0.669033
\(453\) 3431.09 10559.8i 0.355865 1.09524i
\(454\) −15385.0 + 11177.9i −1.59043 + 1.15551i
\(455\) 8532.27 + 6199.05i 0.879118 + 0.638717i
\(456\) 290.286 + 893.408i 0.0298111 + 0.0917492i
\(457\) 1218.21 + 3749.26i 0.124694 + 0.383770i 0.993845 0.110777i \(-0.0353339\pi\)
−0.869151 + 0.494547i \(0.835334\pi\)
\(458\) 20789.3 + 15104.3i 2.12101 + 1.54100i
\(459\) −717.324 + 521.167i −0.0729452 + 0.0529978i
\(460\) −1569.78 + 4831.29i −0.159112 + 0.489695i
\(461\) −8254.37 −0.833936 −0.416968 0.908921i \(-0.636907\pi\)
−0.416968 + 0.908921i \(0.636907\pi\)
\(462\) 0 0
\(463\) 7083.97 0.711058 0.355529 0.934665i \(-0.384301\pi\)
0.355529 + 0.934665i \(0.384301\pi\)
\(464\) 758.476 2334.35i 0.0758865 0.233555i
\(465\) 13023.8 9462.33i 1.29885 0.943667i
\(466\) −18603.3 13516.1i −1.84932 1.34361i
\(467\) −5524.91 17003.9i −0.547457 1.68490i −0.715076 0.699046i \(-0.753608\pi\)
0.167620 0.985852i \(-0.446392\pi\)
\(468\) 6512.71 + 20044.1i 0.643269 + 1.97978i
\(469\) 5997.37 + 4357.34i 0.590475 + 0.429005i
\(470\) 7841.26 5697.01i 0.769554 0.559114i
\(471\) −4871.42 + 14992.7i −0.476568 + 1.46672i
\(472\) 13984.7 1.36377
\(473\) 0 0
\(474\) 19512.1 1.89076
\(475\) −118.339 + 364.210i −0.0114311 + 0.0351812i
\(476\) 13551.9 9846.04i 1.30494 0.948093i
\(477\) −4958.23 3602.37i −0.475937 0.345788i
\(478\) −2871.07 8836.26i −0.274728 0.845525i
\(479\) 1331.31 + 4097.34i 0.126991 + 0.390840i 0.994259 0.107003i \(-0.0341256\pi\)
−0.867267 + 0.497843i \(0.834126\pi\)
\(480\) −11081.8 8051.42i −1.05378 0.765615i
\(481\) −16760.3 + 12177.1i −1.58879 + 1.15432i
\(482\) 9420.68 28993.9i 0.890249 2.73991i
\(483\) −7604.58 −0.716399
\(484\) 0 0
\(485\) 8291.43 0.776277
\(486\) −7476.02 + 23008.8i −0.697776 + 2.14753i
\(487\) −10726.1 + 7792.97i −0.998042 + 0.725120i −0.961667 0.274219i \(-0.911581\pi\)
−0.0363742 + 0.999338i \(0.511581\pi\)
\(488\) 2393.28 + 1738.82i 0.222006 + 0.161297i
\(489\) −3194.50 9831.65i −0.295420 0.909208i
\(490\) 782.418 + 2408.04i 0.0721348 + 0.222008i
\(491\) −743.284 540.027i −0.0683176 0.0496356i 0.553102 0.833113i \(-0.313444\pi\)
−0.621420 + 0.783478i \(0.713444\pi\)
\(492\) 12826.4 9318.94i 1.17532 0.853923i
\(493\) 3068.39 9443.52i 0.280311 0.862708i
\(494\) −1971.52 −0.179560
\(495\) 0 0
\(496\) 4368.41 0.395458
\(497\) −4893.06 + 15059.3i −0.441617 + 1.35916i
\(498\) 17701.7 12861.1i 1.59284 1.15727i
\(499\) −9886.98 7183.31i −0.886978 0.644427i 0.0481105 0.998842i \(-0.484680\pi\)
−0.935088 + 0.354415i \(0.884680\pi\)
\(500\) 5564.59 + 17126.1i 0.497712 + 1.53180i
\(501\) −1788.18 5503.45i −0.159461 0.490770i
\(502\) 72.7021 + 52.8211i 0.00646385 + 0.00469626i
\(503\) 4440.55 3226.25i 0.393627 0.285986i −0.373313 0.927705i \(-0.621778\pi\)
0.766940 + 0.641719i \(0.221778\pi\)
\(504\) −3150.53 + 9696.33i −0.278444 + 0.856962i
\(505\) −8670.89 −0.764058
\(506\) 0 0
\(507\) −11865.4 −1.03937
\(508\) 2594.03 7983.60i 0.226558 0.697274i
\(509\) 75.1105 54.5710i 0.00654070 0.00475209i −0.584510 0.811386i \(-0.698713\pi\)
0.591051 + 0.806634i \(0.298713\pi\)
\(510\) −15824.2 11496.9i −1.37393 0.998220i
\(511\) −5991.50 18440.0i −0.518686 1.59635i
\(512\) −1891.82 5822.43i −0.163296 0.502573i
\(513\) 74.2306 + 53.9317i 0.00638862 + 0.00464160i
\(514\) 545.307 396.189i 0.0467947 0.0339983i
\(515\) 1939.96 5970.59i 0.165990 0.510865i
\(516\) 4967.15 0.423772
\(517\) 0 0
\(518\) −30431.8 −2.58127
\(519\) 1030.13 3170.43i 0.0871250 0.268143i
\(520\) −7389.16 + 5368.54i −0.623146 + 0.452742i
\(521\) 3558.78 + 2585.61i 0.299257 + 0.217423i 0.727273 0.686348i \(-0.240787\pi\)
−0.428016 + 0.903771i \(0.640787\pi\)
\(522\) 5670.87 + 17453.1i 0.475493 + 1.46342i
\(523\) −1782.94 5487.33i −0.149068 0.458785i 0.848444 0.529286i \(-0.177540\pi\)
−0.997512 + 0.0705013i \(0.977540\pi\)
\(524\) −4307.02 3129.24i −0.359071 0.260880i
\(525\) −6524.39 + 4740.25i −0.542377 + 0.394060i
\(526\) −3600.01 + 11079.7i −0.298418 + 0.918436i
\(527\) 17672.2 1.46075
\(528\) 0 0
\(529\) −9635.37 −0.791926
\(530\) 2492.24 7670.34i 0.204257 0.628638i
\(531\) 18525.1 13459.3i 1.51397 1.09997i
\(532\) −1402.39 1018.89i −0.114288 0.0830350i
\(533\) 3386.15 + 10421.5i 0.275179 + 0.846914i
\(534\) 748.377 + 2303.27i 0.0606469 + 0.186652i
\(535\) −8887.33 6457.02i −0.718192 0.521797i
\(536\) −5193.87 + 3773.57i −0.418547 + 0.304092i
\(537\) 6475.01 19928.0i 0.520330 1.60141i
\(538\) 5383.44 0.431407
\(539\) 0 0
\(540\) 1290.75 0.102861
\(541\) 3564.62 10970.8i 0.283281 0.871849i −0.703628 0.710569i \(-0.748438\pi\)
0.986909 0.161280i \(-0.0515623\pi\)
\(542\) −21987.6 + 15974.9i −1.74253 + 1.26602i
\(543\) −8063.94 5858.79i −0.637305 0.463029i
\(544\) −4646.74 14301.2i −0.366226 1.12713i
\(545\) 1809.55 + 5569.23i 0.142225 + 0.437724i
\(546\) −33588.9 24403.7i −2.63273 1.91279i
\(547\) 2630.07 1910.85i 0.205582 0.149364i −0.480230 0.877142i \(-0.659447\pi\)
0.685813 + 0.727778i \(0.259447\pi\)
\(548\) 7259.52 22342.5i 0.565897 1.74165i
\(549\) 4843.78 0.376552
\(550\) 0 0
\(551\) −1027.53 −0.0794452
\(552\) 2035.11 6263.43i 0.156921 0.482952i
\(553\) −9592.82 + 6969.60i −0.737664 + 0.535945i
\(554\) 26918.7 + 19557.6i 2.06438 + 1.49986i
\(555\) 6572.60 + 20228.4i 0.502687 + 1.54711i
\(556\) −953.573 2934.80i −0.0727347 0.223854i
\(557\) 16324.8 + 11860.6i 1.24184 + 0.902247i 0.997719 0.0674983i \(-0.0215017\pi\)
0.244118 + 0.969746i \(0.421502\pi\)
\(558\) −26423.4 + 19197.7i −2.00464 + 1.45646i
\(559\) −1060.88 + 3265.05i −0.0802690 + 0.247043i
\(560\) 2938.19 0.221717
\(561\) 0 0
\(562\) −29998.1 −2.25159
\(563\) −3996.96 + 12301.4i −0.299204 + 0.920854i 0.682573 + 0.730817i \(0.260861\pi\)
−0.981777 + 0.190037i \(0.939139\pi\)
\(564\) −18476.7 + 13424.1i −1.37945 + 1.00223i
\(565\) −3690.79 2681.51i −0.274819 0.199667i
\(566\) −939.542 2891.61i −0.0697737 0.214741i
\(567\) −4253.77 13091.8i −0.315064 0.969668i
\(568\) −11094.0 8060.24i −0.819529 0.595422i
\(569\) −11581.5 + 8414.44i −0.853288 + 0.619950i −0.926051 0.377399i \(-0.876818\pi\)
0.0727626 + 0.997349i \(0.476818\pi\)
\(570\) −625.479 + 1925.03i −0.0459622 + 0.141457i
\(571\) 2503.96 0.183516 0.0917580 0.995781i \(-0.470751\pi\)
0.0917580 + 0.995781i \(0.470751\pi\)
\(572\) 0 0
\(573\) 14890.7 1.08563
\(574\) −4974.04 + 15308.5i −0.361694 + 1.11318i
\(575\) 2172.03 1578.07i 0.157530 0.114452i
\(576\) 19297.6 + 14020.5i 1.39595 + 1.01422i
\(577\) 1643.89 + 5059.37i 0.118607 + 0.365034i 0.992682 0.120756i \(-0.0385320\pi\)
−0.874076 + 0.485790i \(0.838532\pi\)
\(578\) 142.151 + 437.495i 0.0102296 + 0.0314834i
\(579\) −12630.7 9176.72i −0.906585 0.658673i
\(580\) −11694.2 + 8496.34i −0.837199 + 0.608261i
\(581\) −4108.91 + 12645.9i −0.293401 + 0.902997i
\(582\) −32640.8 −2.32475
\(583\) 0 0
\(584\) 16791.3 1.18978
\(585\) −4621.34 + 14223.0i −0.326613 + 1.00521i
\(586\) 20660.2 15010.5i 1.45643 1.05815i
\(587\) −5844.86 4246.54i −0.410976 0.298592i 0.363021 0.931781i \(-0.381745\pi\)
−0.773997 + 0.633189i \(0.781745\pi\)
\(588\) −1843.64 5674.15i −0.129304 0.397956i
\(589\) −565.121 1739.26i −0.0395338 0.121672i
\(590\) 24378.1 + 17711.7i 1.70107 + 1.23590i
\(591\) 22809.0 16571.7i 1.58754 1.15341i
\(592\) −1783.53 + 5489.15i −0.123822 + 0.381085i
\(593\) −26210.5 −1.81507 −0.907535 0.419976i \(-0.862038\pi\)
−0.907535 + 0.419976i \(0.862038\pi\)
\(594\) 0 0
\(595\) 11886.4 0.818980
\(596\) −364.283 + 1121.15i −0.0250362 + 0.0770536i
\(597\) −7555.20 + 5489.17i −0.517946 + 0.376310i
\(598\) 11182.0 + 8124.22i 0.764661 + 0.555559i
\(599\) −1257.70 3870.80i −0.0857900 0.264035i 0.898954 0.438043i \(-0.144328\pi\)
−0.984744 + 0.174008i \(0.944328\pi\)
\(600\) −2158.22 6642.31i −0.146848 0.451952i
\(601\) −1345.85 977.818i −0.0913451 0.0663661i 0.541175 0.840910i \(-0.317980\pi\)
−0.632520 + 0.774544i \(0.717980\pi\)
\(602\) −4079.84 + 2964.18i −0.276216 + 0.200683i
\(603\) −3248.36 + 9997.42i −0.219375 + 0.675168i
\(604\) −17743.8 −1.19534
\(605\) 0 0
\(606\) 34134.6 2.28815
\(607\) 3421.98 10531.8i 0.228821 0.704237i −0.769061 0.639176i \(-0.779276\pi\)
0.997881 0.0650615i \(-0.0207244\pi\)
\(608\) −1258.90 + 914.643i −0.0839721 + 0.0610093i
\(609\) −17506.1 12718.9i −1.16483 0.846301i
\(610\) 1969.72 + 6062.19i 0.130741 + 0.402379i
\(611\) −4877.80 15012.3i −0.322970 0.994000i
\(612\) 19216.7 + 13961.8i 1.26926 + 0.922174i
\(613\) 12749.2 9262.86i 0.840027 0.610316i −0.0823510 0.996603i \(-0.526243\pi\)
0.922378 + 0.386288i \(0.126243\pi\)
\(614\) 256.134 788.298i 0.0168350 0.0518129i
\(615\) 11250.0 0.737634
\(616\) 0 0
\(617\) 19132.5 1.24837 0.624185 0.781277i \(-0.285431\pi\)
0.624185 + 0.781277i \(0.285431\pi\)
\(618\) −7637.02 + 23504.3i −0.497097 + 1.52991i
\(619\) −8298.54 + 6029.25i −0.538848 + 0.391496i −0.823657 0.567089i \(-0.808070\pi\)
0.284809 + 0.958584i \(0.408070\pi\)
\(620\) −20813.0 15121.5i −1.34818 0.979509i
\(621\) −198.779 611.779i −0.0128450 0.0395327i
\(622\) −3501.70 10777.1i −0.225732 0.694732i
\(623\) −1190.64 865.052i −0.0765683 0.0556301i
\(624\) −6370.38 + 4628.35i −0.408685 + 0.296927i
\(625\) −1887.46 + 5809.00i −0.120797 + 0.371776i
\(626\) 39655.4 2.53187
\(627\) 0 0
\(628\) 25192.5 1.60078
\(629\) −7215.22 + 22206.2i −0.457376 + 1.40766i
\(630\) −17772.4 + 12912.4i −1.12392 + 0.816575i
\(631\) 2188.92 + 1590.34i 0.138097 + 0.100334i 0.654689 0.755898i \(-0.272800\pi\)
−0.516592 + 0.856232i \(0.672800\pi\)
\(632\) −3173.23 9766.20i −0.199722 0.614682i
\(633\) 10620.0 + 32684.9i 0.666834 + 2.05230i
\(634\) −10384.3 7544.65i −0.650495 0.472613i
\(635\) 4818.99 3501.20i 0.301159 0.218805i
\(636\) −5872.57 + 18073.9i −0.366136 + 1.12685i
\(637\) 4123.54 0.256484
\(638\) 0 0
\(639\) −22453.1 −1.39003
\(640\) −5163.10 + 15890.4i −0.318890 + 0.981443i
\(641\) −4343.27 + 3155.57i −0.267627 + 0.194442i −0.713503 0.700653i \(-0.752892\pi\)
0.445876 + 0.895095i \(0.352892\pi\)
\(642\) 34986.6 + 25419.3i 2.15080 + 1.56265i
\(643\) 9538.24 + 29355.7i 0.584994 + 1.80043i 0.599293 + 0.800530i \(0.295449\pi\)
−0.0142983 + 0.999898i \(0.504551\pi\)
\(644\) 3755.39 + 11557.9i 0.229788 + 0.707213i
\(645\) 2851.48 + 2071.72i 0.174073 + 0.126471i
\(646\) −1797.63 + 1306.05i −0.109484 + 0.0795449i
\(647\) −2710.98 + 8343.52i −0.164729 + 0.506983i −0.999016 0.0443469i \(-0.985879\pi\)
0.834288 + 0.551330i \(0.185879\pi\)
\(648\) 11921.3 0.722703
\(649\) 0 0
\(650\) 14657.8 0.884505
\(651\) 11900.9 36627.1i 0.716485 2.20511i
\(652\) −13365.2 + 9710.38i −0.802793 + 0.583264i
\(653\) 24151.9 + 17547.4i 1.44737 + 1.05158i 0.986436 + 0.164147i \(0.0524870\pi\)
0.460938 + 0.887432i \(0.347513\pi\)
\(654\) −7123.64 21924.3i −0.425927 1.31087i
\(655\) −1167.37 3592.79i −0.0696379 0.214323i
\(656\) 2469.76 + 1794.39i 0.146994 + 0.106797i
\(657\) 22242.8 16160.3i 1.32081 0.959627i
\(658\) 7165.18 22052.2i 0.424510 1.30651i
\(659\) −9304.45 −0.550000 −0.275000 0.961444i \(-0.588678\pi\)
−0.275000 + 0.961444i \(0.588678\pi\)
\(660\) 0 0
\(661\) 2078.54 0.122309 0.0611543 0.998128i \(-0.480522\pi\)
0.0611543 + 0.998128i \(0.480522\pi\)
\(662\) 11443.6 35219.7i 0.671854 2.06775i
\(663\) −25771.2 + 18723.9i −1.50961 + 1.09679i
\(664\) −9316.06 6768.51i −0.544478 0.395586i
\(665\) −380.100 1169.83i −0.0221649 0.0682166i
\(666\) −13334.9 41040.5i −0.775850 2.38782i
\(667\) 5827.95 + 4234.25i 0.338319 + 0.245803i
\(668\) −7481.41 + 5435.56i −0.433330 + 0.314833i
\(669\) 10710.3 32962.9i 0.618959 1.90496i
\(670\) −13833.1 −0.797643
\(671\) 0 0
\(672\) −32769.5 −1.88112
\(673\) 4624.57 14233.0i 0.264880 0.815217i −0.726841 0.686806i \(-0.759012\pi\)
0.991721 0.128411i \(-0.0409876\pi\)
\(674\) 36676.3 26646.9i 2.09602 1.52285i
\(675\) −551.890 400.972i −0.0314700 0.0228643i
\(676\) 5859.54 + 18033.8i 0.333383 + 1.02605i
\(677\) 7121.14 + 21916.6i 0.404265 + 1.24420i 0.921507 + 0.388361i \(0.126959\pi\)
−0.517242 + 0.855839i \(0.673041\pi\)
\(678\) 14529.5 + 10556.3i 0.823010 + 0.597952i
\(679\) 16047.4 11659.1i 0.906983 0.658962i
\(680\) −3180.99 + 9790.07i −0.179390 + 0.552106i
\(681\) 31796.8 1.78922
\(682\) 0 0
\(683\) 17860.8 1.00062 0.500312 0.865845i \(-0.333219\pi\)
0.500312 + 0.865845i \(0.333219\pi\)
\(684\) 759.575 2337.73i 0.0424607 0.130680i
\(685\) 13486.2 9798.29i 0.752235 0.546531i
\(686\) −20182.8 14663.7i −1.12330 0.816125i
\(687\) −13277.3 40863.3i −0.737350 2.26933i
\(688\) 295.555 + 909.626i 0.0163778 + 0.0504057i
\(689\) −10626.2 7720.41i −0.587558 0.426886i
\(690\) 11480.2 8340.88i 0.633398 0.460191i
\(691\) 3627.64 11164.7i 0.199713 0.614654i −0.800176 0.599765i \(-0.795261\pi\)
0.999889 0.0148886i \(-0.00473936\pi\)
\(692\) −5327.32 −0.292651
\(693\) 0 0
\(694\) −53149.7 −2.90711
\(695\) 676.643 2082.49i 0.0369303 0.113660i
\(696\) 15160.7 11014.9i 0.825670 0.599885i
\(697\) 9991.33 + 7259.12i 0.542968 + 0.394489i
\(698\) 6263.47 + 19277.0i 0.339650 + 1.04534i
\(699\) 11881.1 + 36566.4i 0.642899 + 1.97864i
\(700\) 10426.5 + 7575.28i 0.562977 + 0.409027i
\(701\) −24671.2 + 17924.6i −1.32927 + 0.965769i −0.329501 + 0.944155i \(0.606881\pi\)
−0.999766 + 0.0216142i \(0.993119\pi\)
\(702\) 1085.26 3340.08i 0.0583481 0.179577i
\(703\) 2416.21 0.129629
\(704\) 0 0
\(705\) −16205.8 −0.865741
\(706\) 996.332 3066.40i 0.0531126 0.163464i
\(707\) −16781.8 + 12192.7i −0.892706 + 0.648589i
\(708\) −57442.9 41734.7i −3.04921 2.21538i
\(709\) 187.415 + 576.805i 0.00992741 + 0.0305534i 0.955898 0.293700i \(-0.0948868\pi\)
−0.945970 + 0.324254i \(0.894887\pi\)
\(710\) −9130.58 28101.0i −0.482626 1.48537i
\(711\) −13602.7 9882.93i −0.717498 0.521293i
\(712\) 1031.13 749.157i 0.0542740 0.0394324i
\(713\) −3961.91 + 12193.5i −0.208099 + 0.640463i
\(714\) −46792.8 −2.45263
\(715\) 0 0
\(716\) −33485.4 −1.74778
\(717\) −4800.52 + 14774.5i −0.250040 + 0.769544i
\(718\) 44060.8 32012.0i 2.29016 1.66390i
\(719\) −18371.8 13347.9i −0.952922 0.692338i −0.00142584 0.999999i \(-0.500454\pi\)
−0.951496 + 0.307661i \(0.900454\pi\)
\(720\) 1287.48 + 3962.46i 0.0666411 + 0.205100i
\(721\) −4640.98 14283.5i −0.239721 0.737786i
\(722\) −24585.5 17862.4i −1.26728 0.920734i
\(723\) −41238.3 + 29961.4i −2.12126 + 1.54118i
\(724\) −4922.31 + 15149.3i −0.252675 + 0.777652i
\(725\) 7639.50 0.391343
\(726\) 0 0
\(727\) 34351.1 1.75243 0.876213 0.481925i \(-0.160062\pi\)
0.876213 + 0.481925i \(0.160062\pi\)
\(728\) −6752.06 + 20780.7i −0.343747 + 1.05795i
\(729\) 17876.1 12987.7i 0.908199 0.659845i
\(730\) 29270.4 + 21266.2i 1.48404 + 1.07822i
\(731\) 1195.66 + 3679.86i 0.0604966 + 0.186190i
\(732\) −4641.34 14284.6i −0.234356 0.721274i
\(733\) −1292.84 939.304i −0.0651462 0.0473315i 0.554736 0.832027i \(-0.312819\pi\)
−0.619882 + 0.784695i \(0.712819\pi\)
\(734\) −518.667 + 376.833i −0.0260822 + 0.0189498i
\(735\) 1308.22 4026.30i 0.0656525 0.202058i
\(736\) 10909.3 0.546360
\(737\) 0 0
\(738\) −22824.7 −1.13847
\(739\) −4382.51 + 13488.0i −0.218151 + 0.671398i 0.780764 + 0.624826i \(0.214830\pi\)
−0.998915 + 0.0465728i \(0.985170\pi\)
\(740\) 27498.6 19978.9i 1.36604 0.992484i
\(741\) 2666.87 + 1937.59i 0.132213 + 0.0960584i
\(742\) −5962.21 18349.8i −0.294986 0.907873i
\(743\) 10738.3 + 33049.2i 0.530217 + 1.63184i 0.753763 + 0.657146i \(0.228236\pi\)
−0.223547 + 0.974693i \(0.571764\pi\)
\(744\) 26982.6 + 19604.0i 1.32961 + 0.966020i
\(745\) −676.736 + 491.678i −0.0332801 + 0.0241794i
\(746\) −5072.27 + 15610.8i −0.248940 + 0.766157i
\(747\) −18854.8 −0.923510
\(748\) 0 0
\(749\) −26280.3 −1.28206
\(750\) 15544.3 47840.3i 0.756794 2.32917i
\(751\) 22554.7 16387.0i 1.09592 0.796230i 0.115528 0.993304i \(-0.463144\pi\)
0.980389 + 0.197074i \(0.0631439\pi\)
\(752\) −3557.73 2584.84i −0.172523 0.125345i
\(753\) −46.4317 142.902i −0.00224710 0.00691586i
\(754\) 12153.5 + 37404.7i 0.587010 + 1.80663i
\(755\) −10186.2 7400.69i −0.491010 0.356740i
\(756\) 2498.14 1815.01i 0.120181 0.0873164i
\(757\) −2449.44 + 7538.60i −0.117604 + 0.361949i −0.992481 0.122397i \(-0.960942\pi\)
0.874877 + 0.484345i \(0.160942\pi\)
\(758\) −10406.1 −0.498638
\(759\) 0 0
\(760\) 1065.24 0.0508424
\(761\) 2861.49 8806.77i 0.136306 0.419507i −0.859485 0.511161i \(-0.829215\pi\)
0.995791 + 0.0916541i \(0.0292154\pi\)
\(762\) −18970.8 + 13783.1i −0.901892 + 0.655263i
\(763\) 11333.5 + 8234.25i 0.537745 + 0.390694i
\(764\) −7353.49 22631.7i −0.348220 1.07171i
\(765\) 5208.46 + 16030.0i 0.246160 + 0.757602i
\(766\) −13385.0 9724.80i −0.631359 0.458709i
\(767\) 39702.0 28845.2i 1.86904 1.35794i
\(768\) 4996.32 15377.1i 0.234752 0.722491i
\(769\) 30944.5 1.45109 0.725545 0.688175i \(-0.241588\pi\)
0.725545 + 0.688175i \(0.241588\pi\)
\(770\) 0 0
\(771\) −1127.01 −0.0526436
\(772\) −7709.90 + 23728.6i −0.359437 + 1.10623i
\(773\) −12161.0 + 8835.45i −0.565846 + 0.411111i −0.833594 0.552378i \(-0.813721\pi\)
0.267748 + 0.963489i \(0.413721\pi\)
\(774\) −5785.25 4203.23i −0.268665 0.195196i
\(775\) 4201.57 + 12931.1i 0.194742 + 0.599353i
\(776\) 5308.34 + 16337.4i 0.245565 + 0.755771i
\(777\) 41165.1 + 29908.2i 1.90063 + 1.38089i
\(778\) 23573.1 17126.9i 1.08630 0.789240i
\(779\) 394.926 1215.46i 0.0181639 0.0559027i
\(780\) 46372.7 2.12873
\(781\) 0 0
\(782\) 15577.8 0.712352
\(783\) 565.623 1740.81i 0.0258157 0.0794527i
\(784\) 929.397 675.246i 0.0423377 0.0307601i
\(785\) 14462.2 + 10507.4i 0.657552 + 0.477739i
\(786\) 4595.56 + 14143.7i 0.208547 + 0.641843i
\(787\) 2079.65 + 6400.51i 0.0941951 + 0.289903i 0.987043 0.160456i \(-0.0512963\pi\)
−0.892848 + 0.450358i \(0.851296\pi\)
\(788\) −36450.4 26482.8i −1.64783 1.19722i
\(789\) 15758.8 11449.4i 0.711061 0.516616i
\(790\) 6837.37 21043.2i 0.307927 0.947703i
\(791\) −10913.8 −0.490584
\(792\) 0 0
\(793\) 10380.9 0.464865
\(794\) 15575.3 47935.9i 0.696155 2.14254i
\(795\) −10909.6 + 7926.30i −0.486697 + 0.353606i
\(796\) 12073.8 + 8772.12i 0.537618 + 0.390602i
\(797\) −5607.52 17258.2i −0.249220 0.767021i −0.994914 0.100732i \(-0.967882\pi\)
0.745693 0.666289i \(-0.232118\pi\)
\(798\) 1496.34 + 4605.25i 0.0663781 + 0.204291i
\(799\) −14392.7 10456.9i −0.637267 0.463001i
\(800\) 9359.67 6800.20i 0.413643 0.300529i
\(801\) 644.888 1984.76i 0.0284469 0.0875507i
\(802\) −61652.2 −2.71448
\(803\) 0 0
\(804\) 32595.6 1.42980
\(805\) −2664.78 + 8201.35i −0.116672 + 0.359080i
\(806\) −56629.3 + 41143.6i −2.47479 + 1.79804i
\(807\) −7282.18 5290.81i −0.317652 0.230787i
\(808\) −5551.28 17085.1i −0.241700 0.743875i
\(809\) −8948.11 27539.5i −0.388874 1.19683i −0.933631 0.358237i \(-0.883378\pi\)
0.544757 0.838594i \(-0.316622\pi\)
\(810\) 20781.0 + 15098.3i 0.901445 + 0.654938i
\(811\) −2159.89 + 1569.25i −0.0935192 + 0.0679457i −0.633562 0.773692i \(-0.718408\pi\)
0.540043 + 0.841637i \(0.318408\pi\)
\(812\) −10685.9 + 32887.9i −0.461826 + 1.42135i
\(813\) 45442.7 1.96032
\(814\) 0 0
\(815\) −11722.6 −0.503833
\(816\) −2742.41 + 8440.27i −0.117651 + 0.362094i
\(817\) 323.929 235.348i 0.0138713 0.0100781i
\(818\) −33549.0 24374.7i −1.43400 1.04186i
\(819\) 11055.6 + 34025.8i 0.471692 + 1.45172i
\(820\) −5555.63 17098.5i −0.236599 0.728176i
\(821\) 6651.69 + 4832.73i 0.282759 + 0.205437i 0.720120 0.693849i \(-0.244087\pi\)
−0.437361 + 0.899286i \(0.644087\pi\)
\(822\) −53090.9 + 38572.8i −2.25275 + 1.63672i
\(823\) 5067.39 15595.8i 0.214627 0.660555i −0.784553 0.620062i \(-0.787107\pi\)
0.999180 0.0404924i \(-0.0128926\pi\)
\(824\) 13006.4 0.549879
\(825\) 0 0
\(826\) 72087.2 3.03660
\(827\) −6962.32 + 21427.8i −0.292749 + 0.900989i 0.691219 + 0.722645i \(0.257074\pi\)
−0.983968 + 0.178344i \(0.942926\pi\)
\(828\) −13941.5 + 10129.1i −0.585145 + 0.425133i
\(829\) 10702.7 + 7775.97i 0.448396 + 0.325779i 0.788962 0.614442i \(-0.210619\pi\)
−0.340566 + 0.940221i \(0.610619\pi\)
\(830\) −7667.33 23597.6i −0.320647 0.986849i
\(831\) −17191.8 52911.0i −0.717663 2.20874i
\(832\) 41357.6 + 30048.1i 1.72334 + 1.25208i
\(833\) 3759.84 2731.69i 0.156388 0.113622i
\(834\) −2663.73 + 8198.13i −0.110597 + 0.340381i
\(835\) −6561.93 −0.271958
\(836\) 0 0
\(837\) 3257.68 0.134530
\(838\) −4238.92 + 13046.1i −0.174739 + 0.537791i
\(839\) −2652.99 + 1927.51i −0.109167 + 0.0793148i −0.641030 0.767516i \(-0.721492\pi\)
0.531862 + 0.846831i \(0.321492\pi\)
\(840\) 18148.5 + 13185.7i 0.745457 + 0.541606i
\(841\) −1202.34 3700.42i −0.0492984 0.151725i
\(842\) −8240.79 25362.6i −0.337288 1.03807i
\(843\) 40578.4 + 29481.9i 1.65788 + 1.20452i
\(844\) 44432.0 32281.7i 1.81210 1.31657i
\(845\) −4157.85 + 12796.6i −0.169272 + 0.520965i
\(846\) 32879.3 1.33619
\(847\) 0 0
\(848\) −3659.28 −0.148184
\(849\) −1570.94 + 4834.86i −0.0635036 + 0.195444i
\(850\) 13365.0 9710.26i 0.539314 0.391834i
\(851\) −13704.2 9956.71i −0.552027 0.401071i
\(852\) 21514.7 + 66215.5i 0.865120 + 2.66257i
\(853\) −10542.3 32445.8i −0.423167 1.30237i −0.904739 0.425966i \(-0.859934\pi\)
0.481572 0.876406i \(-0.340066\pi\)
\(854\) 12336.7 + 8963.10i 0.494323 + 0.359146i
\(855\) 1411.08 1025.21i 0.0564421 0.0410076i
\(856\) 7033.04 21645.5i 0.280823 0.864284i
\(857\) 5029.20 0.200460 0.100230 0.994964i \(-0.468042\pi\)
0.100230 + 0.994964i \(0.468042\pi\)
\(858\) 0 0
\(859\) −3540.39 −0.140625 −0.0703124 0.997525i \(-0.522400\pi\)
−0.0703124 + 0.997525i \(0.522400\pi\)
\(860\) 1740.58 5356.94i 0.0690153 0.212407i
\(861\) 21773.5 15819.4i 0.861833 0.626158i
\(862\) 842.898 + 612.401i 0.0333054 + 0.0241978i
\(863\) −3227.40 9932.91i −0.127302 0.391796i 0.867011 0.498289i \(-0.166038\pi\)
−0.994314 + 0.106492i \(0.966038\pi\)
\(864\) −856.574 2636.26i −0.0337283 0.103805i
\(865\) −3058.25 2221.95i −0.120212 0.0873392i
\(866\) −20121.0 + 14618.8i −0.789538 + 0.573633i
\(867\) 237.680 731.504i 0.00931031 0.0286542i
\(868\) −61545.1 −2.40666
\(869\) 0 0
\(870\) 40378.5 1.57352
\(871\) −6961.72 + 21426.0i −0.270825 + 0.833515i
\(872\) −9815.08 + 7131.07i −0.381170 + 0.276936i
\(873\) 22755.3 + 16532.7i 0.882187 + 0.640946i
\(874\) −498.144 1533.13i −0.0192791 0.0593351i
\(875\) 9446.17 + 29072.3i 0.364959 + 1.12323i
\(876\) −68971.0 50110.3i −2.66018 1.93273i
\(877\) −13982.2 + 10158.7i −0.538364 + 0.391144i −0.823477 0.567350i \(-0.807969\pi\)
0.285113 + 0.958494i \(0.407969\pi\)
\(878\) −4873.80 + 15000.0i −0.187338 + 0.576567i
\(879\) −42699.3 −1.63847
\(880\) 0 0
\(881\) −6262.31 −0.239481 −0.119740 0.992805i \(-0.538206\pi\)
−0.119740 + 0.992805i \(0.538206\pi\)
\(882\) −2654.20 + 8168.79i −0.101328 + 0.311857i
\(883\) −23792.9 + 17286.5i −0.906788 + 0.658820i −0.940201 0.340621i \(-0.889363\pi\)
0.0334123 + 0.999442i \(0.489363\pi\)
\(884\) 41184.3 + 29922.1i 1.56694 + 1.13845i
\(885\) −15569.2 47917.2i −0.591361 1.82002i
\(886\) 20557.9 + 63270.8i 0.779522 + 2.39912i
\(887\) −9614.96 6985.68i −0.363967 0.264437i 0.390738 0.920502i \(-0.372220\pi\)
−0.754705 + 0.656065i \(0.772220\pi\)
\(888\) −35650.0 + 25901.3i −1.34723 + 0.978817i
\(889\) 4403.49 13552.6i 0.166129 0.511291i
\(890\) 2746.26 0.103432
\(891\) 0 0
\(892\) −55388.1 −2.07907
\(893\) −568.897 + 1750.88i −0.0213185 + 0.0656115i
\(894\) 2664.10 1935.58i 0.0996653 0.0724111i
\(895\) −19222.9 13966.3i −0.717934 0.521609i
\(896\) 12351.7 + 38014.7i 0.460538 + 1.41739i
\(897\) −7141.49 21979.3i −0.265828 0.818134i
\(898\) −25967.5 18866.5i −0.964972 0.701093i
\(899\) −29514.6 + 21443.6i −1.09496 + 0.795532i
\(900\) −5647.30 + 17380.6i −0.209159 + 0.643726i
\(901\) −14803.5 −0.547365
\(902\) 0 0
\(903\) 8431.98 0.310740
\(904\) 2920.73 8989.07i 0.107458 0.330721i
\(905\) −9144.30 + 6643.72i −0.335875 + 0.244027i
\(906\) 40099.8 + 29134.2i 1.47045 + 1.06834i
\(907\) 13613.5 + 41898.1i 0.498378 + 1.53385i 0.811625 + 0.584179i \(0.198583\pi\)
−0.313247 + 0.949672i \(0.601417\pi\)
\(908\) −15702.3 48326.7i −0.573898 1.76628i
\(909\) −23796.7 17289.3i −0.868301 0.630857i
\(910\) −38088.9 + 27673.2i −1.38751 + 1.00809i
\(911\) −11026.4 + 33935.8i −0.401011 + 1.23418i 0.523170 + 0.852229i \(0.324749\pi\)
−0.924181 + 0.381956i \(0.875251\pi\)
\(912\) 918.369 0.0333446
\(913\) 0 0
\(914\) −17598.4 −0.636874
\(915\) 3293.43 10136.1i 0.118992 0.366219i
\(916\) −55549.7 + 40359.2i −2.00373 + 1.45579i
\(917\) −7311.38 5312.03i −0.263297 0.191296i
\(918\) −1223.13 3764.42i −0.0439755 0.135343i
\(919\) −1790.77 5511.43i −0.0642787 0.197829i 0.913759 0.406256i \(-0.133166\pi\)
−0.978038 + 0.208426i \(0.933166\pi\)
\(920\) −6041.81 4389.63i −0.216514 0.157306i
\(921\) −1121.21 + 814.604i −0.0401140 + 0.0291445i
\(922\) 11386.8 35044.9i 0.406728 1.25178i
\(923\) −48120.4 −1.71604
\(924\) 0 0
\(925\) −17964.1 −0.638545
\(926\) −9772.21 + 30075.8i −0.346798 + 1.06733i
\(927\) 17229.1 12517.7i 0.610441 0.443511i
\(928\) 25113.7 + 18246.2i 0.888358 + 0.645430i
\(929\) −10791.4 33212.5i −0.381113 1.17295i −0.939261 0.343204i \(-0.888488\pi\)
0.558147 0.829742i \(-0.311512\pi\)
\(930\) 22207.3 + 68347.1i 0.783018 + 2.40988i
\(931\) −389.078 282.682i −0.0136966 0.00995116i
\(932\) 49708.5 36115.4i 1.74706 1.26931i
\(933\) −5854.94 + 18019.7i −0.205447 + 0.632301i
\(934\) 79813.6 2.79612
\(935\) 0 0
\(936\) −30983.6 −1.08198
\(937\) 6114.59 18818.8i 0.213185 0.656117i −0.786092 0.618110i \(-0.787899\pi\)
0.999277 0.0380079i \(-0.0121012\pi\)
\(938\) −26772.9 + 19451.6i −0.931946 + 0.677098i
\(939\) −53641.8 38973.1i −1.86425 1.35446i
\(940\) 8002.98 + 24630.6i 0.277690 + 0.854641i
\(941\) 5740.04 + 17666.0i 0.198852 + 0.612004i 0.999910 + 0.0134172i \(0.00427094\pi\)
−0.801058 + 0.598587i \(0.795729\pi\)
\(942\) −56933.2 41364.4i −1.96920 1.43070i
\(943\) −7248.59 + 5266.41i −0.250314 + 0.181864i
\(944\) 4224.84 13002.7i 0.145664 0.448308i
\(945\) 2191.12 0.0754255
\(946\) 0 0
\(947\) 24620.0 0.844817 0.422408 0.906406i \(-0.361185\pi\)
0.422408 + 0.906406i \(0.361185\pi\)
\(948\) −16111.1 + 49585.0i −0.551968 + 1.69878i
\(949\) 47669.7 34634.1i 1.63058 1.18469i
\(950\) −1383.05 1004.84i −0.0472337 0.0343173i
\(951\) 6632.03 + 20411.3i 0.226139 + 0.695984i
\(952\) 7609.89 + 23420.8i 0.259073 + 0.797346i
\(953\) −21545.8 15653.9i −0.732357 0.532088i 0.157951 0.987447i \(-0.449511\pi\)
−0.890308 + 0.455358i \(0.849511\pi\)
\(954\) 22134.0 16081.3i 0.751170 0.545757i
\(955\) 5217.94 16059.2i 0.176805 0.544150i
\(956\) 24825.8 0.839878
\(957\) 0 0
\(958\) −19232.2 −0.648607
\(959\) 12323.4 37927.5i 0.414957 1.27710i
\(960\) 42460.6 30849.4i 1.42751 1.03715i
\(961\) −28427.7 20653.9i −0.954237 0.693294i
\(962\) −28578.6 87956.0i −0.957809 2.94783i
\(963\) −11515.7 35441.7i −0.385346 1.18597i
\(964\) 65902.0 + 47880.6i 2.20183 + 1.59972i
\(965\) −14322.9 + 10406.2i −0.477792 + 0.347136i
\(966\) 10490.4 32286.1i 0.349403 1.07535i
\(967\) 20484.3 0.681210 0.340605 0.940207i \(-0.389368\pi\)
0.340605 + 0.940207i \(0.389368\pi\)
\(968\) 0 0
\(969\) 3715.23 0.123169
\(970\) −11437.9 + 35202.2i −0.378607 + 1.16523i
\(971\) 44853.0 32587.6i 1.48239 1.07702i 0.505612 0.862761i \(-0.331267\pi\)
0.976777 0.214258i \(-0.0687334\pi\)
\(972\) −52298.2 37996.8i −1.72579 1.25386i
\(973\) −1618.74 4981.96i −0.0533344 0.164146i
\(974\) −18289.5 56289.2i −0.601676 1.85177i
\(975\) −19827.7 14405.6i −0.651275 0.473179i
\(976\) 2339.74 1699.92i 0.0767349 0.0557512i
\(977\) 18112.4 55744.1i 0.593108 1.82540i 0.0291781 0.999574i \(-0.490711\pi\)
0.563929 0.825823i \(-0.309289\pi\)
\(978\) 46148.1 1.50885
\(979\) 0 0
\(980\) −6765.46 −0.220525
\(981\) −6138.55 + 18892.5i −0.199785 + 0.614875i
\(982\) 3318.09 2410.74i 0.107826 0.0783398i
\(983\) 25100.7 + 18236.7i 0.814432 + 0.591719i 0.915112 0.403199i \(-0.132102\pi\)
−0.100680 + 0.994919i \(0.532102\pi\)
\(984\) 7202.50 + 22167.0i 0.233341 + 0.718149i
\(985\) −9879.47 30405.9i −0.319580 0.983565i
\(986\) 35860.8 + 26054.4i 1.15825 + 0.841521i
\(987\) −31365.0 + 22788.0i −1.01151 + 0.734905i
\(988\) 1627.88 5010.11i 0.0524189 0.161329i
\(989\) −2807.08 −0.0902528
\(990\) 0 0
\(991\) 11965.1 0.383537 0.191769 0.981440i \(-0.438578\pi\)
0.191769 + 0.981440i \(0.438578\pi\)
\(992\) −17072.6 + 52544.0i −0.546426 + 1.68173i
\(993\) −50093.4 + 36395.0i −1.60087 + 1.16310i
\(994\) −57186.1 41548.1i −1.82478 1.32578i
\(995\) 3272.46 + 10071.6i 0.104265 + 0.320895i
\(996\) 18066.8 + 55603.9i 0.574768 + 1.76895i
\(997\) −26897.0 19541.8i −0.854401 0.620758i 0.0719552 0.997408i \(-0.477076\pi\)
−0.926356 + 0.376649i \(0.877076\pi\)
\(998\) 44136.5 32067.0i 1.39992 1.01710i
\(999\) −1330.05 + 4093.46i −0.0421229 + 0.129641i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.c.g.9.1 8
11.2 odd 10 121.4.c.d.3.1 8
11.3 even 5 inner 121.4.c.g.81.2 8
11.4 even 5 121.4.a.b.1.1 2
11.5 even 5 inner 121.4.c.g.27.1 8
11.6 odd 10 121.4.c.d.27.2 8
11.7 odd 10 121.4.a.e.1.2 yes 2
11.8 odd 10 121.4.c.d.81.1 8
11.9 even 5 inner 121.4.c.g.3.2 8
11.10 odd 2 121.4.c.d.9.2 8
33.26 odd 10 1089.4.a.x.1.2 2
33.29 even 10 1089.4.a.k.1.1 2
44.7 even 10 1936.4.a.y.1.2 2
44.15 odd 10 1936.4.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.4.a.b.1.1 2 11.4 even 5
121.4.a.e.1.2 yes 2 11.7 odd 10
121.4.c.d.3.1 8 11.2 odd 10
121.4.c.d.9.2 8 11.10 odd 2
121.4.c.d.27.2 8 11.6 odd 10
121.4.c.d.81.1 8 11.8 odd 10
121.4.c.g.3.2 8 11.9 even 5 inner
121.4.c.g.9.1 8 1.1 even 1 trivial
121.4.c.g.27.1 8 11.5 even 5 inner
121.4.c.g.81.2 8 11.3 even 5 inner
1089.4.a.k.1.1 2 33.29 even 10
1089.4.a.x.1.2 2 33.26 odd 10
1936.4.a.y.1.2 2 44.7 even 10
1936.4.a.z.1.2 2 44.15 odd 10