Properties

Label 121.4.c.g.81.2
Level $121$
Weight $4$
Character 121.81
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.2
Root \(-0.535233 + 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 121.81
Dual form 121.4.c.g.3.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.61153 + 2.62393i) q^{2} +(-2.30653 + 7.09878i) q^{3} +(3.68602 + 11.3444i) q^{4} +(6.84760 - 4.97507i) q^{5} +(-26.9569 + 19.5853i) q^{6} +(6.25720 + 19.2577i) q^{7} +(-5.41889 + 16.6776i) q^{8} +(-23.2292 - 16.8770i) q^{9} +37.7846 q^{10} -89.0333 q^{12} +(-49.7836 - 36.1699i) q^{13} +(-27.9328 + 85.9682i) q^{14} +(19.5227 + 60.0848i) q^{15} +(13.8695 - 10.0768i) q^{16} +(56.1084 - 40.7652i) q^{17} +(-39.6088 - 121.903i) q^{18} +(2.21779 - 6.82565i) q^{19} +(81.6796 + 59.3437i) q^{20} -151.138 q^{21} +50.3154 q^{23} +(-105.892 - 76.9351i) q^{24} +(-16.4888 + 50.7474i) q^{25} +(-84.8877 - 261.258i) q^{26} +(10.3430 - 7.51461i) q^{27} +(-195.402 + 141.968i) q^{28} +(-44.2425 - 136.164i) q^{29} +(-87.1515 + 268.225i) q^{30} +(206.148 + 149.775i) q^{31} +216.818 q^{32} +309.603 q^{34} +(138.655 + 100.739i) q^{35} +(105.836 - 325.730i) q^{36} +(104.035 + 320.187i) q^{37} +(25.9197 - 18.8317i) q^{38} +(371.590 - 269.976i) q^{39} +(45.8660 + 141.161i) q^{40} +(55.0272 - 169.356i) q^{41} +(-545.842 - 396.577i) q^{42} -55.7898 q^{43} -243.028 q^{45} +(181.716 + 132.024i) q^{46} +(-79.2676 + 243.961i) q^{47} +(39.5423 + 121.699i) q^{48} +(-54.2125 + 39.3877i) q^{49} +(-192.708 + 140.010i) q^{50} +(159.967 + 492.328i) q^{51} +(226.822 - 698.088i) q^{52} +(-172.684 - 125.462i) q^{53} +57.0718 q^{54} -355.079 q^{56} +(43.3384 + 31.4872i) q^{57} +(197.503 - 607.852i) q^{58} +(-246.439 - 758.460i) q^{59} +(-609.665 + 442.947i) q^{60} +(-136.479 + 99.1578i) q^{61} +(351.510 + 1081.84i) q^{62} +(179.662 - 552.942i) q^{63} +(672.090 + 488.302i) q^{64} -520.846 q^{65} -366.105 q^{67} +(669.273 + 486.255i) q^{68} +(-116.054 + 357.178i) q^{69} +(236.426 + 727.644i) q^{70} +(632.643 - 459.642i) q^{71} +(407.344 - 295.953i) q^{72} +(-295.896 - 910.673i) q^{73} +(-464.422 + 1429.35i) q^{74} +(-322.213 - 234.101i) q^{75} +85.6077 q^{76} +2050.41 q^{78} +(-473.750 - 344.199i) q^{79} +(44.8399 - 138.003i) q^{80} +(-210.076 - 646.548i) q^{81} +(643.112 - 467.248i) q^{82} +(531.257 - 385.980i) q^{83} +(-557.099 - 1714.57i) q^{84} +(181.398 - 558.287i) q^{85} +(-201.487 - 146.389i) q^{86} +1068.65 q^{87} +72.6819 q^{89} +(-877.705 - 637.690i) q^{90} +(385.042 - 1185.04i) q^{91} +(185.463 + 570.797i) q^{92} +(-1538.71 + 1117.94i) q^{93} +(-926.414 + 673.079i) q^{94} +(-18.7716 - 57.7730i) q^{95} +(-500.098 + 1539.14i) q^{96} +(792.513 + 575.794i) q^{97} -299.141 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 8 q^{3} - 10 q^{4} + 10 q^{5} - 32 q^{6} + 8 q^{7} + 42 q^{8} - 2 q^{9} + 136 q^{10} - 352 q^{12} - 130 q^{13} + 160 q^{14} - 64 q^{15} + 62 q^{16} + 14 q^{17} + 194 q^{18} + 48 q^{19} + 98 q^{20}+ \cdots + 3288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.61153 + 2.62393i 1.27687 + 0.927700i 0.999454 0.0330493i \(-0.0105218\pi\)
0.277416 + 0.960750i \(0.410522\pi\)
\(3\) −2.30653 + 7.09878i −0.443893 + 1.36616i 0.439801 + 0.898095i \(0.355049\pi\)
−0.883694 + 0.468066i \(0.844951\pi\)
\(4\) 3.68602 + 11.3444i 0.460752 + 1.41805i
\(5\) 6.84760 4.97507i 0.612468 0.444984i −0.237814 0.971311i \(-0.576431\pi\)
0.850283 + 0.526326i \(0.176431\pi\)
\(6\) −26.9569 + 19.5853i −1.83418 + 1.33261i
\(7\) 6.25720 + 19.2577i 0.337857 + 1.03982i 0.965298 + 0.261152i \(0.0841024\pi\)
−0.627441 + 0.778664i \(0.715898\pi\)
\(8\) −5.41889 + 16.6776i −0.239483 + 0.737054i
\(9\) −23.2292 16.8770i −0.860339 0.625073i
\(10\) 37.7846 1.19485
\(11\) 0 0
\(12\) −89.0333 −2.14181
\(13\) −49.7836 36.1699i −1.06211 0.771671i −0.0876357 0.996153i \(-0.527931\pi\)
−0.974478 + 0.224482i \(0.927931\pi\)
\(14\) −27.9328 + 85.9682i −0.533239 + 1.64114i
\(15\) 19.5227 + 60.0848i 0.336050 + 1.03426i
\(16\) 13.8695 10.0768i 0.216710 0.157449i
\(17\) 56.1084 40.7652i 0.800488 0.581588i −0.110569 0.993868i \(-0.535267\pi\)
0.911057 + 0.412280i \(0.135267\pi\)
\(18\) −39.6088 121.903i −0.518661 1.59627i
\(19\) 2.21779 6.82565i 0.0267787 0.0824164i −0.936774 0.349935i \(-0.886204\pi\)
0.963553 + 0.267519i \(0.0862037\pi\)
\(20\) 81.6796 + 59.3437i 0.913206 + 0.663483i
\(21\) −151.138 −1.57053
\(22\) 0 0
\(23\) 50.3154 0.456151 0.228076 0.973643i \(-0.426757\pi\)
0.228076 + 0.973643i \(0.426757\pi\)
\(24\) −105.892 76.9351i −0.900630 0.654346i
\(25\) −16.4888 + 50.7474i −0.131911 + 0.405979i
\(26\) −84.8877 261.258i −0.640302 1.97065i
\(27\) 10.3430 7.51461i 0.0737224 0.0535625i
\(28\) −195.402 + 141.968i −1.31884 + 0.958195i
\(29\) −44.2425 136.164i −0.283297 0.871900i −0.986904 0.161310i \(-0.948428\pi\)
0.703606 0.710590i \(-0.251572\pi\)
\(30\) −87.1515 + 268.225i −0.530387 + 1.63236i
\(31\) 206.148 + 149.775i 1.19436 + 0.867755i 0.993718 0.111909i \(-0.0356964\pi\)
0.200644 + 0.979664i \(0.435696\pi\)
\(32\) 216.818 1.19776
\(33\) 0 0
\(34\) 309.603 1.56166
\(35\) 138.655 + 100.739i 0.669628 + 0.486513i
\(36\) 105.836 325.730i 0.489981 1.50801i
\(37\) 104.035 + 320.187i 0.462250 + 1.42266i 0.862409 + 0.506212i \(0.168955\pi\)
−0.400159 + 0.916446i \(0.631045\pi\)
\(38\) 25.9197 18.8317i 0.110651 0.0803924i
\(39\) 371.590 269.976i 1.52569 1.10848i
\(40\) 45.8660 + 141.161i 0.181301 + 0.557988i
\(41\) 55.0272 169.356i 0.209605 0.645098i −0.789888 0.613251i \(-0.789861\pi\)
0.999493 0.0318465i \(-0.0101388\pi\)
\(42\) −545.842 396.577i −2.00536 1.45698i
\(43\) −55.7898 −0.197857 −0.0989286 0.995095i \(-0.531542\pi\)
−0.0989286 + 0.995095i \(0.531542\pi\)
\(44\) 0 0
\(45\) −243.028 −0.805078
\(46\) 181.716 + 132.024i 0.582446 + 0.423172i
\(47\) −79.2676 + 243.961i −0.246008 + 0.757134i 0.749461 + 0.662048i \(0.230313\pi\)
−0.995469 + 0.0950859i \(0.969687\pi\)
\(48\) 39.5423 + 121.699i 0.118905 + 0.365952i
\(49\) −54.2125 + 39.3877i −0.158054 + 0.114833i
\(50\) −192.708 + 140.010i −0.545060 + 0.396009i
\(51\) 159.967 + 492.328i 0.439213 + 1.35176i
\(52\) 226.822 698.088i 0.604896 1.86168i
\(53\) −172.684 125.462i −0.447546 0.325161i 0.341080 0.940034i \(-0.389207\pi\)
−0.788626 + 0.614873i \(0.789207\pi\)
\(54\) 57.0718 0.143824
\(55\) 0 0
\(56\) −355.079 −0.847312
\(57\) 43.3384 + 31.4872i 0.100707 + 0.0731681i
\(58\) 197.503 607.852i 0.447128 1.37612i
\(59\) −246.439 758.460i −0.543790 1.67361i −0.723851 0.689957i \(-0.757630\pi\)
0.180061 0.983655i \(-0.442370\pi\)
\(60\) −609.665 + 442.947i −1.31179 + 0.953071i
\(61\) −136.479 + 99.1578i −0.286465 + 0.208129i −0.721732 0.692172i \(-0.756654\pi\)
0.435268 + 0.900301i \(0.356654\pi\)
\(62\) 351.510 + 1081.84i 0.720029 + 2.21602i
\(63\) 179.662 552.942i 0.359290 1.10578i
\(64\) 672.090 + 488.302i 1.31268 + 0.953714i
\(65\) −520.846 −0.993892
\(66\) 0 0
\(67\) −366.105 −0.667565 −0.333783 0.942650i \(-0.608325\pi\)
−0.333783 + 0.942650i \(0.608325\pi\)
\(68\) 669.273 + 486.255i 1.19355 + 0.867163i
\(69\) −116.054 + 357.178i −0.202482 + 0.623176i
\(70\) 236.426 + 727.644i 0.403690 + 1.24243i
\(71\) 632.643 459.642i 1.05748 0.768302i 0.0838575 0.996478i \(-0.473276\pi\)
0.973620 + 0.228175i \(0.0732760\pi\)
\(72\) 407.344 295.953i 0.666749 0.484422i
\(73\) −295.896 910.673i −0.474410 1.46009i −0.846751 0.531989i \(-0.821445\pi\)
0.372341 0.928096i \(-0.378555\pi\)
\(74\) −464.422 + 1429.35i −0.729568 + 2.24538i
\(75\) −322.213 234.101i −0.496079 0.360422i
\(76\) 85.6077 0.129209
\(77\) 0 0
\(78\) 2050.41 2.97645
\(79\) −473.750 344.199i −0.674697 0.490196i 0.196897 0.980424i \(-0.436913\pi\)
−0.871594 + 0.490228i \(0.836913\pi\)
\(80\) 44.8399 138.003i 0.0626657 0.192865i
\(81\) −210.076 646.548i −0.288170 0.886896i
\(82\) 643.112 467.248i 0.866096 0.629256i
\(83\) 531.257 385.980i 0.702566 0.510444i −0.178201 0.983994i \(-0.557028\pi\)
0.880767 + 0.473550i \(0.157028\pi\)
\(84\) −557.099 1714.57i −0.723625 2.22709i
\(85\) 181.398 558.287i 0.231476 0.712409i
\(86\) −201.487 146.389i −0.252638 0.183552i
\(87\) 1068.65 1.31691
\(88\) 0 0
\(89\) 72.6819 0.0865648 0.0432824 0.999063i \(-0.486218\pi\)
0.0432824 + 0.999063i \(0.486218\pi\)
\(90\) −877.705 637.690i −1.02798 0.746871i
\(91\) 385.042 1185.04i 0.443554 1.36512i
\(92\) 185.463 + 570.797i 0.210173 + 0.646845i
\(93\) −1538.71 + 1117.94i −1.71566 + 1.24650i
\(94\) −926.414 + 673.079i −1.01651 + 0.738540i
\(95\) −18.7716 57.7730i −0.0202729 0.0623935i
\(96\) −500.098 + 1539.14i −0.531677 + 1.63633i
\(97\) 792.513 + 575.794i 0.829562 + 0.602712i 0.919435 0.393241i \(-0.128646\pi\)
−0.0898736 + 0.995953i \(0.528646\pi\)
\(98\) −299.141 −0.308345
\(99\) 0 0
\(100\) −636.477 −0.636477
\(101\) −828.782 602.145i −0.816504 0.593225i 0.0992051 0.995067i \(-0.468370\pi\)
−0.915709 + 0.401842i \(0.868370\pi\)
\(102\) −714.109 + 2197.80i −0.693209 + 2.13348i
\(103\) −229.199 705.401i −0.219258 0.674808i −0.998824 0.0484872i \(-0.984560\pi\)
0.779565 0.626321i \(-0.215440\pi\)
\(104\) 873.000 634.272i 0.823122 0.598033i
\(105\) −1034.94 + 751.925i −0.961899 + 0.698861i
\(106\) −294.449 906.220i −0.269806 0.830376i
\(107\) −401.065 + 1234.35i −0.362359 + 1.11523i 0.589259 + 0.807944i \(0.299420\pi\)
−0.951618 + 0.307283i \(0.900580\pi\)
\(108\) 123.373 + 89.6357i 0.109922 + 0.0798630i
\(109\) −691.844 −0.607951 −0.303975 0.952680i \(-0.598314\pi\)
−0.303975 + 0.952680i \(0.598314\pi\)
\(110\) 0 0
\(111\) −2512.89 −2.14877
\(112\) 280.839 + 204.041i 0.236935 + 0.172144i
\(113\) −166.557 + 512.610i −0.138658 + 0.426746i −0.996141 0.0877666i \(-0.972027\pi\)
0.857483 + 0.514512i \(0.172027\pi\)
\(114\) 73.8978 + 227.434i 0.0607120 + 0.186852i
\(115\) 344.540 250.323i 0.279378 0.202980i
\(116\) 1381.62 1003.81i 1.10587 0.803460i
\(117\) 545.992 + 1680.39i 0.431428 + 1.32780i
\(118\) 1100.13 3385.84i 0.858262 2.64146i
\(119\) 1136.12 + 825.442i 0.875195 + 0.635867i
\(120\) −1107.86 −0.842781
\(121\) 0 0
\(122\) −753.082 −0.558859
\(123\) 1075.30 + 781.252i 0.788266 + 0.572709i
\(124\) −939.244 + 2890.70i −0.680215 + 2.09349i
\(125\) 466.507 + 1435.76i 0.333805 + 1.02735i
\(126\) 2099.74 1525.55i 1.48460 1.07862i
\(127\) −569.345 + 413.653i −0.397804 + 0.289022i −0.768646 0.639674i \(-0.779069\pi\)
0.370842 + 0.928696i \(0.379069\pi\)
\(128\) 610.000 + 1877.39i 0.421226 + 1.29640i
\(129\) 128.681 396.039i 0.0878274 0.270305i
\(130\) −1881.05 1366.67i −1.26907 0.922034i
\(131\) 446.318 0.297672 0.148836 0.988862i \(-0.452447\pi\)
0.148836 + 0.988862i \(0.452447\pi\)
\(132\) 0 0
\(133\) 145.323 0.0947453
\(134\) −1322.20 960.635i −0.852394 0.619300i
\(135\) 33.4388 102.914i 0.0213182 0.0656106i
\(136\) 375.821 + 1156.66i 0.236959 + 0.729284i
\(137\) −1593.34 + 1157.63i −0.993637 + 0.721919i −0.960714 0.277539i \(-0.910481\pi\)
−0.0329221 + 0.999458i \(0.510481\pi\)
\(138\) −1356.34 + 985.441i −0.836664 + 0.607872i
\(139\) −79.9427 246.038i −0.0487817 0.150135i 0.923698 0.383120i \(-0.125150\pi\)
−0.972480 + 0.232986i \(0.925150\pi\)
\(140\) −631.736 + 1944.28i −0.381367 + 1.17373i
\(141\) −1548.99 1125.41i −0.925166 0.672173i
\(142\) 3490.88 2.06302
\(143\) 0 0
\(144\) −492.241 −0.284862
\(145\) −980.383 712.290i −0.561492 0.407948i
\(146\) 1320.91 4065.34i 0.748761 2.30445i
\(147\) −154.562 475.692i −0.0867213 0.266901i
\(148\) −3248.85 + 2360.43i −1.80442 + 1.31099i
\(149\) 79.9537 58.0898i 0.0439602 0.0319389i −0.565588 0.824688i \(-0.691351\pi\)
0.609548 + 0.792749i \(0.291351\pi\)
\(150\) −549.416 1690.93i −0.299064 0.920425i
\(151\) −459.679 + 1414.75i −0.247736 + 0.762454i 0.747438 + 0.664331i \(0.231284\pi\)
−0.995174 + 0.0981223i \(0.968716\pi\)
\(152\) 101.818 + 73.9749i 0.0543323 + 0.0394747i
\(153\) −1991.34 −1.05223
\(154\) 0 0
\(155\) 2156.76 1.11765
\(156\) 4432.40 + 3220.33i 2.27485 + 1.65277i
\(157\) 652.647 2008.64i 0.331764 1.02106i −0.636531 0.771251i \(-0.719631\pi\)
0.968294 0.249812i \(-0.0803689\pi\)
\(158\) −807.808 2486.18i −0.406745 1.25183i
\(159\) 1288.93 936.461i 0.642884 0.467083i
\(160\) 1484.68 1078.69i 0.733591 0.532985i
\(161\) 314.833 + 968.956i 0.154114 + 0.474313i
\(162\) 937.801 2886.25i 0.454818 1.39979i
\(163\) −1120.47 814.069i −0.538417 0.391183i 0.285080 0.958504i \(-0.407980\pi\)
−0.823497 + 0.567321i \(0.807980\pi\)
\(164\) 2124.08 1.01136
\(165\) 0 0
\(166\) 2931.44 1.37062
\(167\) −627.204 455.690i −0.290626 0.211152i 0.432913 0.901436i \(-0.357486\pi\)
−0.723539 + 0.690284i \(0.757486\pi\)
\(168\) 819.003 2520.63i 0.376116 1.15756i
\(169\) 491.234 + 1511.86i 0.223593 + 0.688149i
\(170\) 2120.03 1540.30i 0.956466 0.694913i
\(171\) −166.714 + 121.125i −0.0745550 + 0.0541674i
\(172\) −205.642 632.901i −0.0911631 0.280571i
\(173\) −138.012 + 424.757i −0.0606523 + 0.186669i −0.976792 0.214191i \(-0.931288\pi\)
0.916140 + 0.400860i \(0.131288\pi\)
\(174\) 3859.46 + 2804.06i 1.68152 + 1.22170i
\(175\) −1080.45 −0.466711
\(176\) 0 0
\(177\) 5952.56 2.52781
\(178\) 262.493 + 190.712i 0.110532 + 0.0803062i
\(179\) −867.487 + 2669.85i −0.362229 + 1.11483i 0.589469 + 0.807791i \(0.299337\pi\)
−0.951698 + 0.307035i \(0.900663\pi\)
\(180\) −895.806 2757.01i −0.370941 1.14164i
\(181\) 1080.36 784.930i 0.443662 0.322339i −0.343427 0.939180i \(-0.611588\pi\)
0.787088 + 0.616841i \(0.211588\pi\)
\(182\) 4500.05 3269.48i 1.83278 1.33159i
\(183\) −389.106 1197.55i −0.157178 0.483744i
\(184\) −272.653 + 839.141i −0.109241 + 0.336208i
\(185\) 2305.34 + 1674.93i 0.916173 + 0.665639i
\(186\) −8490.49 −3.34706
\(187\) 0 0
\(188\) −3059.77 −1.18700
\(189\) 209.432 + 152.161i 0.0806027 + 0.0585613i
\(190\) 83.7983 257.905i 0.0319967 0.0984756i
\(191\) −616.479 1897.33i −0.233544 0.718774i −0.997311 0.0732826i \(-0.976652\pi\)
0.763767 0.645492i \(-0.223348\pi\)
\(192\) −5016.55 + 3644.73i −1.88561 + 1.36998i
\(193\) 1692.19 1229.45i 0.631121 0.458537i −0.225667 0.974204i \(-0.572456\pi\)
0.856789 + 0.515668i \(0.172456\pi\)
\(194\) 1351.34 + 4159.00i 0.500107 + 1.53917i
\(195\) 1201.35 3697.37i 0.441182 1.35782i
\(196\) −646.657 469.824i −0.235662 0.171219i
\(197\) 3777.20 1.36606 0.683032 0.730389i \(-0.260661\pi\)
0.683032 + 0.730389i \(0.260661\pi\)
\(198\) 0 0
\(199\) −1251.15 −0.445688 −0.222844 0.974854i \(-0.571534\pi\)
−0.222844 + 0.974854i \(0.571534\pi\)
\(200\) −756.995 549.989i −0.267638 0.194451i
\(201\) 844.434 2598.90i 0.296327 0.912002i
\(202\) −1413.19 4349.34i −0.492234 1.51494i
\(203\) 2345.38 1704.02i 0.810902 0.589155i
\(204\) −4995.52 + 3629.46i −1.71449 + 1.24565i
\(205\) −465.756 1433.45i −0.158682 0.488373i
\(206\) 1023.17 3148.98i 0.346055 1.06505i
\(207\) −1168.78 849.171i −0.392445 0.285128i
\(208\) −1054.95 −0.351670
\(209\) 0 0
\(210\) −5710.71 −1.87655
\(211\) 3724.95 + 2706.34i 1.21534 + 0.882995i 0.995705 0.0925872i \(-0.0295137\pi\)
0.219634 + 0.975582i \(0.429514\pi\)
\(212\) 786.775 2421.45i 0.254887 0.784460i
\(213\) 1803.69 + 5551.17i 0.580218 + 1.78573i
\(214\) −4687.32 + 3405.54i −1.49728 + 1.08784i
\(215\) −382.026 + 277.558i −0.121181 + 0.0880433i
\(216\) 69.2784 + 213.217i 0.0218231 + 0.0671647i
\(217\) −1594.41 + 4907.10i −0.498783 + 1.53510i
\(218\) −2498.62 1815.35i −0.776274 0.563996i
\(219\) 7147.16 2.20530
\(220\) 0 0
\(221\) −4267.75 −1.29900
\(222\) −9075.40 6593.67i −2.74370 1.99341i
\(223\) −1434.91 + 4416.19i −0.430890 + 1.32614i 0.466350 + 0.884600i \(0.345569\pi\)
−0.897240 + 0.441543i \(0.854431\pi\)
\(224\) 1356.67 + 4175.41i 0.404672 + 1.24545i
\(225\) 1239.48 900.538i 0.367255 0.266826i
\(226\) −1946.58 + 1414.27i −0.572940 + 0.416266i
\(227\) −1316.40 4051.47i −0.384901 1.18460i −0.936552 0.350529i \(-0.886002\pi\)
0.551650 0.834075i \(-0.313998\pi\)
\(228\) −197.457 + 607.710i −0.0573549 + 0.176520i
\(229\) −4657.01 3383.51i −1.34386 0.976370i −0.999293 0.0376082i \(-0.988026\pi\)
−0.344566 0.938762i \(-0.611974\pi\)
\(230\) 1901.15 0.545034
\(231\) 0 0
\(232\) 2510.65 0.710483
\(233\) 4167.31 + 3027.73i 1.17172 + 0.851301i 0.991213 0.132274i \(-0.0422277\pi\)
0.180502 + 0.983575i \(0.442228\pi\)
\(234\) −2437.37 + 7501.44i −0.680921 + 2.09566i
\(235\) 670.929 + 2064.91i 0.186241 + 0.573190i
\(236\) 7695.90 5591.40i 2.12271 1.54224i
\(237\) 3536.12 2569.14i 0.969179 0.704150i
\(238\) 1937.24 + 5962.22i 0.527617 + 1.62384i
\(239\) 643.147 1979.40i 0.174066 0.535720i −0.825524 0.564367i \(-0.809120\pi\)
0.999590 + 0.0286478i \(0.00912014\pi\)
\(240\) 876.230 + 636.618i 0.235668 + 0.171223i
\(241\) −6829.14 −1.82533 −0.912663 0.408714i \(-0.865977\pi\)
−0.912663 + 0.408714i \(0.865977\pi\)
\(242\) 0 0
\(243\) 5419.43 1.43069
\(244\) −1627.95 1182.77i −0.427126 0.310325i
\(245\) −175.269 + 539.422i −0.0457042 + 0.140663i
\(246\) 1833.53 + 5643.04i 0.475211 + 1.46255i
\(247\) −357.293 + 259.588i −0.0920404 + 0.0668713i
\(248\) −3614.99 + 2626.44i −0.925613 + 0.672497i
\(249\) 1514.63 + 4661.55i 0.385485 + 1.18640i
\(250\) −2082.53 + 6409.38i −0.526844 + 1.62146i
\(251\) −16.2859 11.8324i −0.00409545 0.00297552i 0.585736 0.810502i \(-0.300806\pi\)
−0.589831 + 0.807527i \(0.700806\pi\)
\(252\) 6935.03 1.73359
\(253\) 0 0
\(254\) −3141.60 −0.776070
\(255\) 3544.76 + 2575.42i 0.870515 + 0.632466i
\(256\) −669.380 + 2060.14i −0.163423 + 0.502964i
\(257\) 46.6586 + 143.600i 0.0113248 + 0.0348543i 0.956559 0.291538i \(-0.0941670\pi\)
−0.945234 + 0.326392i \(0.894167\pi\)
\(258\) 1503.92 1092.66i 0.362906 0.263667i
\(259\) −5515.08 + 4006.94i −1.32313 + 0.961309i
\(260\) −1919.85 5908.68i −0.457938 1.40939i
\(261\) −1270.33 + 3909.66i −0.301269 + 0.927211i
\(262\) 1611.89 + 1171.11i 0.380088 + 0.276150i
\(263\) 2609.68 0.611862 0.305931 0.952054i \(-0.401032\pi\)
0.305931 + 0.952054i \(0.401032\pi\)
\(264\) 0 0
\(265\) −1806.65 −0.418799
\(266\) 524.840 + 381.319i 0.120977 + 0.0878953i
\(267\) −167.643 + 515.953i −0.0384255 + 0.118261i
\(268\) −1349.47 4153.24i −0.307582 0.946640i
\(269\) 975.627 708.834i 0.221134 0.160663i −0.471703 0.881757i \(-0.656361\pi\)
0.692837 + 0.721094i \(0.256361\pi\)
\(270\) 390.805 283.936i 0.0880875 0.0639993i
\(271\) −1881.35 5790.19i −0.421711 1.29789i −0.906109 0.423045i \(-0.860961\pi\)
0.484398 0.874848i \(-0.339039\pi\)
\(272\) 367.413 1130.78i 0.0819033 0.252072i
\(273\) 7524.21 + 5466.66i 1.66808 + 1.21193i
\(274\) −8791.94 −1.93847
\(275\) 0 0
\(276\) −4479.74 −0.976989
\(277\) −6030.04 4381.08i −1.30798 0.950301i −0.307978 0.951393i \(-0.599652\pi\)
−0.999999 + 0.00109196i \(0.999652\pi\)
\(278\) 356.872 1098.34i 0.0769920 0.236957i
\(279\) −2260.89 6958.30i −0.485147 1.49313i
\(280\) −2431.44 + 1766.55i −0.518952 + 0.377040i
\(281\) −5436.47 + 3949.83i −1.15414 + 0.838530i −0.989025 0.147745i \(-0.952798\pi\)
−0.165112 + 0.986275i \(0.552798\pi\)
\(282\) −2641.24 8128.89i −0.557742 1.71655i
\(283\) 210.466 647.748i 0.0442082 0.136059i −0.926516 0.376255i \(-0.877212\pi\)
0.970724 + 0.240196i \(0.0772117\pi\)
\(284\) 7546.29 + 5482.70i 1.57673 + 1.14556i
\(285\) 453.415 0.0942386
\(286\) 0 0
\(287\) 3605.72 0.741600
\(288\) −5036.50 3659.23i −1.03048 0.748688i
\(289\) −31.8431 + 98.0029i −0.00648139 + 0.0199477i
\(290\) −1671.69 5144.92i −0.338499 1.04179i
\(291\) −5915.40 + 4297.79i −1.19164 + 0.865776i
\(292\) 9240.36 6713.51i 1.85189 1.34547i
\(293\) 1767.77 + 5440.63i 0.352471 + 1.08480i 0.957461 + 0.288562i \(0.0931772\pi\)
−0.604990 + 0.796233i \(0.706823\pi\)
\(294\) 689.979 2123.54i 0.136872 0.421249i
\(295\) −5460.91 3967.58i −1.07778 0.783056i
\(296\) −5903.71 −1.15928
\(297\) 0 0
\(298\) 441.179 0.0857612
\(299\) −2504.88 1819.90i −0.484485 0.351999i
\(300\) 1468.06 4518.21i 0.282527 0.869530i
\(301\) −349.087 1074.38i −0.0668474 0.205735i
\(302\) −5372.35 + 3903.24i −1.02366 + 0.743729i
\(303\) 6186.11 4494.47i 1.17288 0.852148i
\(304\) −38.0209 117.016i −0.00717318 0.0220768i
\(305\) −441.237 + 1357.99i −0.0828365 + 0.254945i
\(306\) −7191.80 5225.15i −1.34356 0.976151i
\(307\) −185.674 −0.0345178 −0.0172589 0.999851i \(-0.505494\pi\)
−0.0172589 + 0.999851i \(0.505494\pi\)
\(308\) 0 0
\(309\) 5536.14 1.01922
\(310\) 7789.22 + 5659.20i 1.42709 + 1.03684i
\(311\) 784.413 2414.18i 0.143022 0.440178i −0.853729 0.520718i \(-0.825664\pi\)
0.996751 + 0.0805398i \(0.0256644\pi\)
\(312\) 2488.95 + 7660.21i 0.451632 + 1.38998i
\(313\) 7186.64 5221.40i 1.29781 0.942911i 0.297874 0.954605i \(-0.403723\pi\)
0.999932 + 0.0116947i \(0.00372262\pi\)
\(314\) 7627.60 5541.77i 1.37086 0.995988i
\(315\) −1520.67 4680.16i −0.272001 0.837133i
\(316\) 2158.48 6643.13i 0.384254 1.18261i
\(317\) 2326.18 + 1690.07i 0.412150 + 0.299444i 0.774472 0.632609i \(-0.218016\pi\)
−0.362322 + 0.932053i \(0.618016\pi\)
\(318\) 7112.22 1.25419
\(319\) 0 0
\(320\) 7031.54 1.22836
\(321\) −7837.32 5694.15i −1.36273 0.990082i
\(322\) −1405.45 + 4325.52i −0.243238 + 0.748608i
\(323\) −153.812 473.385i −0.0264964 0.0815475i
\(324\) 6560.35 4766.37i 1.12489 0.817279i
\(325\) 2656.40 1929.99i 0.453387 0.329405i
\(326\) −1910.55 5880.08i −0.324588 0.998979i
\(327\) 1595.76 4911.25i 0.269865 0.830559i
\(328\) 2526.28 + 1835.45i 0.425275 + 0.308981i
\(329\) −5194.10 −0.870396
\(330\) 0 0
\(331\) −8295.55 −1.37754 −0.688769 0.724981i \(-0.741848\pi\)
−0.688769 + 0.724981i \(0.741848\pi\)
\(332\) 6336.94 + 4604.05i 1.04754 + 0.761085i
\(333\) 2987.13 9193.46i 0.491574 1.51291i
\(334\) −1069.47 3291.48i −0.175205 0.539227i
\(335\) −2506.94 + 1821.40i −0.408862 + 0.297056i
\(336\) −2096.21 + 1522.98i −0.340350 + 0.247279i
\(337\) 3138.17 + 9658.30i 0.507261 + 1.56119i 0.796935 + 0.604065i \(0.206453\pi\)
−0.289674 + 0.957125i \(0.593547\pi\)
\(338\) −2192.92 + 6749.11i −0.352897 + 1.08610i
\(339\) −3254.74 2364.70i −0.521454 0.378859i
\(340\) 7002.07 1.11688
\(341\) 0 0
\(342\) −919.915 −0.145448
\(343\) 4521.14 + 3284.80i 0.711716 + 0.517092i
\(344\) 302.319 930.441i 0.0473835 0.145831i
\(345\) 982.294 + 3023.19i 0.153290 + 0.471777i
\(346\) −1612.97 + 1171.89i −0.250618 + 0.182084i
\(347\) −9632.18 + 6998.19i −1.49015 + 1.08266i −0.516047 + 0.856560i \(0.672597\pi\)
−0.974104 + 0.226099i \(0.927403\pi\)
\(348\) 3939.06 + 12123.2i 0.606769 + 1.86744i
\(349\) −1403.08 + 4318.22i −0.215200 + 0.662319i 0.783939 + 0.620838i \(0.213207\pi\)
−0.999139 + 0.0414806i \(0.986793\pi\)
\(350\) −3902.08 2835.03i −0.595929 0.432968i
\(351\) −786.712 −0.119634
\(352\) 0 0
\(353\) −722.250 −0.108899 −0.0544497 0.998517i \(-0.517340\pi\)
−0.0544497 + 0.998517i \(0.517340\pi\)
\(354\) 21497.9 + 15619.1i 3.22768 + 2.34505i
\(355\) 2045.33 6294.89i 0.305789 0.941121i
\(356\) 267.907 + 824.532i 0.0398849 + 0.122753i
\(357\) −8480.14 + 6161.18i −1.25719 + 0.913402i
\(358\) −10138.5 + 7366.02i −1.49674 + 1.08745i
\(359\) 3770.01 + 11602.9i 0.554244 + 1.70579i 0.697932 + 0.716164i \(0.254104\pi\)
−0.143688 + 0.989623i \(0.545896\pi\)
\(360\) 1316.94 4053.13i 0.192803 0.593386i
\(361\) 5507.38 + 4001.34i 0.802942 + 0.583371i
\(362\) 5961.37 0.865532
\(363\) 0 0
\(364\) 14862.8 2.14017
\(365\) −6556.84 4763.82i −0.940276 0.683151i
\(366\) 1737.01 5345.97i 0.248074 0.763492i
\(367\) −44.3792 136.585i −0.00631219 0.0194269i 0.947851 0.318714i \(-0.103251\pi\)
−0.954163 + 0.299287i \(0.903251\pi\)
\(368\) 697.847 507.015i 0.0988526 0.0718207i
\(369\) −4136.46 + 3005.31i −0.583565 + 0.423985i
\(370\) 3930.92 + 12098.1i 0.552321 + 1.69987i
\(371\) 1335.59 4110.52i 0.186901 0.575223i
\(372\) −18354.0 13335.0i −2.55810 1.85857i
\(373\) 3676.93 0.510414 0.255207 0.966886i \(-0.417856\pi\)
0.255207 + 0.966886i \(0.417856\pi\)
\(374\) 0 0
\(375\) −11268.2 −1.55170
\(376\) −3639.14 2643.99i −0.499134 0.362642i
\(377\) −2722.50 + 8379.00i −0.371926 + 1.14467i
\(378\) 357.109 + 1099.07i 0.0485919 + 0.149550i
\(379\) −1885.87 + 1370.17i −0.255596 + 0.185701i −0.708203 0.706009i \(-0.750494\pi\)
0.452607 + 0.891710i \(0.350494\pi\)
\(380\) 586.207 425.905i 0.0791363 0.0574959i
\(381\) −1623.22 4995.76i −0.218268 0.671760i
\(382\) 2752.03 8469.87i 0.368602 1.13444i
\(383\) 2998.37 + 2178.44i 0.400025 + 0.290635i 0.769551 0.638585i \(-0.220480\pi\)
−0.369526 + 0.929220i \(0.620480\pi\)
\(384\) −14734.2 −1.95807
\(385\) 0 0
\(386\) 9337.39 1.23124
\(387\) 1295.95 + 941.562i 0.170224 + 0.123675i
\(388\) −3610.82 + 11113.0i −0.472453 + 1.45406i
\(389\) 2017.01 + 6207.72i 0.262896 + 0.809110i 0.992171 + 0.124889i \(0.0398576\pi\)
−0.729275 + 0.684221i \(0.760142\pi\)
\(390\) 14040.4 10200.9i 1.82298 1.32447i
\(391\) 2823.12 2051.11i 0.365143 0.265292i
\(392\) −363.122 1117.57i −0.0467868 0.143995i
\(393\) −1029.45 + 3168.32i −0.132134 + 0.406668i
\(394\) 13641.5 + 9911.13i 1.74429 + 1.26730i
\(395\) −4956.47 −0.631359
\(396\) 0 0
\(397\) −11290.7 −1.42736 −0.713682 0.700470i \(-0.752974\pi\)
−0.713682 + 0.700470i \(0.752974\pi\)
\(398\) −4518.58 3282.94i −0.569086 0.413465i
\(399\) −335.193 + 1031.62i −0.0420568 + 0.129437i
\(400\) 282.678 + 869.993i 0.0353347 + 0.108749i
\(401\) −11173.1 + 8117.70i −1.39141 + 1.01092i −0.395703 + 0.918379i \(0.629499\pi\)
−0.995709 + 0.0925412i \(0.970501\pi\)
\(402\) 9869.04 7170.28i 1.22444 0.889605i
\(403\) −4845.43 14912.7i −0.598928 1.84331i
\(404\) 3776.07 11621.5i 0.465016 1.43117i
\(405\) −4655.14 3382.16i −0.571150 0.414965i
\(406\) 12941.6 1.58198
\(407\) 0 0
\(408\) −9077.70 −1.10150
\(409\) 7515.28 + 5460.17i 0.908573 + 0.660117i 0.940654 0.339368i \(-0.110213\pi\)
−0.0320802 + 0.999485i \(0.510213\pi\)
\(410\) 2079.18 6399.06i 0.250447 0.770798i
\(411\) −4542.66 13980.9i −0.545190 1.67792i
\(412\) 7157.52 5200.24i 0.855887 0.621839i
\(413\) 13064.2 9491.67i 1.55653 1.13088i
\(414\) −1992.93 6133.62i −0.236588 0.728142i
\(415\) 1717.55 5286.08i 0.203160 0.625261i
\(416\) −10794.0 7842.28i −1.27216 0.924278i
\(417\) 1930.96 0.226762
\(418\) 0 0
\(419\) 3072.83 0.358276 0.179138 0.983824i \(-0.442669\pi\)
0.179138 + 0.983824i \(0.442669\pi\)
\(420\) −12344.9 8969.11i −1.43422 1.04202i
\(421\) 1846.01 5681.45i 0.213704 0.657712i −0.785539 0.618812i \(-0.787614\pi\)
0.999243 0.0389005i \(-0.0123855\pi\)
\(422\) 6351.55 + 19548.1i 0.732674 + 2.25494i
\(423\) 5958.63 4329.20i 0.684914 0.497619i
\(424\) 3028.16 2200.09i 0.346841 0.251995i
\(425\) 1143.56 + 3519.53i 0.130520 + 0.401699i
\(426\) −8051.84 + 24781.0i −0.915758 + 2.81841i
\(427\) −2763.52 2007.82i −0.313200 0.227553i
\(428\) −15481.3 −1.74840
\(429\) 0 0
\(430\) −2107.99 −0.236411
\(431\) −188.817 137.184i −0.0211021 0.0153316i 0.577184 0.816614i \(-0.304151\pi\)
−0.598286 + 0.801282i \(0.704151\pi\)
\(432\) 67.7285 208.447i 0.00754303 0.0232151i
\(433\) −1721.63 5298.64i −0.191077 0.588075i −1.00000 0.000160200i \(-0.999949\pi\)
0.808923 0.587915i \(-0.200051\pi\)
\(434\) −18634.2 + 13538.5i −2.06099 + 1.49740i
\(435\) 7317.68 5316.61i 0.806565 0.586004i
\(436\) −2550.15 7848.55i −0.280115 0.862104i
\(437\) 111.589 343.435i 0.0122151 0.0375943i
\(438\) 25812.2 + 18753.7i 2.81588 + 2.04586i
\(439\) 3533.06 0.384109 0.192054 0.981384i \(-0.438485\pi\)
0.192054 + 0.981384i \(0.438485\pi\)
\(440\) 0 0
\(441\) 1924.05 0.207759
\(442\) −15413.1 11198.3i −1.65866 1.20509i
\(443\) −4605.16 + 14173.2i −0.493900 + 1.52007i 0.324763 + 0.945795i \(0.394716\pi\)
−0.818663 + 0.574274i \(0.805284\pi\)
\(444\) −9262.57 28507.3i −0.990050 3.04706i
\(445\) 497.697 361.598i 0.0530182 0.0385200i
\(446\) −16770.0 + 12184.1i −1.78045 + 1.29358i
\(447\) 227.951 + 701.560i 0.0241201 + 0.0742341i
\(448\) −5198.16 + 15998.3i −0.548192 + 1.68716i
\(449\) 5816.95 + 4226.26i 0.611400 + 0.444208i 0.849907 0.526932i \(-0.176658\pi\)
−0.238507 + 0.971141i \(0.576658\pi\)
\(450\) 6839.39 0.716471
\(451\) 0 0
\(452\) −6429.18 −0.669033
\(453\) −8982.72 6526.33i −0.931666 0.676895i
\(454\) 5876.55 18086.2i 0.607489 1.86966i
\(455\) −3259.04 10030.3i −0.335793 1.03347i
\(456\) −759.978 + 552.156i −0.0780466 + 0.0567041i
\(457\) −3189.31 + 2317.17i −0.326454 + 0.237183i −0.738925 0.673788i \(-0.764666\pi\)
0.412470 + 0.910971i \(0.364666\pi\)
\(458\) −7940.82 24439.3i −0.810154 2.49340i
\(459\) 273.994 843.265i 0.0278626 0.0857522i
\(460\) 4109.74 + 2985.90i 0.416560 + 0.302648i
\(461\) −8254.37 −0.833936 −0.416968 0.908921i \(-0.636907\pi\)
−0.416968 + 0.908921i \(0.636907\pi\)
\(462\) 0 0
\(463\) 7083.97 0.711058 0.355529 0.934665i \(-0.384301\pi\)
0.355529 + 0.934665i \(0.384301\pi\)
\(464\) −1985.71 1442.71i −0.198673 0.144345i
\(465\) −4974.64 + 15310.4i −0.496115 + 1.52689i
\(466\) 7105.83 + 21869.5i 0.706376 + 2.17400i
\(467\) 14464.4 10509.0i 1.43326 1.04132i 0.443862 0.896095i \(-0.353608\pi\)
0.989398 0.145229i \(-0.0463919\pi\)
\(468\) −17050.5 + 12387.9i −1.68410 + 1.22357i
\(469\) −2290.79 7050.33i −0.225541 0.694145i
\(470\) −2995.09 + 9217.95i −0.293943 + 0.904665i
\(471\) 12753.6 + 9266.00i 1.24767 + 0.906486i
\(472\) 13984.7 1.36377
\(473\) 0 0
\(474\) 19512.1 1.89076
\(475\) 309.815 + 225.094i 0.0299270 + 0.0217432i
\(476\) −5176.37 + 15931.2i −0.498442 + 1.53405i
\(477\) 1893.88 + 5828.75i 0.181792 + 0.559497i
\(478\) 7516.57 5461.11i 0.719247 0.522563i
\(479\) −3485.40 + 2532.29i −0.332468 + 0.241552i −0.741477 0.670978i \(-0.765874\pi\)
0.409009 + 0.912530i \(0.365874\pi\)
\(480\) 4232.88 + 13027.5i 0.402508 + 1.23879i
\(481\) 6401.88 19703.0i 0.606862 1.86773i
\(482\) −24663.7 17919.2i −2.33070 1.69336i
\(483\) −7604.58 −0.716399
\(484\) 0 0
\(485\) 8291.43 0.776277
\(486\) 19572.5 + 14220.2i 1.82680 + 1.32725i
\(487\) 4097.01 12609.3i 0.381218 1.17327i −0.557969 0.829862i \(-0.688419\pi\)
0.939187 0.343406i \(-0.111581\pi\)
\(488\) −914.152 2813.47i −0.0847986 0.260983i
\(489\) 8363.30 6076.29i 0.773418 0.561921i
\(490\) −2048.40 + 1488.25i −0.188851 + 0.137209i
\(491\) 283.909 + 873.783i 0.0260950 + 0.0803121i 0.963256 0.268585i \(-0.0865561\pi\)
−0.937161 + 0.348897i \(0.886556\pi\)
\(492\) −4899.26 + 15078.4i −0.448934 + 1.38168i
\(493\) −8033.14 5836.42i −0.733863 0.533183i
\(494\) −1971.52 −0.179560
\(495\) 0 0
\(496\) 4368.41 0.395458
\(497\) 12810.2 + 9307.16i 1.15617 + 0.840006i
\(498\) −6761.46 + 20809.6i −0.608410 + 1.87249i
\(499\) 3776.49 + 11622.8i 0.338795 + 1.04270i 0.964822 + 0.262903i \(0.0846800\pi\)
−0.626027 + 0.779801i \(0.715320\pi\)
\(500\) −14568.3 + 10584.5i −1.30303 + 0.946705i
\(501\) 4681.51 3401.32i 0.417474 0.303313i
\(502\) −27.7697 85.4664i −0.00246897 0.00759871i
\(503\) −1696.14 + 5220.18i −0.150352 + 0.462736i −0.997660 0.0683654i \(-0.978222\pi\)
0.847308 + 0.531101i \(0.178222\pi\)
\(504\) 8248.19 + 5992.66i 0.728976 + 0.529632i
\(505\) −8670.89 −0.764058
\(506\) 0 0
\(507\) −11865.4 −1.03937
\(508\) −6791.26 4934.14i −0.593136 0.430939i
\(509\) −28.6897 + 88.2977i −0.00249832 + 0.00768905i −0.952298 0.305170i \(-0.901287\pi\)
0.949800 + 0.312859i \(0.101287\pi\)
\(510\) 6044.29 + 18602.4i 0.524795 + 1.61515i
\(511\) 15686.0 11396.5i 1.35794 0.986599i
\(512\) 4952.85 3598.46i 0.427514 0.310607i
\(513\) −28.3536 87.2633i −0.00244023 0.00751027i
\(514\) −208.289 + 641.047i −0.0178740 + 0.0550104i
\(515\) −5078.88 3690.02i −0.434568 0.315732i
\(516\) 4967.15 0.423772
\(517\) 0 0
\(518\) −30431.8 −2.58127
\(519\) −2696.93 1959.43i −0.228096 0.165722i
\(520\) 2822.41 8686.48i 0.238021 0.732552i
\(521\) −1359.33 4183.60i −0.114306 0.351798i 0.877496 0.479585i \(-0.159213\pi\)
−0.991802 + 0.127787i \(0.959213\pi\)
\(522\) −14846.5 + 10786.6i −1.24486 + 0.904441i
\(523\) 4667.80 3391.36i 0.390265 0.283544i −0.375299 0.926904i \(-0.622460\pi\)
0.765564 + 0.643359i \(0.222460\pi\)
\(524\) 1645.14 + 5063.21i 0.137153 + 0.422113i
\(525\) 2492.10 7669.88i 0.207170 0.637602i
\(526\) 9424.95 + 6847.62i 0.781268 + 0.567625i
\(527\) 17672.2 1.46075
\(528\) 0 0
\(529\) −9635.37 −0.791926
\(530\) −6524.78 4740.53i −0.534752 0.388520i
\(531\) −7075.95 + 21777.5i −0.578286 + 1.77978i
\(532\) 535.664 + 1648.60i 0.0436541 + 0.134354i
\(533\) −8865.05 + 6440.84i −0.720428 + 0.523422i
\(534\) −1959.28 + 1423.50i −0.158776 + 0.115357i
\(535\) 3394.66 + 10447.7i 0.274325 + 0.844285i
\(536\) 1983.88 6105.77i 0.159871 0.492032i
\(537\) −16951.8 12316.2i −1.36224 0.989727i
\(538\) 5383.44 0.431407
\(539\) 0 0
\(540\) 1290.75 0.102861
\(541\) −9332.30 6780.31i −0.741639 0.538832i 0.151585 0.988444i \(-0.451562\pi\)
−0.893224 + 0.449612i \(0.851562\pi\)
\(542\) 8398.52 25848.0i 0.665585 2.04846i
\(543\) 3080.15 + 9479.73i 0.243429 + 0.749197i
\(544\) 12165.3 8838.62i 0.958793 0.696604i
\(545\) −4737.47 + 3441.97i −0.372350 + 0.270528i
\(546\) 12829.8 + 39486.1i 1.00561 + 3.09496i
\(547\) −1004.60 + 3091.83i −0.0785254 + 0.241676i −0.982611 0.185674i \(-0.940553\pi\)
0.904086 + 0.427351i \(0.140553\pi\)
\(548\) −19005.7 13808.4i −1.48154 1.07640i
\(549\) 4843.78 0.376552
\(550\) 0 0
\(551\) −1027.53 −0.0794452
\(552\) −5327.99 3871.01i −0.410823 0.298481i
\(553\) 3664.13 11277.0i 0.281763 0.867177i
\(554\) −10282.0 31644.8i −0.788523 2.42682i
\(555\) −17207.3 + 12501.8i −1.31605 + 0.956168i
\(556\) 2496.49 1813.80i 0.190422 0.138350i
\(557\) −6235.51 19190.9i −0.474340 1.45987i −0.846846 0.531838i \(-0.821502\pi\)
0.372507 0.928029i \(-0.378498\pi\)
\(558\) 10092.8 31062.6i 0.765706 2.35660i
\(559\) 2777.41 + 2017.91i 0.210147 + 0.152681i
\(560\) 2938.19 0.221717
\(561\) 0 0
\(562\) −29998.1 −2.25159
\(563\) 10464.2 + 7602.67i 0.783326 + 0.569119i 0.905975 0.423331i \(-0.139139\pi\)
−0.122650 + 0.992450i \(0.539139\pi\)
\(564\) 7057.46 21720.6i 0.526902 1.62164i
\(565\) 1409.76 + 4338.78i 0.104971 + 0.323069i
\(566\) 2459.75 1787.12i 0.182670 0.132717i
\(567\) 11136.5 8091.15i 0.824849 0.599288i
\(568\) 4237.52 + 13041.7i 0.313032 + 0.963414i
\(569\) 4423.73 13614.8i 0.325927 1.00310i −0.645093 0.764104i \(-0.723182\pi\)
0.971020 0.238997i \(-0.0768185\pi\)
\(570\) 1637.52 + 1189.73i 0.120330 + 0.0874252i
\(571\) 2503.96 0.183516 0.0917580 0.995781i \(-0.470751\pi\)
0.0917580 + 0.995781i \(0.470751\pi\)
\(572\) 0 0
\(573\) 14890.7 1.08563
\(574\) 13022.2 + 9461.18i 0.946927 + 0.687983i
\(575\) −829.641 + 2553.37i −0.0601712 + 0.185188i
\(576\) −7371.02 22685.7i −0.533205 1.64104i
\(577\) −4303.76 + 3126.86i −0.310516 + 0.225603i −0.732118 0.681178i \(-0.761468\pi\)
0.421602 + 0.906781i \(0.361468\pi\)
\(578\) −372.156 + 270.387i −0.0267814 + 0.0194578i
\(579\) 4824.49 + 14848.2i 0.346285 + 1.06575i
\(580\) 4466.79 13747.4i 0.319782 0.984187i
\(581\) 10757.3 + 7815.61i 0.768135 + 0.558083i
\(582\) −32640.8 −2.32475
\(583\) 0 0
\(584\) 16791.3 1.18978
\(585\) 12098.8 + 8790.30i 0.855084 + 0.621255i
\(586\) −7891.50 + 24287.5i −0.556305 + 1.71213i
\(587\) 2232.54 + 6871.04i 0.156979 + 0.483132i 0.998356 0.0573170i \(-0.0182546\pi\)
−0.841377 + 0.540449i \(0.818255\pi\)
\(588\) 4826.72 3506.82i 0.338521 0.245950i
\(589\) 1479.51 1074.92i 0.103501 0.0751977i
\(590\) −9311.59 28658.1i −0.649749 1.99972i
\(591\) −8712.25 + 26813.5i −0.606386 + 1.86626i
\(592\) 4669.35 + 3392.48i 0.324171 + 0.235524i
\(593\) −26210.5 −1.81507 −0.907535 0.419976i \(-0.862038\pi\)
−0.907535 + 0.419976i \(0.862038\pi\)
\(594\) 0 0
\(595\) 11886.4 0.818980
\(596\) 953.704 + 692.907i 0.0655457 + 0.0476218i
\(597\) 2885.83 8881.67i 0.197838 0.608882i
\(598\) −4271.16 13145.3i −0.292075 0.898913i
\(599\) 3292.70 2392.29i 0.224601 0.163182i −0.469794 0.882776i \(-0.655672\pi\)
0.694395 + 0.719594i \(0.255672\pi\)
\(600\) 5650.29 4105.18i 0.384454 0.279322i
\(601\) 514.070 + 1582.14i 0.0348907 + 0.107383i 0.966985 0.254833i \(-0.0820204\pi\)
−0.932094 + 0.362215i \(0.882020\pi\)
\(602\) 1558.36 4796.15i 0.105505 0.324711i
\(603\) 8504.31 + 6178.74i 0.574332 + 0.417277i
\(604\) −17743.8 −1.19534
\(605\) 0 0
\(606\) 34134.6 2.28815
\(607\) −8958.87 6509.00i −0.599060 0.435243i 0.246485 0.969147i \(-0.420724\pi\)
−0.845545 + 0.533904i \(0.820724\pi\)
\(608\) 480.856 1479.92i 0.0320745 0.0987152i
\(609\) 6686.74 + 20579.7i 0.444927 + 1.36934i
\(610\) −5156.81 + 3746.64i −0.342284 + 0.248684i
\(611\) 12770.3 9278.13i 0.845547 0.614326i
\(612\) −7340.13 22590.6i −0.484815 1.49211i
\(613\) −4869.77 + 14987.6i −0.320862 + 0.987511i 0.652412 + 0.757864i \(0.273757\pi\)
−0.973274 + 0.229647i \(0.926243\pi\)
\(614\) −670.567 487.195i −0.0440747 0.0320221i
\(615\) 11250.0 0.737634
\(616\) 0 0
\(617\) 19132.5 1.24837 0.624185 0.781277i \(-0.285431\pi\)
0.624185 + 0.781277i \(0.285431\pi\)
\(618\) 19994.0 + 14526.5i 1.30142 + 0.945534i
\(619\) 3169.76 9755.52i 0.205821 0.633453i −0.793857 0.608104i \(-0.791930\pi\)
0.999679 0.0253491i \(-0.00806974\pi\)
\(620\) 7949.86 + 24467.2i 0.514958 + 1.58488i
\(621\) 520.410 378.100i 0.0336286 0.0244326i
\(622\) 9167.57 6660.63i 0.590974 0.429368i
\(623\) 454.785 + 1399.68i 0.0292465 + 0.0900115i
\(624\) 2433.27 7488.84i 0.156104 0.480438i
\(625\) 4941.43 + 3590.16i 0.316252 + 0.229770i
\(626\) 39655.4 2.53187
\(627\) 0 0
\(628\) 25192.5 1.60078
\(629\) 18889.7 + 13724.2i 1.19743 + 0.869981i
\(630\) 6788.45 20892.7i 0.429299 1.32125i
\(631\) −836.092 2573.23i −0.0527485 0.162343i 0.921212 0.389061i \(-0.127200\pi\)
−0.973960 + 0.226718i \(0.927200\pi\)
\(632\) 8307.63 6035.85i 0.522879 0.379894i
\(633\) −27803.4 + 20200.4i −1.74579 + 1.26839i
\(634\) 3966.46 + 12207.5i 0.248467 + 0.764703i
\(635\) −1840.69 + 5665.06i −0.115032 + 0.354033i
\(636\) 15374.6 + 11170.3i 0.958557 + 0.696432i
\(637\) 4123.54 0.256484
\(638\) 0 0
\(639\) −22453.1 −1.39003
\(640\) 13517.2 + 9820.81i 0.834865 + 0.606565i
\(641\) 1658.98 5105.82i 0.102224 0.314614i −0.886845 0.462068i \(-0.847108\pi\)
0.989069 + 0.147454i \(0.0471077\pi\)
\(642\) −13363.7 41129.2i −0.821531 2.52841i
\(643\) −24971.4 + 18142.8i −1.53154 + 1.11273i −0.576158 + 0.817339i \(0.695449\pi\)
−0.955378 + 0.295387i \(0.904551\pi\)
\(644\) −9831.74 + 7143.18i −0.601592 + 0.437082i
\(645\) −1089.17 3352.12i −0.0664899 0.204635i
\(646\) 686.633 2113.24i 0.0418192 0.128706i
\(647\) 7097.43 + 5156.58i 0.431265 + 0.313333i 0.782155 0.623084i \(-0.214121\pi\)
−0.350889 + 0.936417i \(0.614121\pi\)
\(648\) 11921.3 0.722703
\(649\) 0 0
\(650\) 14657.8 0.884505
\(651\) −31156.9 22636.8i −1.87578 1.36284i
\(652\) 5105.05 15711.7i 0.306640 0.943740i
\(653\) −9225.19 28392.2i −0.552848 1.70149i −0.701561 0.712610i \(-0.747513\pi\)
0.148713 0.988880i \(-0.452487\pi\)
\(654\) 18649.9 13550.0i 1.11509 0.810162i
\(655\) 3056.21 2220.47i 0.182314 0.132459i
\(656\) −943.364 2903.38i −0.0561466 0.172802i
\(657\) −8496.00 + 26148.0i −0.504506 + 1.55271i
\(658\) −18758.7 13629.0i −1.11138 0.807467i
\(659\) −9304.45 −0.550000 −0.275000 0.961444i \(-0.588678\pi\)
−0.275000 + 0.961444i \(0.588678\pi\)
\(660\) 0 0
\(661\) 2078.54 0.122309 0.0611543 0.998128i \(-0.480522\pi\)
0.0611543 + 0.998128i \(0.480522\pi\)
\(662\) −29959.7 21767.0i −1.75894 1.27794i
\(663\) 9843.71 30295.8i 0.576619 1.77465i
\(664\) 3558.42 + 10951.7i 0.207972 + 0.640072i
\(665\) 995.116 722.994i 0.0580285 0.0421602i
\(666\) 34911.2 25364.4i 2.03120 1.47575i
\(667\) −2226.08 6851.16i −0.129226 0.397718i
\(668\) 2857.64 8794.93i 0.165517 0.509410i
\(669\) −28039.9 20372.2i −1.62046 1.17733i
\(670\) −13833.1 −0.797643
\(671\) 0 0
\(672\) −32769.5 −1.88112
\(673\) −12107.3 8796.46i −0.693465 0.503832i 0.184333 0.982864i \(-0.440988\pi\)
−0.877797 + 0.479032i \(0.840988\pi\)
\(674\) −14009.1 + 43115.6i −0.800610 + 2.46402i
\(675\) 210.803 + 648.786i 0.0120205 + 0.0369952i
\(676\) −15340.5 + 11145.5i −0.872808 + 0.634132i
\(677\) −18643.4 + 13545.2i −1.05838 + 0.768958i −0.973788 0.227457i \(-0.926959\pi\)
−0.0845923 + 0.996416i \(0.526959\pi\)
\(678\) −5549.76 17080.4i −0.314362 0.967506i
\(679\) −6129.55 + 18864.8i −0.346437 + 1.06622i
\(680\) 8327.93 + 6050.59i 0.469649 + 0.341220i
\(681\) 31796.8 1.78922
\(682\) 0 0
\(683\) 17860.8 1.00062 0.500312 0.865845i \(-0.333219\pi\)
0.500312 + 0.865845i \(0.333219\pi\)
\(684\) −1988.59 1444.80i −0.111163 0.0807650i
\(685\) −5151.27 + 15854.0i −0.287328 + 0.884305i
\(686\) 7709.15 + 23726.3i 0.429062 + 1.32052i
\(687\) 34760.4 25254.9i 1.93041 1.40252i
\(688\) −773.774 + 562.180i −0.0428777 + 0.0311525i
\(689\) 4058.86 + 12491.9i 0.224427 + 0.690716i
\(690\) −4385.06 + 13495.8i −0.241937 + 0.744605i
\(691\) −9497.27 6900.17i −0.522856 0.379877i 0.294823 0.955552i \(-0.404739\pi\)
−0.817679 + 0.575675i \(0.804739\pi\)
\(692\) −5327.32 −0.292651
\(693\) 0 0
\(694\) −53149.7 −2.90711
\(695\) −1771.48 1287.05i −0.0966847 0.0702456i
\(696\) −5790.89 + 17822.5i −0.315378 + 0.970634i
\(697\) −3816.35 11745.5i −0.207395 0.638297i
\(698\) −16398.0 + 11913.8i −0.889216 + 0.646053i
\(699\) −31105.2 + 22599.3i −1.68313 + 1.22287i
\(700\) −3982.56 12257.1i −0.215038 0.661819i
\(701\) 9423.54 29002.7i 0.507735 1.56265i −0.288388 0.957513i \(-0.593119\pi\)
0.796123 0.605134i \(-0.206881\pi\)
\(702\) −2841.24 2064.28i −0.152757 0.110985i
\(703\) 2416.21 0.129629
\(704\) 0 0
\(705\) −16205.8 −0.865741
\(706\) −2608.43 1895.14i −0.139050 0.101026i
\(707\) 6410.06 19728.1i 0.340983 1.04944i
\(708\) 21941.3 + 67528.2i 1.16469 + 3.58456i
\(709\) −490.660 + 356.485i −0.0259903 + 0.0188831i −0.600705 0.799471i \(-0.705113\pi\)
0.574714 + 0.818354i \(0.305113\pi\)
\(710\) 23904.2 17367.4i 1.26353 0.918009i
\(711\) 5195.77 + 15990.9i 0.274060 + 0.843469i
\(712\) −393.855 + 1212.16i −0.0207308 + 0.0638029i
\(713\) 10372.4 + 7535.99i 0.544810 + 0.395828i
\(714\) −46792.8 −2.45263
\(715\) 0 0
\(716\) −33485.4 −1.74778
\(717\) 12567.9 + 9131.12i 0.654613 + 0.475604i
\(718\) −16829.7 + 51796.5i −0.874762 + 2.69224i
\(719\) 7017.39 + 21597.3i 0.363984 + 1.12023i 0.950615 + 0.310373i \(0.100454\pi\)
−0.586631 + 0.809854i \(0.699546\pi\)
\(720\) −3370.67 + 2448.93i −0.174469 + 0.126759i
\(721\) 12150.2 8827.66i 0.627598 0.455977i
\(722\) 9390.82 + 28902.0i 0.484058 + 1.48978i
\(723\) 15751.6 48478.6i 0.810249 2.49369i
\(724\) 12886.8 + 9362.80i 0.661511 + 0.480616i
\(725\) 7639.50 0.391343
\(726\) 0 0
\(727\) 34351.1 1.75243 0.876213 0.481925i \(-0.160062\pi\)
0.876213 + 0.481925i \(0.160062\pi\)
\(728\) 17677.1 + 12843.2i 0.899942 + 0.653846i
\(729\) −6828.05 + 21014.6i −0.346901 + 1.06765i
\(730\) −11180.3 34409.4i −0.566851 1.74459i
\(731\) −3130.28 + 2274.28i −0.158382 + 0.115071i
\(732\) 12151.2 8828.35i 0.613553 0.445772i
\(733\) 493.821 + 1519.83i 0.0248836 + 0.0765840i 0.962727 0.270474i \(-0.0871806\pi\)
−0.937844 + 0.347058i \(0.887181\pi\)
\(734\) 198.113 609.729i 0.00996252 0.0306615i
\(735\) −3424.98 2488.39i −0.171881 0.124879i
\(736\) 10909.3 0.546360
\(737\) 0 0
\(738\) −22824.7 −1.13847
\(739\) 11473.6 + 8336.03i 0.571126 + 0.414947i 0.835514 0.549469i \(-0.185170\pi\)
−0.264388 + 0.964416i \(0.585170\pi\)
\(740\) −10503.5 + 32326.5i −0.521780 + 1.60587i
\(741\) −1018.65 3135.09i −0.0505009 0.155426i
\(742\) 15609.3 11340.8i 0.772283 0.561097i
\(743\) −28113.3 + 20425.5i −1.38813 + 1.00853i −0.392057 + 0.919941i \(0.628236\pi\)
−0.996068 + 0.0885912i \(0.971764\pi\)
\(744\) −10306.5 31720.0i −0.507867 1.56305i
\(745\) 258.490 795.551i 0.0127119 0.0391232i
\(746\) 13279.4 + 9648.02i 0.651732 + 0.473511i
\(747\) −18854.8 −0.923510
\(748\) 0 0
\(749\) −26280.3 −1.28206
\(750\) −40695.4 29566.9i −1.98131 1.43951i
\(751\) −8615.14 + 26514.7i −0.418603 + 1.28833i 0.490385 + 0.871506i \(0.336856\pi\)
−0.908988 + 0.416822i \(0.863144\pi\)
\(752\) 1358.93 + 4182.36i 0.0658978 + 0.202812i
\(753\) 121.560 88.3184i 0.00588299 0.00427424i
\(754\) −31818.3 + 23117.4i −1.53681 + 1.11656i
\(755\) 3890.77 + 11974.6i 0.187549 + 0.577217i
\(756\) −954.206 + 2936.74i −0.0459050 + 0.141281i
\(757\) 6412.71 + 4659.11i 0.307892 + 0.223696i 0.730991 0.682387i \(-0.239058\pi\)
−0.423100 + 0.906083i \(0.639058\pi\)
\(758\) −10406.1 −0.498638
\(759\) 0 0
\(760\) 1065.24 0.0508424
\(761\) −7491.48 5442.88i −0.356854 0.259270i 0.394885 0.918731i \(-0.370785\pi\)
−0.751739 + 0.659461i \(0.770785\pi\)
\(762\) 7246.22 22301.6i 0.344492 1.06024i
\(763\) −4329.00 13323.3i −0.205400 0.632157i
\(764\) 19251.7 13987.2i 0.911652 0.662354i
\(765\) −13635.9 + 9907.08i −0.644455 + 0.468224i
\(766\) 5112.63 + 15735.0i 0.241158 + 0.742207i
\(767\) −15164.8 + 46672.5i −0.713911 + 2.19719i
\(768\) −13080.5 9503.57i −0.614587 0.446524i
\(769\) 30944.5 1.45109 0.725545 0.688175i \(-0.241588\pi\)
0.725545 + 0.688175i \(0.241588\pi\)
\(770\) 0 0
\(771\) −1127.01 −0.0526436
\(772\) 20184.8 + 14665.1i 0.941018 + 0.683690i
\(773\) 4645.07 14296.1i 0.216134 0.665192i −0.782937 0.622101i \(-0.786279\pi\)
0.999071 0.0430912i \(-0.0137206\pi\)
\(774\) 2209.77 + 6800.97i 0.102621 + 0.315834i
\(775\) −10999.8 + 7991.85i −0.509840 + 0.370420i
\(776\) −13897.4 + 10097.1i −0.642898 + 0.467092i
\(777\) −15723.7 48392.5i −0.725976 2.23433i
\(778\) −9004.14 + 27711.9i −0.414928 + 1.27702i
\(779\) −1033.93 751.193i −0.0475537 0.0345498i
\(780\) 46372.7 2.12873
\(781\) 0 0
\(782\) 15577.8 0.712352
\(783\) −1480.82 1075.88i −0.0675865 0.0491045i
\(784\) −354.998 + 1092.57i −0.0161716 + 0.0497709i
\(785\) −5524.07 17001.3i −0.251162 0.772999i
\(786\) −12031.3 + 8741.28i −0.545984 + 0.396681i
\(787\) −5444.60 + 3955.73i −0.246606 + 0.179170i −0.704221 0.709981i \(-0.748704\pi\)
0.457615 + 0.889150i \(0.348704\pi\)
\(788\) 13922.8 + 42850.1i 0.629417 + 1.93715i
\(789\) −6019.31 + 18525.5i −0.271601 + 0.835902i
\(790\) −17900.5 13005.4i −0.806164 0.585712i
\(791\) −10913.8 −0.490584
\(792\) 0 0
\(793\) 10380.9 0.464865
\(794\) −40776.7 29626.0i −1.82256 1.32417i
\(795\) 4167.10 12825.0i 0.185902 0.572147i
\(796\) −4611.77 14193.6i −0.205352 0.632008i
\(797\) 14680.7 10666.1i 0.652467 0.474045i −0.211644 0.977347i \(-0.567882\pi\)
0.864111 + 0.503302i \(0.167882\pi\)
\(798\) −3917.46 + 2846.20i −0.173780 + 0.126259i
\(799\) 5497.51 + 16919.6i 0.243414 + 0.749152i
\(800\) −3575.07 + 11002.9i −0.157997 + 0.486266i
\(801\) −1688.34 1226.65i −0.0744750 0.0541093i
\(802\) −61652.2 −2.71448
\(803\) 0 0
\(804\) 32595.6 1.42980
\(805\) 6976.48 + 5068.71i 0.305452 + 0.221924i
\(806\) 21630.5 66571.8i 0.945287 2.90929i
\(807\) 2781.54 + 8560.71i 0.121332 + 0.373422i
\(808\) 14533.4 10559.2i 0.632778 0.459740i
\(809\) 23426.5 17020.3i 1.01808 0.739682i 0.0521954 0.998637i \(-0.483378\pi\)
0.965889 + 0.258955i \(0.0833781\pi\)
\(810\) −7937.64 24429.5i −0.344321 1.05971i
\(811\) 825.006 2539.11i 0.0357212 0.109938i −0.931606 0.363470i \(-0.881592\pi\)
0.967327 + 0.253531i \(0.0815920\pi\)
\(812\) 27976.1 + 20325.8i 1.20908 + 0.878445i
\(813\) 45442.7 1.96032
\(814\) 0 0
\(815\) −11722.6 −0.503833
\(816\) 7179.72 + 5216.37i 0.308015 + 0.223786i
\(817\) −123.730 + 380.801i −0.00529836 + 0.0163067i
\(818\) 12814.6 + 39439.2i 0.547739 + 1.68577i
\(819\) −28944.1 + 21029.1i −1.23490 + 0.897211i
\(820\) 14544.8 10567.4i 0.619424 0.450038i
\(821\) −2540.72 7819.53i −0.108004 0.332404i 0.882419 0.470464i \(-0.155913\pi\)
−0.990424 + 0.138060i \(0.955913\pi\)
\(822\) 20278.9 62412.1i 0.860473 2.64826i
\(823\) −13266.6 9638.75i −0.561901 0.408245i 0.270253 0.962789i \(-0.412893\pi\)
−0.832154 + 0.554544i \(0.812893\pi\)
\(824\) 13006.4 0.549879
\(825\) 0 0
\(826\) 72087.2 3.03660
\(827\) 18227.6 + 13243.1i 0.766427 + 0.556842i 0.900875 0.434079i \(-0.142926\pi\)
−0.134448 + 0.990921i \(0.542926\pi\)
\(828\) 5325.17 16389.2i 0.223505 0.687879i
\(829\) −4088.07 12581.8i −0.171272 0.527121i 0.828172 0.560475i \(-0.189381\pi\)
−0.999444 + 0.0333535i \(0.989381\pi\)
\(830\) 20073.3 14584.1i 0.839464 0.609906i
\(831\) 45008.8 32700.8i 1.87887 1.36508i
\(832\) −15797.2 48618.8i −0.658257 2.02591i
\(833\) −1436.13 + 4419.96i −0.0597347 + 0.183845i
\(834\) 6973.74 + 5066.72i 0.289545 + 0.210367i
\(835\) −6561.93 −0.271958
\(836\) 0 0
\(837\) 3257.68 0.134530
\(838\) 11097.6 + 8062.91i 0.457472 + 0.332373i
\(839\) 1013.35 3118.78i 0.0416983 0.128334i −0.928040 0.372480i \(-0.878508\pi\)
0.969739 + 0.244146i \(0.0785076\pi\)
\(840\) −6932.12 21334.9i −0.284739 0.876337i
\(841\) 3147.76 2286.98i 0.129065 0.0937711i
\(842\) 21574.7 15674.9i 0.883031 0.641560i
\(843\) −15499.6 47702.7i −0.633254 1.94895i
\(844\) −16971.5 + 52233.0i −0.692161 + 2.13025i
\(845\) 10885.4 + 7908.71i 0.443159 + 0.321974i
\(846\) 32879.3 1.33619
\(847\) 0 0
\(848\) −3659.28 −0.148184
\(849\) 4112.78 + 2988.11i 0.166255 + 0.120791i
\(850\) −5104.98 + 15711.5i −0.205999 + 0.634001i
\(851\) 5234.55 + 16110.3i 0.210856 + 0.648947i
\(852\) −56326.3 + 40923.5i −2.26491 + 1.64556i
\(853\) 27600.1 20052.6i 1.10786 0.804911i 0.125538 0.992089i \(-0.459934\pi\)
0.982326 + 0.187178i \(0.0599342\pi\)
\(854\) −4712.18 14502.6i −0.188814 0.581111i
\(855\) −538.985 + 1658.83i −0.0215589 + 0.0663516i
\(856\) −18412.7 13377.6i −0.735204 0.534157i
\(857\) 5029.20 0.200460 0.100230 0.994964i \(-0.468042\pi\)
0.100230 + 0.994964i \(0.468042\pi\)
\(858\) 0 0
\(859\) −3540.39 −0.140625 −0.0703124 0.997525i \(-0.522400\pi\)
−0.0703124 + 0.997525i \(0.522400\pi\)
\(860\) −4556.89 3310.77i −0.180684 0.131275i
\(861\) −8316.73 + 25596.3i −0.329191 + 1.01315i
\(862\) −321.958 990.886i −0.0127215 0.0391528i
\(863\) 8449.44 6138.88i 0.333282 0.242143i −0.408540 0.912740i \(-0.633962\pi\)
0.741822 + 0.670597i \(0.233962\pi\)
\(864\) 2242.54 1629.30i 0.0883018 0.0641550i
\(865\) 1168.15 + 3595.18i 0.0459169 + 0.141318i
\(866\) 7685.55 23653.7i 0.301577 0.928158i
\(867\) −622.254 452.094i −0.0243747 0.0177093i
\(868\) −61545.1 −2.40666
\(869\) 0 0
\(870\) 40378.5 1.57352
\(871\) 18226.0 + 13242.0i 0.709030 + 0.515141i
\(872\) 3749.03 11538.3i 0.145594 0.448092i
\(873\) −8691.74 26750.4i −0.336965 1.03707i
\(874\) 1304.16 947.526i 0.0504734 0.0366711i
\(875\) −24730.4 + 17967.7i −0.955474 + 0.694192i
\(876\) 26344.6 + 81080.2i 1.01610 + 3.12722i
\(877\) 5340.72 16437.0i 0.205637 0.632884i −0.794050 0.607852i \(-0.792031\pi\)
0.999687 0.0250320i \(-0.00796876\pi\)
\(878\) 12759.8 + 9270.51i 0.490457 + 0.356338i
\(879\) −42699.3 −1.63847
\(880\) 0 0
\(881\) −6262.31 −0.239481 −0.119740 0.992805i \(-0.538206\pi\)
−0.119740 + 0.992805i \(0.538206\pi\)
\(882\) 6948.79 + 5048.59i 0.265281 + 0.192738i
\(883\) 9088.07 27970.2i 0.346362 1.06599i −0.614488 0.788926i \(-0.710637\pi\)
0.960850 0.277067i \(-0.0893626\pi\)
\(884\) −15731.0 48415.0i −0.598519 1.84205i
\(885\) 40760.8 29614.4i 1.54820 1.12483i
\(886\) −53821.3 + 39103.5i −2.04082 + 1.48274i
\(887\) 3672.59 + 11303.1i 0.139023 + 0.427869i 0.996194 0.0871630i \(-0.0277801\pi\)
−0.857171 + 0.515032i \(0.827780\pi\)
\(888\) 13617.1 41909.1i 0.514595 1.58376i
\(889\) −11528.5 8375.94i −0.434931 0.315996i
\(890\) 2746.26 0.103432
\(891\) 0 0
\(892\) −55388.1 −2.07907
\(893\) 1489.39 + 1082.11i 0.0558125 + 0.0405502i
\(894\) −1017.60 + 3131.84i −0.0380688 + 0.117164i
\(895\) 7342.49 + 22597.9i 0.274226 + 0.843982i
\(896\) −32337.2 + 23494.4i −1.20570 + 0.875995i
\(897\) 18696.7 13583.9i 0.695946 0.505634i
\(898\) 9918.68 + 30526.6i 0.368587 + 1.13439i
\(899\) 11273.6 34696.4i 0.418236 1.28720i
\(900\) 14784.8 + 10741.8i 0.547586 + 0.397844i
\(901\) −14803.5 −0.547365
\(902\) 0 0
\(903\) 8431.98 0.310740
\(904\) −7646.56 5555.55i −0.281328 0.204397i
\(905\) 3492.81 10749.8i 0.128293 0.394845i
\(906\) −15316.7 47140.1i −0.561661 1.72861i
\(907\) −35640.6 + 25894.4i −1.30477 + 0.947972i −0.999990 0.00445054i \(-0.998583\pi\)
−0.304781 + 0.952422i \(0.598583\pi\)
\(908\) 41109.2 29867.6i 1.50248 1.09162i
\(909\) 9089.52 + 27974.7i 0.331661 + 1.02075i
\(910\) 14548.7 44776.2i 0.529982 1.63112i
\(911\) 28867.5 + 20973.5i 1.04986 + 0.762768i 0.972186 0.234211i \(-0.0752506\pi\)
0.0776742 + 0.996979i \(0.475251\pi\)
\(912\) 918.369 0.0333446
\(913\) 0 0
\(914\) −17598.4 −0.636874
\(915\) −8622.32 6264.48i −0.311525 0.226336i
\(916\) 21218.1 65302.6i 0.765356 2.35552i
\(917\) 2792.70 + 8595.05i 0.100570 + 0.309524i
\(918\) 3202.21 2326.54i 0.115129 0.0836463i
\(919\) 4688.30 3406.25i 0.168284 0.122265i −0.500456 0.865762i \(-0.666834\pi\)
0.668739 + 0.743497i \(0.266834\pi\)
\(920\) 2307.77 + 7102.57i 0.0827009 + 0.254527i
\(921\) 428.263 1318.06i 0.0153222 0.0471568i
\(922\) −29810.9 21658.9i −1.06483 0.773643i
\(923\) −48120.4 −1.71604
\(924\) 0 0
\(925\) −17964.1 −0.638545
\(926\) 25584.0 + 18587.9i 0.907929 + 0.659649i
\(927\) −6580.94 + 20254.0i −0.233168 + 0.717616i
\(928\) −9592.57 29522.9i −0.339323 1.04433i
\(929\) 28252.2 20526.5i 0.997768 0.724921i 0.0361593 0.999346i \(-0.488488\pi\)
0.961608 + 0.274425i \(0.0884876\pi\)
\(930\) −58139.5 + 42240.8i −2.04997 + 1.48939i
\(931\) 148.615 + 457.389i 0.00523163 + 0.0161013i
\(932\) −18987.0 + 58435.9i −0.667317 + 2.05379i
\(933\) 15328.4 + 11136.8i 0.537867 + 0.390784i
\(934\) 79813.6 2.79612
\(935\) 0 0
\(936\) −30983.6 −1.08198
\(937\) −16008.2 11630.6i −0.558127 0.405503i 0.272646 0.962114i \(-0.412101\pi\)
−0.830773 + 0.556612i \(0.812101\pi\)
\(938\) 10226.3 31473.4i 0.355972 1.09557i
\(939\) 20489.4 + 63059.7i 0.712082 + 2.19156i
\(940\) −20952.1 + 15222.6i −0.727001 + 0.528197i
\(941\) −15027.6 + 10918.2i −0.520602 + 0.378239i −0.816831 0.576878i \(-0.804271\pi\)
0.296229 + 0.955117i \(0.404271\pi\)
\(942\) 21746.5 + 66928.9i 0.752166 + 2.31493i
\(943\) 2768.71 8521.22i 0.0956116 0.294262i
\(944\) −11060.8 8036.13i −0.381354 0.277070i
\(945\) 2191.12 0.0754255
\(946\) 0 0
\(947\) 24620.0 0.844817 0.422408 0.906406i \(-0.361185\pi\)
0.422408 + 0.906406i \(0.361185\pi\)
\(948\) 42179.5 + 30645.2i 1.44507 + 1.04991i
\(949\) −18208.2 + 56039.1i −0.622827 + 1.91687i
\(950\) 528.277 + 1625.87i 0.0180417 + 0.0555265i
\(951\) −17362.9 + 12614.9i −0.592040 + 0.430142i
\(952\) −19922.9 + 14474.9i −0.678263 + 0.492787i
\(953\) 8229.75 + 25328.6i 0.279735 + 0.860937i 0.987927 + 0.154917i \(0.0495111\pi\)
−0.708192 + 0.706020i \(0.750489\pi\)
\(954\) −8454.45 + 26020.1i −0.286921 + 0.883053i
\(955\) −13660.8 9925.12i −0.462881 0.336303i
\(956\) 24825.8 0.839878
\(957\) 0 0
\(958\) −19232.2 −0.648607
\(959\) −32263.1 23440.5i −1.08637 0.789294i
\(960\) −16218.5 + 49915.4i −0.545260 + 1.67814i
\(961\) 10858.4 + 33418.7i 0.364486 + 1.12177i
\(962\) 74819.9 54359.8i 2.50758 1.82186i
\(963\) 30148.5 21904.2i 1.00885 0.732972i
\(964\) −25172.3 77472.4i −0.841023 2.58840i
\(965\) 5470.85 16837.5i 0.182500 0.561678i
\(966\) −27464.2 19953.9i −0.914748 0.664603i
\(967\) 20484.3 0.681210 0.340605 0.940207i \(-0.389368\pi\)
0.340605 + 0.940207i \(0.389368\pi\)
\(968\) 0 0
\(969\) 3715.23 0.123169
\(970\) 29944.8 + 21756.2i 0.991205 + 0.720153i
\(971\) −17132.3 + 52727.8i −0.566222 + 1.74265i 0.0980691 + 0.995180i \(0.468733\pi\)
−0.664291 + 0.747474i \(0.731267\pi\)
\(972\) 19976.1 + 61480.2i 0.659192 + 2.02878i
\(973\) 4237.91 3079.02i 0.139631 0.101448i
\(974\) 47882.4 34788.6i 1.57521 1.14446i
\(975\) 7573.49 + 23308.8i 0.248765 + 0.765620i
\(976\) −893.701 + 2750.53i −0.0293101 + 0.0902073i
\(977\) −47418.8 34451.8i −1.55278 1.12816i −0.941635 0.336635i \(-0.890711\pi\)
−0.611141 0.791522i \(-0.709289\pi\)
\(978\) 46148.1 1.50885
\(979\) 0 0
\(980\) −6765.46 −0.220525
\(981\) 16070.9 + 11676.2i 0.523044 + 0.380013i
\(982\) −1267.40 + 3900.65i −0.0411857 + 0.126757i
\(983\) −9587.60 29507.6i −0.311085 0.957422i −0.977336 0.211694i \(-0.932102\pi\)
0.666251 0.745728i \(-0.267898\pi\)
\(984\) −18856.4 + 13700.0i −0.610894 + 0.443840i
\(985\) 25864.8 18791.9i 0.836670 0.607877i
\(986\) −13697.6 42156.9i −0.442414 1.36161i
\(987\) 11980.4 36871.8i 0.386362 1.18910i
\(988\) −4261.86 3096.42i −0.137235 0.0997068i
\(989\) −2807.08 −0.0902528
\(990\) 0 0
\(991\) 11965.1 0.383537 0.191769 0.981440i \(-0.438578\pi\)
0.191769 + 0.981440i \(0.438578\pi\)
\(992\) 44696.6 + 32473.9i 1.43056 + 1.03936i
\(993\) 19134.0 58888.3i 0.611479 1.88194i
\(994\) 21843.1 + 67226.2i 0.697004 + 2.14516i
\(995\) −8567.40 + 6224.58i −0.272970 + 0.198324i
\(996\) −47299.5 + 34365.1i −1.50476 + 1.09327i
\(997\) 10273.8 + 31619.4i 0.326352 + 1.00441i 0.970827 + 0.239782i \(0.0770761\pi\)
−0.644475 + 0.764626i \(0.722924\pi\)
\(998\) −16858.6 + 51885.5i −0.534720 + 1.64570i
\(999\) 3482.10 + 2529.90i 0.110279 + 0.0801225i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.c.g.81.2 8
11.2 odd 10 121.4.c.d.27.2 8
11.3 even 5 inner 121.4.c.g.3.2 8
11.4 even 5 inner 121.4.c.g.9.1 8
11.5 even 5 121.4.a.b.1.1 2
11.6 odd 10 121.4.a.e.1.2 yes 2
11.7 odd 10 121.4.c.d.9.2 8
11.8 odd 10 121.4.c.d.3.1 8
11.9 even 5 inner 121.4.c.g.27.1 8
11.10 odd 2 121.4.c.d.81.1 8
33.5 odd 10 1089.4.a.x.1.2 2
33.17 even 10 1089.4.a.k.1.1 2
44.27 odd 10 1936.4.a.z.1.2 2
44.39 even 10 1936.4.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.4.a.b.1.1 2 11.5 even 5
121.4.a.e.1.2 yes 2 11.6 odd 10
121.4.c.d.3.1 8 11.8 odd 10
121.4.c.d.9.2 8 11.7 odd 10
121.4.c.d.27.2 8 11.2 odd 10
121.4.c.d.81.1 8 11.10 odd 2
121.4.c.g.3.2 8 11.3 even 5 inner
121.4.c.g.9.1 8 11.4 even 5 inner
121.4.c.g.27.1 8 11.9 even 5 inner
121.4.c.g.81.2 8 1.1 even 1 trivial
1089.4.a.k.1.1 2 33.17 even 10
1089.4.a.x.1.2 2 33.5 odd 10
1936.4.a.y.1.2 2 44.39 even 10
1936.4.a.z.1.2 2 44.27 odd 10