Properties

 Label 121.4.c.f.9.1 Level $121$ Weight $4$ Character 121.9 Analytic conductor $7.139$ Analytic rank $0$ Dimension $8$ Inner twists $4$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [121,4,Mod(3,121)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(121, base_ring=CyclotomicField(10))

chi = DirichletCharacter(H, H._module([8]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("121.3");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$121 = 11^{2}$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 121.c (of order $$5$$, degree $$4$$, not minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$7.13923111069$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$2$$ over $$\Q(\zeta_{5})$$ Coefficient field: 8.0.324000000.3 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81$$ x^8 + 3*x^6 + 9*x^4 + 27*x^2 + 81 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 11) Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

 Embedding label 9.1 Root $$1.40126 - 1.01807i$$ of defining polynomial Character $$\chi$$ $$=$$ 121.9 Dual form 121.4.c.f.27.1

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.844250 + 2.59833i) q^{2} +(6.41405 - 4.66008i) q^{3} +(0.433551 + 0.314993i) q^{4} +(4.59088 + 14.1293i) q^{5} +(6.69339 + 20.6001i) q^{6} +(2.48514 + 1.80556i) q^{7} +(-18.8667 + 13.7075i) q^{8} +(11.0802 - 34.1015i) q^{9} +O(q^{10})$$ $$q+(-0.844250 + 2.59833i) q^{2} +(6.41405 - 4.66008i) q^{3} +(0.433551 + 0.314993i) q^{4} +(4.59088 + 14.1293i) q^{5} +(6.69339 + 20.6001i) q^{6} +(2.48514 + 1.80556i) q^{7} +(-18.8667 + 13.7075i) q^{8} +(11.0802 - 34.1015i) q^{9} -40.5885 q^{10} +4.24871 q^{12} +(-1.65602 + 5.09670i) q^{13} +(-6.78952 + 4.93287i) q^{14} +(95.2898 + 69.2321i) q^{15} +(-18.3635 - 56.5171i) q^{16} +(12.7363 + 39.1982i) q^{17} +(79.2525 + 57.5803i) q^{18} +(113.200 - 82.2447i) q^{19} +(-2.46025 + 7.57186i) q^{20} +24.3538 q^{21} -111.354 q^{23} +(-57.1341 + 175.841i) q^{24} +(-77.4333 + 56.2586i) q^{25} +(-11.8448 - 8.60577i) q^{26} +(-21.6977 - 66.7788i) q^{27} +(0.508695 + 1.56560i) q^{28} +(-20.2213 - 14.6916i) q^{29} +(-260.336 + 189.145i) q^{30} +(9.73324 - 29.9558i) q^{31} -24.2102 q^{32} -112.603 q^{34} +(-14.1023 + 43.4023i) q^{35} +(15.5456 - 11.2945i) q^{36} +(-10.6334 - 7.72561i) q^{37} +(118.130 + 363.567i) q^{38} +(13.1292 + 40.4076i) q^{39} +(-280.291 - 203.643i) q^{40} +(211.212 - 153.454i) q^{41} +(-20.5607 + 63.2794i) q^{42} +57.7128 q^{43} +532.697 q^{45} +(94.0105 - 289.335i) q^{46} +(278.177 - 202.108i) q^{47} +(-381.159 - 276.928i) q^{48} +(-103.077 - 317.238i) q^{49} +(-80.8056 - 248.694i) q^{50} +(264.358 + 192.067i) q^{51} +(-2.32339 + 1.68804i) q^{52} +(-105.991 + 326.207i) q^{53} +191.832 q^{54} -71.6359 q^{56} +(342.804 - 1055.04i) q^{57} +(55.2455 - 40.1382i) q^{58} +(-71.4923 - 51.9422i) q^{59} +(19.5053 + 60.0312i) q^{60} +(-228.270 - 702.543i) q^{61} +(69.6180 + 50.5804i) q^{62} +(89.1080 - 64.7408i) q^{63} +(167.348 - 515.043i) q^{64} -79.6152 q^{65} +342.359 q^{67} +(-6.82534 + 21.0062i) q^{68} +(-714.229 + 518.918i) q^{69} +(-100.868 - 73.2848i) q^{70} +(-64.0790 - 197.215i) q^{71} +(258.397 + 795.264i) q^{72} +(-817.592 - 594.016i) q^{73} +(29.0510 - 21.1068i) q^{74} +(-234.492 + 721.691i) q^{75} +74.9845 q^{76} -116.077 q^{78} +(-399.938 + 1230.88i) q^{79} +(714.242 - 518.927i) q^{80} +(332.863 + 241.839i) q^{81} +(220.410 + 678.352i) q^{82} +(-136.538 - 420.221i) q^{83} +(10.5586 + 7.67129i) q^{84} +(-495.371 + 359.908i) q^{85} +(-48.7240 + 149.957i) q^{86} -198.164 q^{87} -1489.11 q^{89} +(-449.730 + 1384.13i) q^{90} +(-13.3178 + 9.67595i) q^{91} +(-48.2776 - 35.0757i) q^{92} +(-77.1671 - 237.496i) q^{93} +(290.292 + 893.427i) q^{94} +(1681.75 + 1221.86i) q^{95} +(-155.286 + 112.822i) q^{96} +(416.065 - 1280.52i) q^{97} +911.314 q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9}+O(q^{10})$$ 8 * q + 2 * q^2 + 2 * q^3 + 8 * q^4 - 2 * q^5 - 26 * q^6 + 20 * q^7 - 12 * q^8 - 44 * q^9 $$8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9} - 200 q^{10} - 160 q^{12} + 80 q^{13} + 4 q^{14} + 194 q^{15} + 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19} - 88 q^{20} - 304 q^{21} - 392 q^{23} + 252 q^{24} - 136 q^{25} + 40 q^{26} + 182 q^{27} - 128 q^{28} + 144 q^{29} - 266 q^{30} + 34 q^{31} + 416 q^{32} - 208 q^{34} - 172 q^{35} + 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} - 492 q^{40} + 536 q^{41} + 140 q^{42} + 240 q^{43} + 1712 q^{45} - 314 q^{46} + 272 q^{47} - 776 q^{48} + 390 q^{49} + 232 q^{50} - 164 q^{51} - 560 q^{52} + 492 q^{53} + 440 q^{54} + 480 q^{56} - 1512 q^{57} + 192 q^{58} - 634 q^{59} - 632 q^{60} + 840 q^{61} + 134 q^{62} + 248 q^{63} - 224 q^{64} + 3520 q^{65} + 3016 q^{67} + 640 q^{68} - 962 q^{69} - 284 q^{70} + 678 q^{71} - 744 q^{72} - 400 q^{73} + 6 q^{74} + 520 q^{75} - 1728 q^{76} - 1760 q^{78} + 316 q^{79} + 1544 q^{80} + 1294 q^{81} - 512 q^{82} + 468 q^{83} - 736 q^{84} + 452 q^{85} + 156 q^{86} - 4800 q^{87} - 7368 q^{89} + 1532 q^{90} - 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} + 2952 q^{95} - 952 q^{96} - 2194 q^{97} + 3480 q^{98}+O(q^{100})$$ 8 * q + 2 * q^2 + 2 * q^3 + 8 * q^4 - 2 * q^5 - 26 * q^6 + 20 * q^7 - 12 * q^8 - 44 * q^9 - 200 * q^10 - 160 * q^12 + 80 * q^13 + 4 * q^14 + 194 * q^15 + 8 * q^16 - 124 * q^17 + 92 * q^18 + 72 * q^19 - 88 * q^20 - 304 * q^21 - 392 * q^23 + 252 * q^24 - 136 * q^25 + 40 * q^26 + 182 * q^27 - 128 * q^28 + 144 * q^29 - 266 * q^30 + 34 * q^31 + 416 * q^32 - 208 * q^34 - 172 * q^35 + 80 * q^36 - 54 * q^37 - 432 * q^38 + 400 * q^39 - 492 * q^40 + 536 * q^41 + 140 * q^42 + 240 * q^43 + 1712 * q^45 - 314 * q^46 + 272 * q^47 - 776 * q^48 + 390 * q^49 + 232 * q^50 - 164 * q^51 - 560 * q^52 + 492 * q^53 + 440 * q^54 + 480 * q^56 - 1512 * q^57 + 192 * q^58 - 634 * q^59 - 632 * q^60 + 840 * q^61 + 134 * q^62 + 248 * q^63 - 224 * q^64 + 3520 * q^65 + 3016 * q^67 + 640 * q^68 - 962 * q^69 - 284 * q^70 + 678 * q^71 - 744 * q^72 - 400 * q^73 + 6 * q^74 + 520 * q^75 - 1728 * q^76 - 1760 * q^78 + 316 * q^79 + 1544 * q^80 + 1294 * q^81 - 512 * q^82 + 468 * q^83 - 736 * q^84 + 452 * q^85 + 156 * q^86 - 4800 * q^87 - 7368 * q^89 + 1532 * q^90 - 1280 * q^91 + 40 * q^92 + 638 * q^93 - 992 * q^94 + 2952 * q^95 - 952 * q^96 - 2194 * q^97 + 3480 * q^98

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/121\mathbb{Z}\right)^\times$$.

 $$n$$ $$2$$ $$\chi(n)$$ $$e\left(\frac{3}{5}\right)$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
<
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.844250 + 2.59833i −0.298487 + 0.918650i 0.683540 + 0.729913i $$0.260439\pi$$
−0.982028 + 0.188737i $$0.939561\pi$$
$$3$$ 6.41405 4.66008i 1.23438 0.896833i 0.237174 0.971467i $$-0.423779\pi$$
0.997211 + 0.0746343i $$0.0237789\pi$$
$$4$$ 0.433551 + 0.314993i 0.0541939 + 0.0393741i
$$5$$ 4.59088 + 14.1293i 0.410621 + 1.26376i 0.916110 + 0.400928i $$0.131312\pi$$
−0.505489 + 0.862833i $$0.668688\pi$$
$$6$$ 6.69339 + 20.6001i 0.455427 + 1.40166i
$$7$$ 2.48514 + 1.80556i 0.134185 + 0.0974909i 0.652853 0.757485i $$-0.273572\pi$$
−0.518668 + 0.854976i $$0.673572\pi$$
$$8$$ −18.8667 + 13.7075i −0.833798 + 0.605789i
$$9$$ 11.0802 34.1015i 0.410379 1.26302i
$$10$$ −40.5885 −1.28352
$$11$$ 0 0
$$12$$ 4.24871 0.102208
$$13$$ −1.65602 + 5.09670i −0.0353305 + 0.108736i −0.967166 0.254144i $$-0.918206\pi$$
0.931836 + 0.362880i $$0.118206\pi$$
$$14$$ −6.78952 + 4.93287i −0.129612 + 0.0941690i
$$15$$ 95.2898 + 69.2321i 1.64025 + 1.19171i
$$16$$ −18.3635 56.5171i −0.286930 0.883080i
$$17$$ 12.7363 + 39.1982i 0.181706 + 0.559232i 0.999876 0.0157433i $$-0.00501147\pi$$
−0.818170 + 0.574976i $$0.805011\pi$$
$$18$$ 79.2525 + 57.5803i 1.03778 + 0.753990i
$$19$$ 113.200 82.2447i 1.36684 0.993065i 0.368860 0.929485i $$-0.379748\pi$$
0.997977 0.0635795i $$-0.0202517\pi$$
$$20$$ −2.46025 + 7.57186i −0.0275064 + 0.0846560i
$$21$$ 24.3538 0.253069
$$22$$ 0 0
$$23$$ −111.354 −1.00952 −0.504758 0.863261i $$-0.668418\pi$$
−0.504758 + 0.863261i $$0.668418\pi$$
$$24$$ −57.1341 + 175.841i −0.485935 + 1.49555i
$$25$$ −77.4333 + 56.2586i −0.619466 + 0.450069i
$$26$$ −11.8448 8.60577i −0.0893447 0.0649127i
$$27$$ −21.6977 66.7788i −0.154657 0.475985i
$$28$$ 0.508695 + 1.56560i 0.00343337 + 0.0105668i
$$29$$ −20.2213 14.6916i −0.129483 0.0940745i 0.521159 0.853460i $$-0.325500\pi$$
−0.650641 + 0.759385i $$0.725500\pi$$
$$30$$ −260.336 + 189.145i −1.58436 + 1.15110i
$$31$$ 9.73324 29.9558i 0.0563917 0.173556i −0.918893 0.394506i $$-0.870916\pi$$
0.975285 + 0.220950i $$0.0709158\pi$$
$$32$$ −24.2102 −0.133744
$$33$$ 0 0
$$34$$ −112.603 −0.567976
$$35$$ −14.1023 + 43.4023i −0.0681062 + 0.209609i
$$36$$ 15.5456 11.2945i 0.0719703 0.0522895i
$$37$$ −10.6334 7.72561i −0.0472464 0.0343266i 0.563911 0.825835i $$-0.309296\pi$$
−0.611158 + 0.791509i $$0.709296\pi$$
$$38$$ 118.130 + 363.567i 0.504295 + 1.55206i
$$39$$ 13.1292 + 40.4076i 0.0539067 + 0.165908i
$$40$$ −280.291 203.643i −1.10795 0.804971i
$$41$$ 211.212 153.454i 0.804529 0.584525i −0.107710 0.994182i $$-0.534352\pi$$
0.912239 + 0.409658i $$0.134352\pi$$
$$42$$ −20.5607 + 63.2794i −0.0755378 + 0.232482i
$$43$$ 57.7128 0.204677 0.102339 0.994750i $$-0.467367\pi$$
0.102339 + 0.994750i $$0.467367\pi$$
$$44$$ 0 0
$$45$$ 532.697 1.76466
$$46$$ 94.0105 289.335i 0.301328 0.927392i
$$47$$ 278.177 202.108i 0.863326 0.627243i −0.0654616 0.997855i $$-0.520852\pi$$
0.928788 + 0.370612i $$0.120852\pi$$
$$48$$ −381.159 276.928i −1.14616 0.832732i
$$49$$ −103.077 317.238i −0.300516 0.924893i
$$50$$ −80.8056 248.694i −0.228553 0.703413i
$$51$$ 264.358 + 192.067i 0.725833 + 0.527348i
$$52$$ −2.32339 + 1.68804i −0.00619609 + 0.00450172i
$$53$$ −105.991 + 326.207i −0.274698 + 0.845435i 0.714601 + 0.699533i $$0.246608\pi$$
−0.989299 + 0.145902i $$0.953392\pi$$
$$54$$ 191.832 0.483426
$$55$$ 0 0
$$56$$ −71.6359 −0.170942
$$57$$ 342.804 1055.04i 0.796589 2.45165i
$$58$$ 55.2455 40.1382i 0.125070 0.0908690i
$$59$$ −71.4923 51.9422i −0.157754 0.114615i 0.506108 0.862470i $$-0.331084\pi$$
−0.663862 + 0.747855i $$0.731084\pi$$
$$60$$ 19.5053 + 60.0312i 0.0419688 + 0.129167i
$$61$$ −228.270 702.543i −0.479131 1.47461i −0.840305 0.542115i $$-0.817624\pi$$
0.361174 0.932499i $$-0.382376\pi$$
$$62$$ 69.6180 + 50.5804i 0.142605 + 0.103608i
$$63$$ 89.1080 64.7408i 0.178199 0.129469i
$$64$$ 167.348 515.043i 0.326851 1.00594i
$$65$$ −79.6152 −0.151924
$$66$$ 0 0
$$67$$ 342.359 0.624266 0.312133 0.950038i $$-0.398957\pi$$
0.312133 + 0.950038i $$0.398957\pi$$
$$68$$ −6.82534 + 21.0062i −0.0121720 + 0.0374615i
$$69$$ −714.229 + 518.918i −1.24613 + 0.905368i
$$70$$ −100.868 73.2848i −0.172229 0.125131i
$$71$$ −64.0790 197.215i −0.107110 0.329650i 0.883110 0.469166i $$-0.155445\pi$$
−0.990220 + 0.139516i $$0.955445\pi$$
$$72$$ 258.397 + 795.264i 0.422949 + 1.30170i
$$73$$ −817.592 594.016i −1.31085 0.952387i −0.999998 0.00192848i $$-0.999386\pi$$
−0.310851 0.950459i $$-0.600614\pi$$
$$74$$ 29.0510 21.1068i 0.0456366 0.0331569i
$$75$$ −234.492 + 721.691i −0.361023 + 1.11112i
$$76$$ 74.9845 0.113175
$$77$$ 0 0
$$78$$ −116.077 −0.168502
$$79$$ −399.938 + 1230.88i −0.569576 + 1.75297i 0.0843714 + 0.996434i $$0.473112\pi$$
−0.653947 + 0.756540i $$0.726888\pi$$
$$80$$ 714.242 518.927i 0.998183 0.725222i
$$81$$ 332.863 + 241.839i 0.456602 + 0.331741i
$$82$$ 220.410 + 678.352i 0.296832 + 0.913554i
$$83$$ −136.538 420.221i −0.180566 0.555725i 0.819278 0.573397i $$-0.194375\pi$$
−0.999844 + 0.0176715i $$0.994375\pi$$
$$84$$ 10.5586 + 7.67129i 0.0137148 + 0.00996436i
$$85$$ −495.371 + 359.908i −0.632124 + 0.459265i
$$86$$ −48.7240 + 149.957i −0.0610936 + 0.188027i
$$87$$ −198.164 −0.244200
$$88$$ 0 0
$$89$$ −1489.11 −1.77355 −0.886773 0.462205i $$-0.847058\pi$$
−0.886773 + 0.462205i $$0.847058\pi$$
$$90$$ −449.730 + 1384.13i −0.526730 + 1.62111i
$$91$$ −13.3178 + 9.67595i −0.0153416 + 0.0111463i
$$92$$ −48.2776 35.0757i −0.0547096 0.0397488i
$$93$$ −77.1671 237.496i −0.0860415 0.264808i
$$94$$ 290.292 + 893.427i 0.318525 + 0.980319i
$$95$$ 1681.75 + 1221.86i 1.81625 + 1.31958i
$$96$$ −155.286 + 112.822i −0.165091 + 0.119946i
$$97$$ 416.065 1280.52i 0.435516 1.34038i −0.457042 0.889445i $$-0.651091\pi$$
0.892557 0.450934i $$-0.148909\pi$$
$$98$$ 911.314 0.939353
$$99$$ 0 0
$$100$$ −51.2923 −0.0512923
$$101$$ 49.8943 153.559i 0.0491551 0.151284i −0.923466 0.383680i $$-0.874657\pi$$
0.972621 + 0.232396i $$0.0746566\pi$$
$$102$$ −722.238 + 524.737i −0.701101 + 0.509379i
$$103$$ 28.1208 + 20.4309i 0.0269012 + 0.0195449i 0.601155 0.799133i $$-0.294708\pi$$
−0.574253 + 0.818678i $$0.694708\pi$$
$$104$$ −38.6192 118.858i −0.0364127 0.112067i
$$105$$ 111.806 + 344.102i 0.103915 + 0.319818i
$$106$$ −758.113 550.801i −0.694665 0.504703i
$$107$$ 673.247 489.143i 0.608273 0.441937i −0.240532 0.970641i $$-0.577322\pi$$
0.848806 + 0.528705i $$0.177322\pi$$
$$108$$ 11.6278 35.7867i 0.0103600 0.0318849i
$$109$$ −1044.26 −0.917629 −0.458815 0.888532i $$-0.651726\pi$$
−0.458815 + 0.888532i $$0.651726\pi$$
$$110$$ 0 0
$$111$$ −104.205 −0.0891055
$$112$$ 56.4090 173.609i 0.0475906 0.146469i
$$113$$ −238.726 + 173.445i −0.198739 + 0.144392i −0.682704 0.730695i $$-0.739196\pi$$
0.483965 + 0.875087i $$0.339196\pi$$
$$114$$ 2451.94 + 1781.44i 2.01443 + 1.46357i
$$115$$ −511.212 1573.35i −0.414529 1.27579i
$$116$$ −4.13919 12.7391i −0.00331305 0.0101965i
$$117$$ 155.456 + 112.945i 0.122837 + 0.0892461i
$$118$$ 195.320 141.909i 0.152379 0.110710i
$$119$$ −39.1232 + 120.409i −0.0301380 + 0.0927551i
$$120$$ −2746.80 −2.08956
$$121$$ 0 0
$$122$$ 2018.16 1.49767
$$123$$ 639.613 1968.53i 0.468878 1.44306i
$$124$$ 13.6557 9.92147i 0.00988969 0.00718528i
$$125$$ 352.005 + 255.747i 0.251874 + 0.182997i
$$126$$ 92.9887 + 286.190i 0.0657468 + 0.202348i
$$127$$ 407.162 + 1253.12i 0.284487 + 0.875560i 0.986552 + 0.163448i $$0.0522614\pi$$
−0.702065 + 0.712113i $$0.747739\pi$$
$$128$$ 1040.28 + 755.807i 0.718348 + 0.521911i
$$129$$ 370.173 268.946i 0.252650 0.183561i
$$130$$ 67.2152 206.867i 0.0453474 0.139565i
$$131$$ 1600.71 1.06759 0.533797 0.845612i $$-0.320765\pi$$
0.533797 + 0.845612i $$0.320765\pi$$
$$132$$ 0 0
$$133$$ 429.815 0.280223
$$134$$ −289.037 + 889.563i −0.186336 + 0.573482i
$$135$$ 843.925 613.147i 0.538026 0.390899i
$$136$$ −777.598 564.958i −0.490283 0.356211i
$$137$$ 498.035 + 1532.80i 0.310584 + 0.955880i 0.977534 + 0.210777i $$0.0675995\pi$$
−0.666950 + 0.745103i $$0.732400\pi$$
$$138$$ −745.334 2293.90i −0.459761 1.41500i
$$139$$ −25.7768 18.7280i −0.0157292 0.0114280i 0.579893 0.814693i $$-0.303094\pi$$
−0.595622 + 0.803265i $$0.703094\pi$$
$$140$$ −19.7855 + 14.3750i −0.0119441 + 0.00867791i
$$141$$ 842.406 2592.66i 0.503144 1.54852i
$$142$$ 566.529 0.334803
$$143$$ 0 0
$$144$$ −2130.79 −1.23310
$$145$$ 114.748 353.159i 0.0657196 0.202264i
$$146$$ 2233.70 1622.88i 1.26618 0.919935i
$$147$$ −2139.50 1554.44i −1.20043 0.872161i
$$148$$ −2.17660 6.69889i −0.00120889 0.00372058i
$$149$$ 750.399 + 2309.49i 0.412585 + 1.26980i 0.914394 + 0.404826i $$0.132668\pi$$
−0.501809 + 0.864978i $$0.667332\pi$$
$$150$$ −1677.22 1218.58i −0.912966 0.663308i
$$151$$ −2084.58 + 1514.53i −1.12345 + 0.816231i −0.984728 0.174101i $$-0.944298\pi$$
−0.138718 + 0.990332i $$0.544298\pi$$
$$152$$ −1008.35 + 3103.37i −0.538077 + 1.65603i
$$153$$ 1477.84 0.780889
$$154$$ 0 0
$$155$$ 467.939 0.242489
$$156$$ −7.03594 + 21.6544i −0.00361106 + 0.0111137i
$$157$$ −2003.08 + 1455.32i −1.01824 + 0.739792i −0.965921 0.258838i $$-0.916660\pi$$
−0.0523162 + 0.998631i $$0.516660\pi$$
$$158$$ −2860.59 2078.34i −1.44036 1.04648i
$$159$$ 840.320 + 2586.24i 0.419130 + 1.28995i
$$160$$ −111.146 342.073i −0.0549181 0.169020i
$$161$$ −276.729 201.056i −0.135462 0.0984187i
$$162$$ −909.398 + 660.716i −0.441044 + 0.320437i
$$163$$ −842.105 + 2591.73i −0.404655 + 1.24540i 0.516529 + 0.856270i $$0.327224\pi$$
−0.921183 + 0.389129i $$0.872776\pi$$
$$164$$ 139.908 0.0666157
$$165$$ 0 0
$$166$$ 1207.15 0.564414
$$167$$ −845.871 + 2603.32i −0.391949 + 1.20630i 0.539363 + 0.842073i $$0.318665\pi$$
−0.931312 + 0.364222i $$0.881335\pi$$
$$168$$ −459.476 + 333.829i −0.211008 + 0.153306i
$$169$$ 1754.18 + 1274.48i 0.798442 + 0.580102i
$$170$$ −516.945 1590.99i −0.233223 0.717786i
$$171$$ −1550.38 4771.58i −0.693337 2.13387i
$$172$$ 25.0214 + 18.1791i 0.0110923 + 0.00805899i
$$173$$ 1866.74 1356.26i 0.820378 0.596040i −0.0964424 0.995339i $$-0.530746\pi$$
0.916821 + 0.399299i $$0.130746\pi$$
$$174$$ 167.300 514.897i 0.0728908 0.224335i
$$175$$ −294.010 −0.127001
$$176$$ 0 0
$$177$$ −700.610 −0.297520
$$178$$ 1257.18 3869.21i 0.529381 1.62927i
$$179$$ 1061.56 771.265i 0.443265 0.322051i −0.343666 0.939092i $$-0.611669\pi$$
0.786931 + 0.617041i $$0.211669\pi$$
$$180$$ 230.951 + 167.796i 0.0956339 + 0.0694821i
$$181$$ −248.194 763.864i −0.101923 0.313688i 0.887073 0.461630i $$-0.152735\pi$$
−0.988996 + 0.147942i $$0.952735\pi$$
$$182$$ −13.8978 42.7730i −0.00566029 0.0174206i
$$183$$ −4738.04 3442.39i −1.91391 1.39054i
$$184$$ 2100.88 1526.38i 0.841732 0.611554i
$$185$$ 60.3407 185.710i 0.0239802 0.0738034i
$$186$$ 682.242 0.268949
$$187$$ 0 0
$$188$$ 184.267 0.0714842
$$189$$ 66.6511 205.131i 0.0256516 0.0789475i
$$190$$ −4594.62 + 3338.19i −1.75436 + 1.27462i
$$191$$ −1390.09 1009.96i −0.526615 0.382608i 0.292475 0.956273i $$-0.405521\pi$$
−0.819090 + 0.573665i $$0.805521\pi$$
$$192$$ −1326.77 4083.37i −0.498704 1.53485i
$$193$$ −414.140 1274.59i −0.154458 0.475373i 0.843647 0.536898i $$-0.180404\pi$$
−0.998106 + 0.0615242i $$0.980404\pi$$
$$194$$ 2975.95 + 2162.15i 1.10134 + 0.800173i
$$195$$ −510.656 + 371.013i −0.187533 + 0.136250i
$$196$$ 55.2388 170.007i 0.0201308 0.0619561i
$$197$$ 3518.33 1.27244 0.636220 0.771508i $$-0.280497\pi$$
0.636220 + 0.771508i $$0.280497\pi$$
$$198$$ 0 0
$$199$$ 823.692 0.293417 0.146709 0.989180i $$-0.453132\pi$$
0.146709 + 0.989180i $$0.453132\pi$$
$$200$$ 689.748 2122.83i 0.243863 0.750532i
$$201$$ 2195.91 1595.42i 0.770584 0.559862i
$$202$$ 356.874 + 259.284i 0.124305 + 0.0903127i
$$203$$ −23.7260 73.0212i −0.00820316 0.0252467i
$$204$$ 54.1127 + 166.542i 0.0185718 + 0.0571581i
$$205$$ 3137.84 + 2279.78i 1.06906 + 0.776715i
$$206$$ −76.8274 + 55.8184i −0.0259846 + 0.0188789i
$$207$$ −1233.83 + 3797.33i −0.414285 + 1.27504i
$$208$$ 318.461 0.106160
$$209$$ 0 0
$$210$$ −988.484 −0.324819
$$211$$ 33.1709 102.089i 0.0108226 0.0333086i −0.945499 0.325624i $$-0.894426\pi$$
0.956322 + 0.292315i $$0.0944257\pi$$
$$212$$ −148.706 + 108.041i −0.0481752 + 0.0350014i
$$213$$ −1330.04 966.334i −0.427855 0.310855i
$$214$$ 702.567 + 2162.28i 0.224423 + 0.690703i
$$215$$ 264.953 + 815.441i 0.0840448 + 0.258663i
$$216$$ 1324.73 + 962.474i 0.417299 + 0.303185i
$$217$$ 78.2754 56.8704i 0.0244870 0.0177908i
$$218$$ 881.613 2713.33i 0.273901 0.842980i
$$219$$ −8012.24 −2.47222
$$220$$ 0 0
$$221$$ −220.873 −0.0672285
$$222$$ 87.9752 270.760i 0.0265969 0.0818568i
$$223$$ 3182.42 2312.16i 0.955651 0.694321i 0.00351474 0.999994i $$-0.498881\pi$$
0.952137 + 0.305672i $$0.0988812\pi$$
$$224$$ −60.1657 43.7130i −0.0179464 0.0130388i
$$225$$ 1060.52 + 3263.95i 0.314228 + 0.967096i
$$226$$ −249.123 766.721i −0.0733248 0.225670i
$$227$$ −1433.50 1041.50i −0.419139 0.304523i 0.358152 0.933663i $$-0.383407\pi$$
−0.777291 + 0.629141i $$0.783407\pi$$
$$228$$ 480.955 349.434i 0.139702 0.101499i
$$229$$ 591.882 1821.62i 0.170798 0.525661i −0.828619 0.559813i $$-0.810873\pi$$
0.999417 + 0.0341519i $$0.0108730\pi$$
$$230$$ 4519.68 1.29573
$$231$$ 0 0
$$232$$ 582.892 0.164952
$$233$$ −1358.54 + 4181.15i −0.381977 + 1.17561i 0.556672 + 0.830732i $$0.312078\pi$$
−0.938649 + 0.344873i $$0.887922\pi$$
$$234$$ −424.713 + 308.572i −0.118651 + 0.0862051i
$$235$$ 4132.72 + 3002.59i 1.14719 + 0.833479i
$$236$$ −14.6341 45.0391i −0.00403644 0.0124229i
$$237$$ 3170.79 + 9758.68i 0.869050 + 2.67466i
$$238$$ −279.833 203.310i −0.0762137 0.0553725i
$$239$$ −3304.42 + 2400.80i −0.894332 + 0.649770i −0.937004 0.349319i $$-0.886413\pi$$
0.0426719 + 0.999089i $$0.486413\pi$$
$$240$$ 2162.94 6656.85i 0.581739 1.79041i
$$241$$ −3908.58 −1.04471 −0.522353 0.852730i $$-0.674946\pi$$
−0.522353 + 0.852730i $$0.674946\pi$$
$$242$$ 0 0
$$243$$ 5157.80 1.36162
$$244$$ 122.330 376.492i 0.0320957 0.0987804i
$$245$$ 4009.13 2912.81i 1.04545 0.759561i
$$246$$ 4574.90 + 3323.86i 1.18571 + 0.861469i
$$247$$ 231.715 + 713.145i 0.0596910 + 0.183710i
$$248$$ 226.984 + 698.585i 0.0581190 + 0.178872i
$$249$$ −2834.02 2059.04i −0.721281 0.524041i
$$250$$ −961.696 + 698.713i −0.243292 + 0.176762i
$$251$$ 338.340 1041.30i 0.0850831 0.261859i −0.899460 0.437004i $$-0.856040\pi$$
0.984543 + 0.175145i $$0.0560395\pi$$
$$252$$ 59.0258 0.0147551
$$253$$ 0 0
$$254$$ −3599.76 −0.889249
$$255$$ −1500.13 + 4616.94i −0.368400 + 1.13382i
$$256$$ 662.879 481.610i 0.161836 0.117581i
$$257$$ −633.605 460.341i −0.153787 0.111733i 0.508231 0.861221i $$-0.330300\pi$$
−0.662018 + 0.749488i $$0.730300\pi$$
$$258$$ 386.294 + 1188.89i 0.0932156 + 0.286888i
$$259$$ −12.4764 38.3984i −0.00299322 0.00921220i
$$260$$ −34.5173 25.0783i −0.00823334 0.00598187i
$$261$$ −725.062 + 526.788i −0.171955 + 0.124932i
$$262$$ −1351.40 + 4159.19i −0.318664 + 0.980746i
$$263$$ −6180.06 −1.44897 −0.724484 0.689292i $$-0.757922\pi$$
−0.724484 + 0.689292i $$0.757922\pi$$
$$264$$ 0 0
$$265$$ −5095.67 −1.18122
$$266$$ −362.872 + 1116.80i −0.0836432 + 0.257427i
$$267$$ −9551.24 + 6939.39i −2.18924 + 1.59057i
$$268$$ 148.430 + 107.841i 0.0338314 + 0.0245799i
$$269$$ 304.989 + 938.659i 0.0691282 + 0.212755i 0.979653 0.200700i $$-0.0643218\pi$$
−0.910524 + 0.413455i $$0.864322\pi$$
$$270$$ 880.678 + 2710.45i 0.198505 + 0.610936i
$$271$$ 3702.86 + 2690.29i 0.830011 + 0.603038i 0.919562 0.392944i $$-0.128543\pi$$
−0.0895518 + 0.995982i $$0.528543\pi$$
$$272$$ 1981.49 1439.63i 0.441710 0.320921i
$$273$$ −40.3304 + 124.124i −0.00894104 + 0.0275177i
$$274$$ −4403.18 −0.970825
$$275$$ 0 0
$$276$$ −473.110 −0.103181
$$277$$ −175.471 + 540.044i −0.0380615 + 0.117141i −0.968282 0.249860i $$-0.919615\pi$$
0.930221 + 0.367001i $$0.119615\pi$$
$$278$$ 70.4236 51.1658i 0.0151933 0.0110386i
$$279$$ −913.691 663.835i −0.196062 0.142447i
$$280$$ −328.872 1012.16i −0.0701923 0.216030i
$$281$$ −1641.19 5051.07i −0.348418 1.07232i −0.959729 0.280929i $$-0.909357\pi$$
0.611311 0.791391i $$-0.290643\pi$$
$$282$$ 6025.39 + 4377.70i 1.27236 + 0.924427i
$$283$$ −3825.39 + 2779.31i −0.803519 + 0.583790i −0.911944 0.410314i $$-0.865419\pi$$
0.108426 + 0.994105i $$0.465419\pi$$
$$284$$ 34.3399 105.687i 0.00717498 0.0220823i
$$285$$ 16480.8 3.42539
$$286$$ 0 0
$$287$$ 801.960 0.164941
$$288$$ −268.255 + 825.605i −0.0548857 + 0.168921i
$$289$$ 2600.42 1889.31i 0.529293 0.384554i
$$290$$ 820.750 + 596.309i 0.166193 + 0.120747i
$$291$$ −3298.65 10152.2i −0.664503 2.04513i
$$292$$ −167.357 515.072i −0.0335405 0.103227i
$$293$$ 1884.13 + 1368.90i 0.375673 + 0.272942i 0.759559 0.650438i $$-0.225415\pi$$
−0.383886 + 0.923380i $$0.625415\pi$$
$$294$$ 5845.21 4246.80i 1.15952 0.842443i
$$295$$ 405.693 1248.59i 0.0800690 0.246427i
$$296$$ 306.515 0.0601886
$$297$$ 0 0
$$298$$ −6634.36 −1.28966
$$299$$ 184.404 567.537i 0.0356667 0.109771i
$$300$$ −328.992 + 239.026i −0.0633145 + 0.0460007i
$$301$$ 143.424 + 104.204i 0.0274646 + 0.0199542i
$$302$$ −2175.36 6695.07i −0.414496 1.27569i
$$303$$ −395.572 1217.45i −0.0750001 0.230827i
$$304$$ −6726.99 4887.44i −1.26914 0.922086i
$$305$$ 8878.47 6450.58i 1.66682 1.21101i
$$306$$ −1247.66 + 3839.91i −0.233085 + 0.717363i
$$307$$ 1678.07 0.311962 0.155981 0.987760i $$-0.450146\pi$$
0.155981 + 0.987760i $$0.450146\pi$$
$$308$$ 0 0
$$309$$ 275.578 0.0507349
$$310$$ −395.057 + 1215.86i −0.0723798 + 0.222762i
$$311$$ −2890.38 + 2099.98i −0.527005 + 0.382891i −0.819236 0.573456i $$-0.805602\pi$$
0.292232 + 0.956348i $$0.405602\pi$$
$$312$$ −801.591 582.390i −0.145452 0.105677i
$$313$$ 2220.09 + 6832.74i 0.400917 + 1.23389i 0.924257 + 0.381771i $$0.124686\pi$$
−0.523340 + 0.852124i $$0.675314\pi$$
$$314$$ −2090.32 6433.33i −0.375679 1.15622i
$$315$$ 1323.83 + 961.815i 0.236791 + 0.172039i
$$316$$ −561.113 + 407.672i −0.0998894 + 0.0725739i
$$317$$ −4.85393 + 14.9389i −0.000860013 + 0.00264685i −0.951486 0.307693i $$-0.900443\pi$$
0.950626 + 0.310340i $$0.100443\pi$$
$$318$$ −7429.36 −1.31012
$$319$$ 0 0
$$320$$ 8045.47 1.40549
$$321$$ 2038.80 6274.77i 0.354500 1.09104i
$$322$$ 756.039 549.294i 0.130846 0.0950651i
$$323$$ 4665.59 + 3389.75i 0.803716 + 0.583934i
$$324$$ 68.1353 + 209.699i 0.0116830 + 0.0359566i
$$325$$ −158.502 487.819i −0.0270527 0.0832595i
$$326$$ −6023.24 4376.14i −1.02330 0.743472i
$$327$$ −6697.91 + 4866.32i −1.13271 + 0.822960i
$$328$$ −1881.40 + 5790.34i −0.316716 + 0.974751i
$$329$$ 1056.23 0.176996
$$330$$ 0 0
$$331$$ −1318.95 −0.219022 −0.109511 0.993986i $$-0.534928\pi$$
−0.109511 + 0.993986i $$0.534928\pi$$
$$332$$ 73.1705 225.196i 0.0120956 0.0372265i
$$333$$ −381.275 + 277.013i −0.0627440 + 0.0455862i
$$334$$ −6050.18 4395.71i −0.991171 0.720128i
$$335$$ 1571.73 + 4837.29i 0.256337 + 0.788923i
$$336$$ −447.222 1376.41i −0.0726130 0.223480i
$$337$$ −193.503 140.588i −0.0312783 0.0227250i 0.572036 0.820228i $$-0.306154\pi$$
−0.603315 + 0.797503i $$0.706154\pi$$
$$338$$ −4792.50 + 3481.95i −0.771235 + 0.560335i
$$339$$ −722.935 + 2224.97i −0.115824 + 0.356471i
$$340$$ −328.137 −0.0523404
$$341$$ 0 0
$$342$$ 13707.1 2.16723
$$343$$ 642.220 1976.55i 0.101098 0.311148i
$$344$$ −1088.85 + 791.096i −0.170659 + 0.123991i
$$345$$ −10610.9 7709.25i −1.65586 1.20305i
$$346$$ 1948.04 + 5995.44i 0.302679 + 0.931551i
$$347$$ 1811.70 + 5575.85i 0.280280 + 0.862614i 0.987774 + 0.155894i $$0.0498259\pi$$
−0.707493 + 0.706720i $$0.750174\pi$$
$$348$$ −85.9143 62.4204i −0.0132342 0.00961518i
$$349$$ 2824.87 2052.39i 0.433271 0.314790i −0.349684 0.936868i $$-0.613711\pi$$
0.782956 + 0.622078i $$0.213711\pi$$
$$350$$ 248.218 763.937i 0.0379081 0.116669i
$$351$$ 376.283 0.0572208
$$352$$ 0 0
$$353$$ −10916.7 −1.64600 −0.822999 0.568043i $$-0.807701\pi$$
−0.822999 + 0.568043i $$0.807701\pi$$
$$354$$ 591.490 1820.42i 0.0888060 0.273317i
$$355$$ 2492.33 1810.78i 0.372617 0.270722i
$$356$$ −645.606 469.060i −0.0961153 0.0698319i
$$357$$ 310.177 + 954.625i 0.0459840 + 0.141524i
$$358$$ 1107.79 + 3409.42i 0.163543 + 0.503333i
$$359$$ −9304.29 6759.96i −1.36786 0.993808i −0.997901 0.0647598i $$-0.979372\pi$$
−0.369959 0.929048i $$-0.620628\pi$$
$$360$$ −10050.2 + 7301.92i −1.47137 + 1.06901i
$$361$$ 3930.53 12096.9i 0.573047 1.76366i
$$362$$ 2194.31 0.318592
$$363$$ 0 0
$$364$$ −8.82180 −0.00127030
$$365$$ 4639.54 14279.0i 0.665328 2.04767i
$$366$$ 12944.6 9404.78i 1.84870 1.34316i
$$367$$ −5474.62 3977.55i −0.778673 0.565739i 0.125908 0.992042i $$-0.459816\pi$$
−0.904580 + 0.426303i $$0.859816\pi$$
$$368$$ 2044.85 + 6293.40i 0.289661 + 0.891484i
$$369$$ −2892.74 8902.93i −0.408103 1.25601i
$$370$$ 431.593 + 313.571i 0.0606417 + 0.0440588i
$$371$$ −852.389 + 619.297i −0.119283 + 0.0866638i
$$372$$ 41.3537 127.274i 0.00576368 0.0177388i
$$373$$ 5310.22 0.737139 0.368569 0.929600i $$-0.379848\pi$$
0.368569 + 0.929600i $$0.379848\pi$$
$$374$$ 0 0
$$375$$ 3449.58 0.475028
$$376$$ −2477.90 + 7626.20i −0.339862 + 1.04599i
$$377$$ 108.365 78.7321i 0.0148040 0.0107557i
$$378$$ 476.729 + 346.364i 0.0648684 + 0.0471297i
$$379$$ −259.039 797.239i −0.0351080 0.108051i 0.931967 0.362544i $$-0.118092\pi$$
−0.967075 + 0.254492i $$0.918092\pi$$
$$380$$ 344.245 + 1059.48i 0.0464721 + 0.143026i
$$381$$ 8451.19 + 6140.15i 1.13640 + 0.825641i
$$382$$ 3797.80 2759.26i 0.508671 0.369571i
$$383$$ −875.187 + 2693.55i −0.116762 + 0.359357i −0.992311 0.123773i $$-0.960500\pi$$
0.875548 + 0.483131i $$0.160500\pi$$
$$384$$ 10194.5 1.35479
$$385$$ 0 0
$$386$$ 3661.45 0.482806
$$387$$ 639.472 1968.09i 0.0839953 0.258511i
$$388$$ 583.740 424.112i 0.0763786 0.0554923i
$$389$$ −2517.06 1828.75i −0.328072 0.238358i 0.411540 0.911392i $$-0.364991\pi$$
−0.739612 + 0.673034i $$0.764991\pi$$
$$390$$ −532.896 1640.08i −0.0691903 0.212946i
$$391$$ −1418.23 4364.87i −0.183435 0.564554i
$$392$$ 6293.25 + 4572.31i 0.810860 + 0.589124i
$$393$$ 10267.1 7459.45i 1.31782 0.957454i
$$394$$ −2970.35 + 9141.79i −0.379807 + 1.16893i
$$395$$ −19227.5 −2.44922
$$396$$ 0 0
$$397$$ 14208.7 1.79626 0.898131 0.439728i $$-0.144925\pi$$
0.898131 + 0.439728i $$0.144925\pi$$
$$398$$ −695.402 + 2140.23i −0.0875813 + 0.269548i
$$399$$ 2756.86 2002.97i 0.345903 0.251314i
$$400$$ 4601.52 + 3343.20i 0.575190 + 0.417900i
$$401$$ −1934.97 5955.21i −0.240967 0.741619i −0.996274 0.0862478i $$-0.972512\pi$$
0.755307 0.655371i $$-0.227488\pi$$
$$402$$ 2291.54 + 7052.64i 0.284308 + 0.875009i
$$403$$ 136.557 + 99.2147i 0.0168794 + 0.0122636i
$$404$$ 70.0017 50.8592i 0.00862058 0.00626322i
$$405$$ −1888.88 + 5813.37i −0.231751 + 0.713256i
$$406$$ 209.764 0.0256415
$$407$$ 0 0
$$408$$ −7620.30 −0.924660
$$409$$ 1295.55 3987.31i 0.156628 0.482053i −0.841694 0.539955i $$-0.818441\pi$$
0.998322 + 0.0579024i $$0.0184412\pi$$
$$410$$ −8572.75 + 6228.47i −1.03263 + 0.750249i
$$411$$ 10337.4 + 7510.54i 1.24065 + 0.901382i
$$412$$ 5.75618 + 17.7157i 0.000688318 + 0.00211842i
$$413$$ −83.8834 258.167i −0.00999427 0.0307592i
$$414$$ −8825.07 6411.79i −1.04765 0.761165i
$$415$$ 5310.59 3858.37i 0.628160 0.456385i
$$416$$ 40.0926 123.392i 0.00472524 0.0145428i
$$417$$ −252.608 −0.0296649
$$418$$ 0 0
$$419$$ −9287.15 −1.08283 −0.541416 0.840755i $$-0.682112\pi$$
−0.541416 + 0.840755i $$0.682112\pi$$
$$420$$ −59.9164 + 184.404i −0.00696100 + 0.0214238i
$$421$$ −10635.3 + 7727.03i −1.23120 + 0.894519i −0.996980 0.0776651i $$-0.975254\pi$$
−0.234220 + 0.972184i $$0.575254\pi$$
$$422$$ 237.258 + 172.378i 0.0273686 + 0.0198844i
$$423$$ −3809.90 11725.7i −0.437928 1.34780i
$$424$$ −2471.77 7607.32i −0.283113 0.871331i
$$425$$ −3191.44 2318.72i −0.364254 0.264646i
$$426$$ 3633.75 2640.07i 0.413276 0.300263i
$$427$$ 701.199 2158.07i 0.0794693 0.244581i
$$428$$ 445.964 0.0503656
$$429$$ 0 0
$$430$$ −2342.47 −0.262707
$$431$$ −1517.17 + 4669.37i −0.169558 + 0.521846i −0.999343 0.0362369i $$-0.988463\pi$$
0.829785 + 0.558083i $$0.188463\pi$$
$$432$$ −3375.70 + 2452.59i −0.375957 + 0.273149i
$$433$$ 9500.53 + 6902.54i 1.05443 + 0.766085i 0.973049 0.230598i $$-0.0740682\pi$$
0.0813771 + 0.996683i $$0.474068\pi$$
$$434$$ 81.6843 + 251.398i 0.00903450 + 0.0278053i
$$435$$ −909.749 2799.92i −0.100274 0.308611i
$$436$$ −452.738 328.934i −0.0497299 0.0361309i
$$437$$ −12605.3 + 9158.26i −1.37984 + 1.00252i
$$438$$ 6764.34 20818.5i 0.737928 2.27111i
$$439$$ 11824.2 1.28551 0.642754 0.766073i $$-0.277792\pi$$
0.642754 + 0.766073i $$0.277792\pi$$
$$440$$ 0 0
$$441$$ −11960.4 −1.29148
$$442$$ 186.472 573.901i 0.0200669 0.0617595i
$$443$$ −8172.78 + 5937.87i −0.876525 + 0.636833i −0.932330 0.361609i $$-0.882228\pi$$
0.0558049 + 0.998442i $$0.482228\pi$$
$$444$$ −45.1782 32.8239i −0.00482897 0.00350845i
$$445$$ −6836.34 21040.1i −0.728255 2.24134i
$$446$$ 3321.01 + 10221.0i 0.352588 + 1.08516i
$$447$$ 15575.5 + 11316.3i 1.64809 + 1.19741i
$$448$$ 1345.82 977.797i 0.141929 0.103117i
$$449$$ −106.689 + 328.356i −0.0112138 + 0.0345124i −0.956507 0.291710i $$-0.905776\pi$$
0.945293 + 0.326222i $$0.105776\pi$$
$$450$$ −9376.17 −0.982216
$$451$$ 0 0
$$452$$ −158.134 −0.0164557
$$453$$ −6312.73 + 19428.6i −0.654741 + 2.01509i
$$454$$ 3916.39 2845.42i 0.404858 0.294146i
$$455$$ −197.855 143.750i −0.0203859 0.0148112i
$$456$$ 7994.37 + 24604.2i 0.820989 + 2.52674i
$$457$$ 3265.43 + 10050.0i 0.334246 + 1.02870i 0.967092 + 0.254426i $$0.0818864\pi$$
−0.632847 + 0.774277i $$0.718114\pi$$
$$458$$ 4233.49 + 3075.81i 0.431918 + 0.313806i
$$459$$ 2341.26 1701.02i 0.238084 0.172978i
$$460$$ 273.958 843.156i 0.0277682 0.0854616i
$$461$$ −4733.96 −0.478270 −0.239135 0.970986i $$-0.576864\pi$$
−0.239135 + 0.970986i $$0.576864\pi$$
$$462$$ 0 0
$$463$$ 3431.20 0.344409 0.172204 0.985061i $$-0.444911\pi$$
0.172204 + 0.985061i $$0.444911\pi$$
$$464$$ −458.994 + 1412.64i −0.0459229 + 0.141336i
$$465$$ 3001.38 2180.63i 0.299324 0.217472i
$$466$$ −9717.07 7059.87i −0.965954 0.701807i
$$467$$ 1581.23 + 4866.52i 0.156682 + 0.482218i 0.998327 0.0578129i $$-0.0184127\pi$$
−0.841645 + 0.540031i $$0.818413\pi$$
$$468$$ 31.8210 + 97.9350i 0.00314301 + 0.00967318i
$$469$$ 850.809 + 618.149i 0.0837669 + 0.0608602i
$$470$$ −11290.8 + 8203.24i −1.10810 + 0.805079i
$$471$$ −6065.94 + 18669.0i −0.593426 + 1.82638i
$$472$$ 2060.82 0.200968
$$473$$ 0 0
$$474$$ −28033.2 −2.71648
$$475$$ −4138.49 + 12737.0i −0.399762 + 1.23034i
$$476$$ −54.8898 + 39.8798i −0.00528545 + 0.00384010i
$$477$$ 9949.75 + 7228.91i 0.955068 + 0.693898i
$$478$$ −3448.33 10612.9i −0.329965 1.01553i
$$479$$ −3574.36 11000.8i −0.340954 1.04935i −0.963714 0.266936i $$-0.913989\pi$$
0.622761 0.782412i $$-0.286011\pi$$
$$480$$ −2306.99 1676.12i −0.219373 0.159384i
$$481$$ 56.9842 41.4014i 0.00540178 0.00392462i
$$482$$ 3299.82 10155.8i 0.311832 0.959719i
$$483$$ −2711.89 −0.255477
$$484$$ 0 0
$$485$$ 20002.9 1.87275
$$486$$ −4354.48 + 13401.7i −0.406426 + 1.25085i
$$487$$ 14826.5 10772.1i 1.37957 1.00232i 0.382653 0.923892i $$-0.375010\pi$$
0.996920 0.0784263i $$-0.0249895\pi$$
$$488$$ 13936.8 + 10125.7i 1.29280 + 0.939277i
$$489$$ 6676.38 + 20547.8i 0.617415 + 1.90021i
$$490$$ 4183.73 + 12876.2i 0.385718 + 1.18712i
$$491$$ −6162.75 4477.50i −0.566438 0.411541i 0.267371 0.963594i $$-0.413845\pi$$
−0.833810 + 0.552052i $$0.813845\pi$$
$$492$$ 897.377 651.982i 0.0822294 0.0597432i
$$493$$ 318.341 979.752i 0.0290818 0.0895047i
$$494$$ −2048.62 −0.186582
$$495$$ 0 0
$$496$$ −1871.75 −0.169444
$$497$$ 196.838 605.804i 0.0177654 0.0546761i
$$498$$ 7742.70 5625.40i 0.696704 0.506185i
$$499$$ −10443.7 7587.79i −0.936922 0.680714i 0.0107555 0.999942i $$-0.496576\pi$$
−0.947678 + 0.319228i $$0.896576\pi$$
$$500$$ 72.0537 + 221.758i 0.00644468 + 0.0198347i
$$501$$ 6706.24 + 20639.7i 0.598029 + 1.84055i
$$502$$ 2420.01 + 1758.24i 0.215160 + 0.156323i
$$503$$ 8224.18 5975.22i 0.729022 0.529666i −0.160232 0.987079i $$-0.551224\pi$$
0.889254 + 0.457414i $$0.151224\pi$$
$$504$$ −793.742 + 2442.89i −0.0701510 + 0.215903i
$$505$$ 2398.74 0.211371
$$506$$ 0 0
$$507$$ 17190.6 1.50584
$$508$$ −218.198 + 671.543i −0.0190570 + 0.0586514i
$$509$$ −5218.10 + 3791.18i −0.454398 + 0.330139i −0.791330 0.611390i $$-0.790611\pi$$
0.336932 + 0.941529i $$0.390611\pi$$
$$510$$ −10729.9 7795.71i −0.931621 0.676862i
$$511$$ −959.299 2952.42i −0.0830468 0.255592i
$$512$$ 3870.56 + 11912.4i 0.334094 + 1.02824i
$$513$$ −7948.39 5774.84i −0.684074 0.497009i
$$514$$ 1731.04 1257.68i 0.148547 0.107925i
$$515$$ −159.575 + 491.123i −0.0136539 + 0.0420222i
$$516$$ 245.205 0.0209197
$$517$$ 0 0
$$518$$ 110.305 0.00935623
$$519$$ 5653.05 17398.3i 0.478114 1.47148i
$$520$$ 1502.08 1091.32i 0.126674 0.0920339i
$$521$$ 15636.2 + 11360.4i 1.31485 + 0.955292i 0.999981 + 0.00615574i $$0.00195944\pi$$
0.314866 + 0.949136i $$0.398041\pi$$
$$522$$ −756.638 2328.69i −0.0634428 0.195257i
$$523$$ −1934.17 5952.75i −0.161712 0.497697i 0.837067 0.547100i $$-0.184268\pi$$
−0.998779 + 0.0494027i $$0.984268\pi$$
$$524$$ 693.990 + 504.213i 0.0578571 + 0.0420356i
$$525$$ −1885.80 + 1370.11i −0.156767 + 0.113898i
$$526$$ 5217.51 16057.9i 0.432499 1.33109i
$$527$$ 1298.18 0.107305
$$528$$ 0 0
$$529$$ 232.675 0.0191235
$$530$$ 4302.02 13240.3i 0.352581 1.08513i
$$531$$ −2563.46 + 1862.46i −0.209500 + 0.152211i
$$532$$ 186.347 + 135.389i 0.0151864 + 0.0110336i
$$533$$ 432.339 + 1330.60i 0.0351345 + 0.108133i
$$534$$ −9967.21 30675.9i −0.807721 2.48591i
$$535$$ 10002.0 + 7266.90i 0.808272 + 0.587244i
$$536$$ −6459.18 + 4692.87i −0.520511 + 0.378174i
$$537$$ 3214.71 9893.87i 0.258333 0.795069i
$$538$$ −2696.44 −0.216081
$$539$$ 0 0
$$540$$ 559.022 0.0445490
$$541$$ 4328.76 13322.6i 0.344007 1.05875i −0.618106 0.786095i $$-0.712100\pi$$
0.962113 0.272651i $$-0.0879004\pi$$
$$542$$ −10116.4 + 7350.00i −0.801729 + 0.582490i
$$543$$ −5151.60 3742.85i −0.407139 0.295803i
$$544$$ −308.348 948.997i −0.0243020 0.0747939i
$$545$$ −4794.06 14754.6i −0.376798 1.15966i
$$546$$ −288.467 209.584i −0.0226103 0.0164274i
$$547$$ −4004.19 + 2909.21i −0.312992 + 0.227402i −0.733179 0.680035i $$-0.761964\pi$$
0.420187 + 0.907437i $$0.361964\pi$$
$$548$$ −266.896 + 821.423i −0.0208052 + 0.0640318i
$$549$$ −26487.0 −2.05909
$$550$$ 0 0
$$551$$ −3497.35 −0.270404
$$552$$ 6362.10 19580.5i 0.490559 1.50979i
$$553$$ −3216.33 + 2336.80i −0.247327 + 0.179694i
$$554$$ −1255.07 911.864i −0.0962508 0.0699303i
$$555$$ −478.393 1472.34i −0.0365886 0.112608i
$$556$$ −5.27639 16.2391i −0.000402462 0.00123865i
$$557$$ −3075.54 2234.51i −0.233958 0.169981i 0.464629 0.885505i $$-0.346188\pi$$
−0.698587 + 0.715525i $$0.746188\pi$$
$$558$$ 2496.25 1813.63i 0.189381 0.137594i
$$559$$ −95.5734 + 294.145i −0.00723135 + 0.0222558i
$$560$$ 2711.94 0.204644
$$561$$ 0 0
$$562$$ 14510.0 1.08908
$$563$$ 3059.30 9415.57i 0.229013 0.704829i −0.768847 0.639433i $$-0.779169\pi$$
0.997859 0.0653958i $$-0.0208310\pi$$
$$564$$ 1181.90 858.697i 0.0882389 0.0641093i
$$565$$ −3546.61 2576.76i −0.264083 0.191868i
$$566$$ −3991.99 12286.1i −0.296459 0.912407i
$$567$$ 390.555 + 1202.01i 0.0289273 + 0.0890291i
$$568$$ 3912.27 + 2842.43i 0.289006 + 0.209975i
$$569$$ 4311.38 3132.40i 0.317649 0.230786i −0.417523 0.908667i $$-0.637102\pi$$
0.735172 + 0.677881i $$0.237102\pi$$
$$570$$ −13913.9 + 42822.6i −1.02244 + 3.14674i
$$571$$ 16962.6 1.24319 0.621597 0.783337i $$-0.286484\pi$$
0.621597 + 0.783337i $$0.286484\pi$$
$$572$$ 0 0
$$573$$ −13622.6 −0.993181
$$574$$ −677.054 + 2083.76i −0.0492329 + 0.151523i
$$575$$ 8622.49 6264.61i 0.625361 0.454352i
$$576$$ −15709.5 11413.6i −1.13639 0.825637i
$$577$$ −4785.74 14729.0i −0.345291 1.06270i −0.961428 0.275057i $$-0.911303\pi$$
0.616137 0.787639i $$-0.288697\pi$$
$$578$$ 2713.67 + 8351.81i 0.195283 + 0.601020i
$$579$$ −8596.01 6245.37i −0.616991 0.448270i
$$580$$ 160.992 116.968i 0.0115256 0.00837382i
$$581$$ 419.417 1290.83i 0.0299490 0.0921734i
$$582$$ 29163.7 2.07710
$$583$$ 0 0
$$584$$ 23567.7 1.66993
$$585$$ −882.156 + 2715.00i −0.0623464 + 0.191883i
$$586$$ −5147.55 + 3739.91i −0.362872 + 0.263642i
$$587$$ −8967.27 6515.10i −0.630526 0.458104i 0.226056 0.974114i $$-0.427417\pi$$
−0.856582 + 0.516010i $$0.827417\pi$$
$$588$$ −437.944 1347.85i −0.0307152 0.0945316i
$$589$$ −1361.90 4191.51i −0.0952738 0.293223i
$$590$$ 2901.76 + 2108.25i 0.202481 + 0.147111i
$$591$$ 22566.7 16395.7i 1.57068 1.14117i
$$592$$ −241.363 + 742.838i −0.0167567 + 0.0515717i
$$593$$ −4349.68 −0.301214 −0.150607 0.988594i $$-0.548123\pi$$
−0.150607 + 0.988594i $$0.548123\pi$$
$$594$$ 0 0
$$595$$ −1880.90 −0.129596
$$596$$ −402.138 + 1237.65i −0.0276379 + 0.0850608i
$$597$$ 5283.20 3838.47i 0.362190 0.263146i
$$598$$ 1318.97 + 958.286i 0.0901950 + 0.0655305i
$$599$$ 4074.05 + 12538.7i 0.277899 + 0.855284i 0.988438 + 0.151627i $$0.0484512\pi$$
−0.710539 + 0.703658i $$0.751549\pi$$
$$600$$ −5468.46 16830.2i −0.372082 1.14515i
$$601$$ −15181.2 11029.8i −1.03037 0.748611i −0.0619905 0.998077i $$-0.519745\pi$$
−0.968384 + 0.249466i $$0.919745\pi$$
$$602$$ −391.842 + 284.690i −0.0265287 + 0.0192742i
$$603$$ 3793.42 11674.9i 0.256186 0.788459i
$$604$$ −1380.84 −0.0930223
$$605$$ 0 0
$$606$$ 3497.29 0.234435
$$607$$ −6758.62 + 20800.9i −0.451934 + 1.39091i 0.422763 + 0.906240i $$0.361060\pi$$
−0.874697 + 0.484669i $$0.838940\pi$$
$$608$$ −2740.60 + 1991.16i −0.182806 + 0.132816i
$$609$$ −492.465 357.797i −0.0327680 0.0238073i
$$610$$ 9265.13 + 28515.1i 0.614974 + 1.89270i
$$611$$ 569.415 + 1752.48i 0.0377022 + 0.116036i
$$612$$ 640.717 + 465.508i 0.0423194 + 0.0307468i
$$613$$ −2854.09 + 2073.62i −0.188052 + 0.136628i −0.677828 0.735221i $$-0.737079\pi$$
0.489776 + 0.871848i $$0.337079\pi$$
$$614$$ −1416.71 + 4360.18i −0.0931167 + 0.286584i
$$615$$ 30750.2 2.01621
$$616$$ 0 0
$$617$$ −22728.1 −1.48298 −0.741490 0.670963i $$-0.765881\pi$$
−0.741490 + 0.670963i $$0.765881\pi$$
$$618$$ −232.657 + 716.044i −0.0151437 + 0.0466076i
$$619$$ 17348.0 12604.1i 1.12645 0.818417i 0.141279 0.989970i $$-0.454879\pi$$
0.985175 + 0.171553i $$0.0548785\pi$$
$$620$$ 202.875 + 147.397i 0.0131414 + 0.00954778i
$$621$$ 2416.13 + 7436.08i 0.156129 + 0.480514i
$$622$$ −3016.26 9283.09i −0.194439 0.598421i
$$623$$ −3700.65 2688.68i −0.237983 0.172905i
$$624$$ 2042.62 1484.05i 0.131042 0.0952079i
$$625$$ −5694.61 + 17526.2i −0.364455 + 1.12168i
$$626$$ −19628.0 −1.25319
$$627$$ 0 0
$$628$$ −1326.85 −0.0843109
$$629$$ 167.400 515.205i 0.0106116 0.0326591i
$$630$$ −3616.76 + 2627.73i −0.228722 + 0.166177i
$$631$$ −17419.7 12656.2i −1.09900 0.798469i −0.118103 0.993001i $$-0.537681\pi$$
−0.980896 + 0.194532i $$0.937681\pi$$
$$632$$ −9326.75 28704.8i −0.587022 1.80667i
$$633$$ −262.985 809.386i −0.0165130 0.0508218i
$$634$$ −34.7183 25.2243i −0.00217482 0.00158010i
$$635$$ −15836.4 + 11505.8i −0.989683 + 0.719047i
$$636$$ −450.326 + 1385.96i −0.0280764 + 0.0864103i
$$637$$ 1787.56 0.111187
$$638$$ 0 0
$$639$$ −7435.33 −0.460309
$$640$$ −5903.22 + 18168.2i −0.364602 + 1.12213i
$$641$$ −16300.3 + 11842.9i −1.00440 + 0.729742i −0.963028 0.269402i $$-0.913174\pi$$
−0.0413758 + 0.999144i $$0.513174\pi$$
$$642$$ 14582.7 + 10595.0i 0.896470 + 0.651323i
$$643$$ 8921.22 + 27456.7i 0.547152 + 1.68396i 0.715818 + 0.698287i $$0.246054\pi$$
−0.168666 + 0.985673i $$0.553946\pi$$
$$644$$ −56.6451 174.336i −0.00346604 0.0106674i
$$645$$ 5499.44 + 3995.58i 0.335721 + 0.243916i
$$646$$ −12746.6 + 9260.96i −0.776330 + 0.564037i
$$647$$ −491.344 + 1512.20i −0.0298558 + 0.0918868i −0.964874 0.262713i $$-0.915383\pi$$
0.935018 + 0.354600i $$0.115383\pi$$
$$648$$ −9595.02 −0.581679
$$649$$ 0 0
$$650$$ 1401.33 0.0845612
$$651$$ 237.042 729.539i 0.0142710 0.0439215i
$$652$$ −1181.47 + 858.390i −0.0709663 + 0.0515601i
$$653$$ −16203.0 11772.2i −0.971017 0.705485i −0.0153339 0.999882i $$-0.504881\pi$$
−0.955683 + 0.294397i $$0.904881\pi$$
$$654$$ −6989.61 21511.8i −0.417913 1.28621i
$$655$$ 7348.68 + 22616.9i 0.438377 + 1.34918i
$$656$$ −12551.4 9119.11i −0.747026 0.542746i
$$657$$ −29315.9 + 21299.3i −1.74083 + 1.26478i
$$658$$ −891.718 + 2744.43i −0.0528310 + 0.162597i
$$659$$ 10520.7 0.621897 0.310948 0.950427i $$-0.399353\pi$$
0.310948 + 0.950427i $$0.399353\pi$$
$$660$$ 0 0
$$661$$ 3295.83 0.193938 0.0969690 0.995287i $$-0.469085\pi$$
0.0969690 + 0.995287i $$0.469085\pi$$
$$662$$ 1113.53 3427.08i 0.0653752 0.201204i
$$663$$ −1416.69 + 1029.28i −0.0829858 + 0.0602927i
$$664$$ 8336.17 + 6056.58i 0.487208 + 0.353977i
$$665$$ 1973.23 + 6072.98i 0.115066 + 0.354135i
$$666$$ −397.880 1224.55i −0.0231494 0.0712467i
$$667$$ 2251.71 + 1635.97i 0.130715 + 0.0949698i
$$668$$ −1186.76 + 862.230i −0.0687381 + 0.0499411i
$$669$$ 9637.32 29660.6i 0.556951 1.71412i
$$670$$ −13895.8 −0.801257
$$671$$ 0 0
$$672$$ −589.612 −0.0338464
$$673$$ 367.000 1129.51i 0.0210205 0.0646946i −0.939996 0.341185i $$-0.889172\pi$$
0.961017 + 0.276491i $$0.0891716\pi$$
$$674$$ 528.660 384.094i 0.0302125 0.0219507i
$$675$$ 5437.01 + 3950.22i 0.310030 + 0.225250i
$$676$$ 359.071 + 1105.11i 0.0204296 + 0.0628759i
$$677$$ −4085.63 12574.3i −0.231940 0.713839i −0.997513 0.0704888i $$-0.977544\pi$$
0.765572 0.643350i $$-0.222456\pi$$
$$678$$ −5170.87 3756.86i −0.292900 0.212804i
$$679$$ 3346.02 2431.03i 0.189114 0.137400i
$$680$$ 4412.59 13580.6i 0.248846 0.765868i
$$681$$ −14048.0 −0.790485
$$682$$ 0 0
$$683$$ −13831.4 −0.774882 −0.387441 0.921894i $$-0.626641\pi$$
−0.387441 + 0.921894i $$0.626641\pi$$
$$684$$ 830.847 2557.08i 0.0464448 0.142942i
$$685$$ −19370.9 + 14073.8i −1.08047 + 0.785009i
$$686$$ 4593.54 + 3337.40i 0.255659 + 0.185747i
$$687$$ −4692.56 14442.2i −0.260600 0.802045i
$$688$$ −1059.81 3261.76i −0.0587281 0.180746i
$$689$$ −1487.06 1080.41i −0.0822240 0.0597393i
$$690$$ 28989.5 21062.1i 1.59943 1.16206i
$$691$$ −3033.64 + 9336.59i −0.167012 + 0.514010i −0.999179 0.0405154i $$-0.987100\pi$$
0.832167 + 0.554525i $$0.187100\pi$$
$$692$$ 1236.54 0.0679280
$$693$$ 0 0
$$694$$ −16017.4 −0.876101
$$695$$ 146.274 450.186i 0.00798346 0.0245706i
$$696$$ 3738.70 2716.33i 0.203614 0.147934i
$$697$$ 8705.17 + 6324.67i 0.473073 + 0.343707i
$$698$$ 2947.89 + 9072.68i 0.159856 + 0.491986i
$$699$$ 10770.8 + 33149.0i 0.582815 + 1.79372i
$$700$$ −127.468 92.6112i −0.00688265 0.00500054i
$$701$$ 24229.9 17604.0i 1.30549 0.948495i 0.305498 0.952193i $$-0.401177\pi$$
0.999993 + 0.00369814i $$0.00117716\pi$$
$$702$$ −317.677 + 977.710i −0.0170797 + 0.0525659i
$$703$$ −1839.09 −0.0986667
$$704$$ 0 0
$$705$$ 40499.8 2.16356
$$706$$ 9216.43 28365.2i 0.491310 1.51210i
$$707$$ 401.253 291.528i 0.0213447 0.0155078i
$$708$$ −303.750 220.687i −0.0161238 0.0117146i
$$709$$ 3494.21 + 10754.1i 0.185088 + 0.569644i 0.999950 0.0100121i $$-0.00318701\pi$$
−0.814861 + 0.579656i $$0.803187\pi$$
$$710$$ 2600.87 + 8004.65i 0.137477 + 0.423112i
$$711$$ 37543.5 + 27276.9i 1.98030 + 1.43877i
$$712$$ 28094.6 20411.9i 1.47878 1.07440i
$$713$$ −1083.83 + 3335.70i −0.0569283 + 0.175207i
$$714$$ −2742.30 −0.143737
$$715$$ 0 0
$$716$$ 703.181 0.0367027
$$717$$ −10006.8 + 30797.8i −0.521214 + 1.60413i
$$718$$ 25419.8 18468.6i 1.32125 0.959945i
$$719$$ 26392.9 + 19175.6i 1.36897 + 0.994615i 0.997817 + 0.0660438i $$0.0210377\pi$$
0.371154 + 0.928571i $$0.378962\pi$$
$$720$$ −9782.20 30106.5i −0.506335 1.55834i
$$721$$ 32.9947 + 101.547i 0.00170428 + 0.00524524i
$$722$$ 28113.5 + 20425.7i 1.44914 + 1.05286i
$$723$$ −25069.9 + 18214.3i −1.28957 + 0.936926i
$$724$$ 133.007 409.353i 0.00682758 0.0210131i
$$725$$ 2392.33 0.122550
$$726$$ 0 0
$$727$$ −502.545 −0.0256373 −0.0128187 0.999918i $$-0.504080\pi$$
−0.0128187 + 0.999918i $$0.504080\pi$$
$$728$$ 118.630 365.106i 0.00603946 0.0185876i
$$729$$ 24095.1 17506.1i 1.22416 0.889404i
$$730$$ 33184.8 + 24110.2i 1.68250 + 1.22241i
$$731$$ 735.045 + 2262.24i 0.0371910 + 0.114462i
$$732$$ −969.853 2984.90i −0.0489711 0.150717i
$$733$$ 6982.93 + 5073.39i 0.351870 + 0.255648i 0.749653 0.661831i $$-0.230220\pi$$
−0.397783 + 0.917479i $$0.630220\pi$$
$$734$$ 14956.9 10866.9i 0.752140 0.546462i
$$735$$ 12140.9 37365.8i 0.609283 1.87518i
$$736$$ 2695.90 0.135017
$$737$$ 0 0
$$738$$ 25575.0 1.27565
$$739$$ 5672.79 17459.0i 0.282377 0.869068i −0.704795 0.709411i $$-0.748961\pi$$
0.987173 0.159657i $$-0.0510388\pi$$
$$740$$ 84.6580 61.5076i 0.00420553 0.00305549i
$$741$$ 4809.55 + 3494.34i 0.238439 + 0.173236i
$$742$$ −889.511 2737.63i −0.0440094 0.135447i
$$743$$ −3455.63 10635.3i −0.170625 0.525131i 0.828781 0.559573i $$-0.189035\pi$$
−0.999407 + 0.0344418i $$0.989035\pi$$
$$744$$ 4711.35 + 3423.00i 0.232159 + 0.168674i
$$745$$ −29186.5 + 21205.2i −1.43531 + 1.04282i
$$746$$ −4483.15 + 13797.7i −0.220027 + 0.677173i
$$747$$ −15843.0 −0.775991
$$748$$ 0 0
$$749$$ 2556.29 0.124706
$$750$$ −2912.31 + 8963.16i −0.141790 + 0.436385i
$$751$$ −13537.6 + 9835.64i −0.657782 + 0.477906i −0.865913 0.500195i $$-0.833262\pi$$
0.208131 + 0.978101i $$0.433262\pi$$
$$752$$ −16530.9 12010.4i −0.801620 0.582411i
$$753$$ −2682.43 8255.67i −0.129818 0.399540i
$$754$$ 113.085 + 348.039i 0.00546194 + 0.0168101i
$$755$$ −30969.3 22500.5i −1.49283 1.08461i
$$756$$ 93.5115 67.9401i 0.00449865 0.00326846i
$$757$$ −7540.76 + 23208.1i −0.362052 + 1.11428i 0.589754 + 0.807583i $$0.299225\pi$$
−0.951806 + 0.306699i $$0.900775\pi$$
$$758$$ 2290.19 0.109741
$$759$$ 0 0
$$760$$ −48477.6 −2.31377
$$761$$ −2617.17 + 8054.81i −0.124668 + 0.383688i −0.993840 0.110821i $$-0.964652\pi$$
0.869173 + 0.494509i $$0.164652\pi$$
$$762$$ −23089.1 + 16775.2i −1.09768 + 0.797508i
$$763$$ −2595.12 1885.46i −0.123132 0.0894605i
$$764$$ −284.545 875.738i −0.0134744 0.0414700i
$$765$$ 6784.57 + 20880.8i 0.320649 + 0.986857i
$$766$$ −6259.86 4548.06i −0.295272 0.214527i
$$767$$ 383.126 278.357i 0.0180363 0.0131042i
$$768$$ 2007.40 6178.14i