Properties

Label 121.4.c.f.9.1
Level $121$
Weight $4$
Character 121.9
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(1.40126 - 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 121.9
Dual form 121.4.c.f.27.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.844250 + 2.59833i) q^{2} +(6.41405 - 4.66008i) q^{3} +(0.433551 + 0.314993i) q^{4} +(4.59088 + 14.1293i) q^{5} +(6.69339 + 20.6001i) q^{6} +(2.48514 + 1.80556i) q^{7} +(-18.8667 + 13.7075i) q^{8} +(11.0802 - 34.1015i) q^{9} +O(q^{10})\) \(q+(-0.844250 + 2.59833i) q^{2} +(6.41405 - 4.66008i) q^{3} +(0.433551 + 0.314993i) q^{4} +(4.59088 + 14.1293i) q^{5} +(6.69339 + 20.6001i) q^{6} +(2.48514 + 1.80556i) q^{7} +(-18.8667 + 13.7075i) q^{8} +(11.0802 - 34.1015i) q^{9} -40.5885 q^{10} +4.24871 q^{12} +(-1.65602 + 5.09670i) q^{13} +(-6.78952 + 4.93287i) q^{14} +(95.2898 + 69.2321i) q^{15} +(-18.3635 - 56.5171i) q^{16} +(12.7363 + 39.1982i) q^{17} +(79.2525 + 57.5803i) q^{18} +(113.200 - 82.2447i) q^{19} +(-2.46025 + 7.57186i) q^{20} +24.3538 q^{21} -111.354 q^{23} +(-57.1341 + 175.841i) q^{24} +(-77.4333 + 56.2586i) q^{25} +(-11.8448 - 8.60577i) q^{26} +(-21.6977 - 66.7788i) q^{27} +(0.508695 + 1.56560i) q^{28} +(-20.2213 - 14.6916i) q^{29} +(-260.336 + 189.145i) q^{30} +(9.73324 - 29.9558i) q^{31} -24.2102 q^{32} -112.603 q^{34} +(-14.1023 + 43.4023i) q^{35} +(15.5456 - 11.2945i) q^{36} +(-10.6334 - 7.72561i) q^{37} +(118.130 + 363.567i) q^{38} +(13.1292 + 40.4076i) q^{39} +(-280.291 - 203.643i) q^{40} +(211.212 - 153.454i) q^{41} +(-20.5607 + 63.2794i) q^{42} +57.7128 q^{43} +532.697 q^{45} +(94.0105 - 289.335i) q^{46} +(278.177 - 202.108i) q^{47} +(-381.159 - 276.928i) q^{48} +(-103.077 - 317.238i) q^{49} +(-80.8056 - 248.694i) q^{50} +(264.358 + 192.067i) q^{51} +(-2.32339 + 1.68804i) q^{52} +(-105.991 + 326.207i) q^{53} +191.832 q^{54} -71.6359 q^{56} +(342.804 - 1055.04i) q^{57} +(55.2455 - 40.1382i) q^{58} +(-71.4923 - 51.9422i) q^{59} +(19.5053 + 60.0312i) q^{60} +(-228.270 - 702.543i) q^{61} +(69.6180 + 50.5804i) q^{62} +(89.1080 - 64.7408i) q^{63} +(167.348 - 515.043i) q^{64} -79.6152 q^{65} +342.359 q^{67} +(-6.82534 + 21.0062i) q^{68} +(-714.229 + 518.918i) q^{69} +(-100.868 - 73.2848i) q^{70} +(-64.0790 - 197.215i) q^{71} +(258.397 + 795.264i) q^{72} +(-817.592 - 594.016i) q^{73} +(29.0510 - 21.1068i) q^{74} +(-234.492 + 721.691i) q^{75} +74.9845 q^{76} -116.077 q^{78} +(-399.938 + 1230.88i) q^{79} +(714.242 - 518.927i) q^{80} +(332.863 + 241.839i) q^{81} +(220.410 + 678.352i) q^{82} +(-136.538 - 420.221i) q^{83} +(10.5586 + 7.67129i) q^{84} +(-495.371 + 359.908i) q^{85} +(-48.7240 + 149.957i) q^{86} -198.164 q^{87} -1489.11 q^{89} +(-449.730 + 1384.13i) q^{90} +(-13.3178 + 9.67595i) q^{91} +(-48.2776 - 35.0757i) q^{92} +(-77.1671 - 237.496i) q^{93} +(290.292 + 893.427i) q^{94} +(1681.75 + 1221.86i) q^{95} +(-155.286 + 112.822i) q^{96} +(416.065 - 1280.52i) q^{97} +911.314 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9} - 200 q^{10} - 160 q^{12} + 80 q^{13} + 4 q^{14} + 194 q^{15} + 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19} - 88 q^{20} - 304 q^{21} - 392 q^{23} + 252 q^{24} - 136 q^{25} + 40 q^{26} + 182 q^{27} - 128 q^{28} + 144 q^{29} - 266 q^{30} + 34 q^{31} + 416 q^{32} - 208 q^{34} - 172 q^{35} + 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} - 492 q^{40} + 536 q^{41} + 140 q^{42} + 240 q^{43} + 1712 q^{45} - 314 q^{46} + 272 q^{47} - 776 q^{48} + 390 q^{49} + 232 q^{50} - 164 q^{51} - 560 q^{52} + 492 q^{53} + 440 q^{54} + 480 q^{56} - 1512 q^{57} + 192 q^{58} - 634 q^{59} - 632 q^{60} + 840 q^{61} + 134 q^{62} + 248 q^{63} - 224 q^{64} + 3520 q^{65} + 3016 q^{67} + 640 q^{68} - 962 q^{69} - 284 q^{70} + 678 q^{71} - 744 q^{72} - 400 q^{73} + 6 q^{74} + 520 q^{75} - 1728 q^{76} - 1760 q^{78} + 316 q^{79} + 1544 q^{80} + 1294 q^{81} - 512 q^{82} + 468 q^{83} - 736 q^{84} + 452 q^{85} + 156 q^{86} - 4800 q^{87} - 7368 q^{89} + 1532 q^{90} - 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} + 2952 q^{95} - 952 q^{96} - 2194 q^{97} + 3480 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.844250 + 2.59833i −0.298487 + 0.918650i 0.683540 + 0.729913i \(0.260439\pi\)
−0.982028 + 0.188737i \(0.939561\pi\)
\(3\) 6.41405 4.66008i 1.23438 0.896833i 0.237174 0.971467i \(-0.423779\pi\)
0.997211 + 0.0746343i \(0.0237789\pi\)
\(4\) 0.433551 + 0.314993i 0.0541939 + 0.0393741i
\(5\) 4.59088 + 14.1293i 0.410621 + 1.26376i 0.916110 + 0.400928i \(0.131312\pi\)
−0.505489 + 0.862833i \(0.668688\pi\)
\(6\) 6.69339 + 20.6001i 0.455427 + 1.40166i
\(7\) 2.48514 + 1.80556i 0.134185 + 0.0974909i 0.652853 0.757485i \(-0.273572\pi\)
−0.518668 + 0.854976i \(0.673572\pi\)
\(8\) −18.8667 + 13.7075i −0.833798 + 0.605789i
\(9\) 11.0802 34.1015i 0.410379 1.26302i
\(10\) −40.5885 −1.28352
\(11\) 0 0
\(12\) 4.24871 0.102208
\(13\) −1.65602 + 5.09670i −0.0353305 + 0.108736i −0.967166 0.254144i \(-0.918206\pi\)
0.931836 + 0.362880i \(0.118206\pi\)
\(14\) −6.78952 + 4.93287i −0.129612 + 0.0941690i
\(15\) 95.2898 + 69.2321i 1.64025 + 1.19171i
\(16\) −18.3635 56.5171i −0.286930 0.883080i
\(17\) 12.7363 + 39.1982i 0.181706 + 0.559232i 0.999876 0.0157433i \(-0.00501147\pi\)
−0.818170 + 0.574976i \(0.805011\pi\)
\(18\) 79.2525 + 57.5803i 1.03778 + 0.753990i
\(19\) 113.200 82.2447i 1.36684 0.993065i 0.368860 0.929485i \(-0.379748\pi\)
0.997977 0.0635795i \(-0.0202517\pi\)
\(20\) −2.46025 + 7.57186i −0.0275064 + 0.0846560i
\(21\) 24.3538 0.253069
\(22\) 0 0
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) −57.1341 + 175.841i −0.485935 + 1.49555i
\(25\) −77.4333 + 56.2586i −0.619466 + 0.450069i
\(26\) −11.8448 8.60577i −0.0893447 0.0649127i
\(27\) −21.6977 66.7788i −0.154657 0.475985i
\(28\) 0.508695 + 1.56560i 0.00343337 + 0.0105668i
\(29\) −20.2213 14.6916i −0.129483 0.0940745i 0.521159 0.853460i \(-0.325500\pi\)
−0.650641 + 0.759385i \(0.725500\pi\)
\(30\) −260.336 + 189.145i −1.58436 + 1.15110i
\(31\) 9.73324 29.9558i 0.0563917 0.173556i −0.918893 0.394506i \(-0.870916\pi\)
0.975285 + 0.220950i \(0.0709158\pi\)
\(32\) −24.2102 −0.133744
\(33\) 0 0
\(34\) −112.603 −0.567976
\(35\) −14.1023 + 43.4023i −0.0681062 + 0.209609i
\(36\) 15.5456 11.2945i 0.0719703 0.0522895i
\(37\) −10.6334 7.72561i −0.0472464 0.0343266i 0.563911 0.825835i \(-0.309296\pi\)
−0.611158 + 0.791509i \(0.709296\pi\)
\(38\) 118.130 + 363.567i 0.504295 + 1.55206i
\(39\) 13.1292 + 40.4076i 0.0539067 + 0.165908i
\(40\) −280.291 203.643i −1.10795 0.804971i
\(41\) 211.212 153.454i 0.804529 0.584525i −0.107710 0.994182i \(-0.534352\pi\)
0.912239 + 0.409658i \(0.134352\pi\)
\(42\) −20.5607 + 63.2794i −0.0755378 + 0.232482i
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) 0 0
\(45\) 532.697 1.76466
\(46\) 94.0105 289.335i 0.301328 0.927392i
\(47\) 278.177 202.108i 0.863326 0.627243i −0.0654616 0.997855i \(-0.520852\pi\)
0.928788 + 0.370612i \(0.120852\pi\)
\(48\) −381.159 276.928i −1.14616 0.832732i
\(49\) −103.077 317.238i −0.300516 0.924893i
\(50\) −80.8056 248.694i −0.228553 0.703413i
\(51\) 264.358 + 192.067i 0.725833 + 0.527348i
\(52\) −2.32339 + 1.68804i −0.00619609 + 0.00450172i
\(53\) −105.991 + 326.207i −0.274698 + 0.845435i 0.714601 + 0.699533i \(0.246608\pi\)
−0.989299 + 0.145902i \(0.953392\pi\)
\(54\) 191.832 0.483426
\(55\) 0 0
\(56\) −71.6359 −0.170942
\(57\) 342.804 1055.04i 0.796589 2.45165i
\(58\) 55.2455 40.1382i 0.125070 0.0908690i
\(59\) −71.4923 51.9422i −0.157754 0.114615i 0.506108 0.862470i \(-0.331084\pi\)
−0.663862 + 0.747855i \(0.731084\pi\)
\(60\) 19.5053 + 60.0312i 0.0419688 + 0.129167i
\(61\) −228.270 702.543i −0.479131 1.47461i −0.840305 0.542115i \(-0.817624\pi\)
0.361174 0.932499i \(-0.382376\pi\)
\(62\) 69.6180 + 50.5804i 0.142605 + 0.103608i
\(63\) 89.1080 64.7408i 0.178199 0.129469i
\(64\) 167.348 515.043i 0.326851 1.00594i
\(65\) −79.6152 −0.151924
\(66\) 0 0
\(67\) 342.359 0.624266 0.312133 0.950038i \(-0.398957\pi\)
0.312133 + 0.950038i \(0.398957\pi\)
\(68\) −6.82534 + 21.0062i −0.0121720 + 0.0374615i
\(69\) −714.229 + 518.918i −1.24613 + 0.905368i
\(70\) −100.868 73.2848i −0.172229 0.125131i
\(71\) −64.0790 197.215i −0.107110 0.329650i 0.883110 0.469166i \(-0.155445\pi\)
−0.990220 + 0.139516i \(0.955445\pi\)
\(72\) 258.397 + 795.264i 0.422949 + 1.30170i
\(73\) −817.592 594.016i −1.31085 0.952387i −0.999998 0.00192848i \(-0.999386\pi\)
−0.310851 0.950459i \(-0.600614\pi\)
\(74\) 29.0510 21.1068i 0.0456366 0.0331569i
\(75\) −234.492 + 721.691i −0.361023 + 1.11112i
\(76\) 74.9845 0.113175
\(77\) 0 0
\(78\) −116.077 −0.168502
\(79\) −399.938 + 1230.88i −0.569576 + 1.75297i 0.0843714 + 0.996434i \(0.473112\pi\)
−0.653947 + 0.756540i \(0.726888\pi\)
\(80\) 714.242 518.927i 0.998183 0.725222i
\(81\) 332.863 + 241.839i 0.456602 + 0.331741i
\(82\) 220.410 + 678.352i 0.296832 + 0.913554i
\(83\) −136.538 420.221i −0.180566 0.555725i 0.819278 0.573397i \(-0.194375\pi\)
−0.999844 + 0.0176715i \(0.994375\pi\)
\(84\) 10.5586 + 7.67129i 0.0137148 + 0.00996436i
\(85\) −495.371 + 359.908i −0.632124 + 0.459265i
\(86\) −48.7240 + 149.957i −0.0610936 + 0.188027i
\(87\) −198.164 −0.244200
\(88\) 0 0
\(89\) −1489.11 −1.77355 −0.886773 0.462205i \(-0.847058\pi\)
−0.886773 + 0.462205i \(0.847058\pi\)
\(90\) −449.730 + 1384.13i −0.526730 + 1.62111i
\(91\) −13.3178 + 9.67595i −0.0153416 + 0.0111463i
\(92\) −48.2776 35.0757i −0.0547096 0.0397488i
\(93\) −77.1671 237.496i −0.0860415 0.264808i
\(94\) 290.292 + 893.427i 0.318525 + 0.980319i
\(95\) 1681.75 + 1221.86i 1.81625 + 1.31958i
\(96\) −155.286 + 112.822i −0.165091 + 0.119946i
\(97\) 416.065 1280.52i 0.435516 1.34038i −0.457042 0.889445i \(-0.651091\pi\)
0.892557 0.450934i \(-0.148909\pi\)
\(98\) 911.314 0.939353
\(99\) 0 0
\(100\) −51.2923 −0.0512923
\(101\) 49.8943 153.559i 0.0491551 0.151284i −0.923466 0.383680i \(-0.874657\pi\)
0.972621 + 0.232396i \(0.0746566\pi\)
\(102\) −722.238 + 524.737i −0.701101 + 0.509379i
\(103\) 28.1208 + 20.4309i 0.0269012 + 0.0195449i 0.601155 0.799133i \(-0.294708\pi\)
−0.574253 + 0.818678i \(0.694708\pi\)
\(104\) −38.6192 118.858i −0.0364127 0.112067i
\(105\) 111.806 + 344.102i 0.103915 + 0.319818i
\(106\) −758.113 550.801i −0.694665 0.504703i
\(107\) 673.247 489.143i 0.608273 0.441937i −0.240532 0.970641i \(-0.577322\pi\)
0.848806 + 0.528705i \(0.177322\pi\)
\(108\) 11.6278 35.7867i 0.0103600 0.0318849i
\(109\) −1044.26 −0.917629 −0.458815 0.888532i \(-0.651726\pi\)
−0.458815 + 0.888532i \(0.651726\pi\)
\(110\) 0 0
\(111\) −104.205 −0.0891055
\(112\) 56.4090 173.609i 0.0475906 0.146469i
\(113\) −238.726 + 173.445i −0.198739 + 0.144392i −0.682704 0.730695i \(-0.739196\pi\)
0.483965 + 0.875087i \(0.339196\pi\)
\(114\) 2451.94 + 1781.44i 2.01443 + 1.46357i
\(115\) −511.212 1573.35i −0.414529 1.27579i
\(116\) −4.13919 12.7391i −0.00331305 0.0101965i
\(117\) 155.456 + 112.945i 0.122837 + 0.0892461i
\(118\) 195.320 141.909i 0.152379 0.110710i
\(119\) −39.1232 + 120.409i −0.0301380 + 0.0927551i
\(120\) −2746.80 −2.08956
\(121\) 0 0
\(122\) 2018.16 1.49767
\(123\) 639.613 1968.53i 0.468878 1.44306i
\(124\) 13.6557 9.92147i 0.00988969 0.00718528i
\(125\) 352.005 + 255.747i 0.251874 + 0.182997i
\(126\) 92.9887 + 286.190i 0.0657468 + 0.202348i
\(127\) 407.162 + 1253.12i 0.284487 + 0.875560i 0.986552 + 0.163448i \(0.0522614\pi\)
−0.702065 + 0.712113i \(0.747739\pi\)
\(128\) 1040.28 + 755.807i 0.718348 + 0.521911i
\(129\) 370.173 268.946i 0.252650 0.183561i
\(130\) 67.2152 206.867i 0.0453474 0.139565i
\(131\) 1600.71 1.06759 0.533797 0.845612i \(-0.320765\pi\)
0.533797 + 0.845612i \(0.320765\pi\)
\(132\) 0 0
\(133\) 429.815 0.280223
\(134\) −289.037 + 889.563i −0.186336 + 0.573482i
\(135\) 843.925 613.147i 0.538026 0.390899i
\(136\) −777.598 564.958i −0.490283 0.356211i
\(137\) 498.035 + 1532.80i 0.310584 + 0.955880i 0.977534 + 0.210777i \(0.0675995\pi\)
−0.666950 + 0.745103i \(0.732400\pi\)
\(138\) −745.334 2293.90i −0.459761 1.41500i
\(139\) −25.7768 18.7280i −0.0157292 0.0114280i 0.579893 0.814693i \(-0.303094\pi\)
−0.595622 + 0.803265i \(0.703094\pi\)
\(140\) −19.7855 + 14.3750i −0.0119441 + 0.00867791i
\(141\) 842.406 2592.66i 0.503144 1.54852i
\(142\) 566.529 0.334803
\(143\) 0 0
\(144\) −2130.79 −1.23310
\(145\) 114.748 353.159i 0.0657196 0.202264i
\(146\) 2233.70 1622.88i 1.26618 0.919935i
\(147\) −2139.50 1554.44i −1.20043 0.872161i
\(148\) −2.17660 6.69889i −0.00120889 0.00372058i
\(149\) 750.399 + 2309.49i 0.412585 + 1.26980i 0.914394 + 0.404826i \(0.132668\pi\)
−0.501809 + 0.864978i \(0.667332\pi\)
\(150\) −1677.22 1218.58i −0.912966 0.663308i
\(151\) −2084.58 + 1514.53i −1.12345 + 0.816231i −0.984728 0.174101i \(-0.944298\pi\)
−0.138718 + 0.990332i \(0.544298\pi\)
\(152\) −1008.35 + 3103.37i −0.538077 + 1.65603i
\(153\) 1477.84 0.780889
\(154\) 0 0
\(155\) 467.939 0.242489
\(156\) −7.03594 + 21.6544i −0.00361106 + 0.0111137i
\(157\) −2003.08 + 1455.32i −1.01824 + 0.739792i −0.965921 0.258838i \(-0.916660\pi\)
−0.0523162 + 0.998631i \(0.516660\pi\)
\(158\) −2860.59 2078.34i −1.44036 1.04648i
\(159\) 840.320 + 2586.24i 0.419130 + 1.28995i
\(160\) −111.146 342.073i −0.0549181 0.169020i
\(161\) −276.729 201.056i −0.135462 0.0984187i
\(162\) −909.398 + 660.716i −0.441044 + 0.320437i
\(163\) −842.105 + 2591.73i −0.404655 + 1.24540i 0.516529 + 0.856270i \(0.327224\pi\)
−0.921183 + 0.389129i \(0.872776\pi\)
\(164\) 139.908 0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) −845.871 + 2603.32i −0.391949 + 1.20630i 0.539363 + 0.842073i \(0.318665\pi\)
−0.931312 + 0.364222i \(0.881335\pi\)
\(168\) −459.476 + 333.829i −0.211008 + 0.153306i
\(169\) 1754.18 + 1274.48i 0.798442 + 0.580102i
\(170\) −516.945 1590.99i −0.233223 0.717786i
\(171\) −1550.38 4771.58i −0.693337 2.13387i
\(172\) 25.0214 + 18.1791i 0.0110923 + 0.00805899i
\(173\) 1866.74 1356.26i 0.820378 0.596040i −0.0964424 0.995339i \(-0.530746\pi\)
0.916821 + 0.399299i \(0.130746\pi\)
\(174\) 167.300 514.897i 0.0728908 0.224335i
\(175\) −294.010 −0.127001
\(176\) 0 0
\(177\) −700.610 −0.297520
\(178\) 1257.18 3869.21i 0.529381 1.62927i
\(179\) 1061.56 771.265i 0.443265 0.322051i −0.343666 0.939092i \(-0.611669\pi\)
0.786931 + 0.617041i \(0.211669\pi\)
\(180\) 230.951 + 167.796i 0.0956339 + 0.0694821i
\(181\) −248.194 763.864i −0.101923 0.313688i 0.887073 0.461630i \(-0.152735\pi\)
−0.988996 + 0.147942i \(0.952735\pi\)
\(182\) −13.8978 42.7730i −0.00566029 0.0174206i
\(183\) −4738.04 3442.39i −1.91391 1.39054i
\(184\) 2100.88 1526.38i 0.841732 0.611554i
\(185\) 60.3407 185.710i 0.0239802 0.0738034i
\(186\) 682.242 0.268949
\(187\) 0 0
\(188\) 184.267 0.0714842
\(189\) 66.6511 205.131i 0.0256516 0.0789475i
\(190\) −4594.62 + 3338.19i −1.75436 + 1.27462i
\(191\) −1390.09 1009.96i −0.526615 0.382608i 0.292475 0.956273i \(-0.405521\pi\)
−0.819090 + 0.573665i \(0.805521\pi\)
\(192\) −1326.77 4083.37i −0.498704 1.53485i
\(193\) −414.140 1274.59i −0.154458 0.475373i 0.843647 0.536898i \(-0.180404\pi\)
−0.998106 + 0.0615242i \(0.980404\pi\)
\(194\) 2975.95 + 2162.15i 1.10134 + 0.800173i
\(195\) −510.656 + 371.013i −0.187533 + 0.136250i
\(196\) 55.2388 170.007i 0.0201308 0.0619561i
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 689.748 2122.83i 0.243863 0.750532i
\(201\) 2195.91 1595.42i 0.770584 0.559862i
\(202\) 356.874 + 259.284i 0.124305 + 0.0903127i
\(203\) −23.7260 73.0212i −0.00820316 0.0252467i
\(204\) 54.1127 + 166.542i 0.0185718 + 0.0571581i
\(205\) 3137.84 + 2279.78i 1.06906 + 0.776715i
\(206\) −76.8274 + 55.8184i −0.0259846 + 0.0188789i
\(207\) −1233.83 + 3797.33i −0.414285 + 1.27504i
\(208\) 318.461 0.106160
\(209\) 0 0
\(210\) −988.484 −0.324819
\(211\) 33.1709 102.089i 0.0108226 0.0333086i −0.945499 0.325624i \(-0.894426\pi\)
0.956322 + 0.292315i \(0.0944257\pi\)
\(212\) −148.706 + 108.041i −0.0481752 + 0.0350014i
\(213\) −1330.04 966.334i −0.427855 0.310855i
\(214\) 702.567 + 2162.28i 0.224423 + 0.690703i
\(215\) 264.953 + 815.441i 0.0840448 + 0.258663i
\(216\) 1324.73 + 962.474i 0.417299 + 0.303185i
\(217\) 78.2754 56.8704i 0.0244870 0.0177908i
\(218\) 881.613 2713.33i 0.273901 0.842980i
\(219\) −8012.24 −2.47222
\(220\) 0 0
\(221\) −220.873 −0.0672285
\(222\) 87.9752 270.760i 0.0265969 0.0818568i
\(223\) 3182.42 2312.16i 0.955651 0.694321i 0.00351474 0.999994i \(-0.498881\pi\)
0.952137 + 0.305672i \(0.0988812\pi\)
\(224\) −60.1657 43.7130i −0.0179464 0.0130388i
\(225\) 1060.52 + 3263.95i 0.314228 + 0.967096i
\(226\) −249.123 766.721i −0.0733248 0.225670i
\(227\) −1433.50 1041.50i −0.419139 0.304523i 0.358152 0.933663i \(-0.383407\pi\)
−0.777291 + 0.629141i \(0.783407\pi\)
\(228\) 480.955 349.434i 0.139702 0.101499i
\(229\) 591.882 1821.62i 0.170798 0.525661i −0.828619 0.559813i \(-0.810873\pi\)
0.999417 + 0.0341519i \(0.0108730\pi\)
\(230\) 4519.68 1.29573
\(231\) 0 0
\(232\) 582.892 0.164952
\(233\) −1358.54 + 4181.15i −0.381977 + 1.17561i 0.556672 + 0.830732i \(0.312078\pi\)
−0.938649 + 0.344873i \(0.887922\pi\)
\(234\) −424.713 + 308.572i −0.118651 + 0.0862051i
\(235\) 4132.72 + 3002.59i 1.14719 + 0.833479i
\(236\) −14.6341 45.0391i −0.00403644 0.0124229i
\(237\) 3170.79 + 9758.68i 0.869050 + 2.67466i
\(238\) −279.833 203.310i −0.0762137 0.0553725i
\(239\) −3304.42 + 2400.80i −0.894332 + 0.649770i −0.937004 0.349319i \(-0.886413\pi\)
0.0426719 + 0.999089i \(0.486413\pi\)
\(240\) 2162.94 6656.85i 0.581739 1.79041i
\(241\) −3908.58 −1.04471 −0.522353 0.852730i \(-0.674946\pi\)
−0.522353 + 0.852730i \(0.674946\pi\)
\(242\) 0 0
\(243\) 5157.80 1.36162
\(244\) 122.330 376.492i 0.0320957 0.0987804i
\(245\) 4009.13 2912.81i 1.04545 0.759561i
\(246\) 4574.90 + 3323.86i 1.18571 + 0.861469i
\(247\) 231.715 + 713.145i 0.0596910 + 0.183710i
\(248\) 226.984 + 698.585i 0.0581190 + 0.178872i
\(249\) −2834.02 2059.04i −0.721281 0.524041i
\(250\) −961.696 + 698.713i −0.243292 + 0.176762i
\(251\) 338.340 1041.30i 0.0850831 0.261859i −0.899460 0.437004i \(-0.856040\pi\)
0.984543 + 0.175145i \(0.0560395\pi\)
\(252\) 59.0258 0.0147551
\(253\) 0 0
\(254\) −3599.76 −0.889249
\(255\) −1500.13 + 4616.94i −0.368400 + 1.13382i
\(256\) 662.879 481.610i 0.161836 0.117581i
\(257\) −633.605 460.341i −0.153787 0.111733i 0.508231 0.861221i \(-0.330300\pi\)
−0.662018 + 0.749488i \(0.730300\pi\)
\(258\) 386.294 + 1188.89i 0.0932156 + 0.286888i
\(259\) −12.4764 38.3984i −0.00299322 0.00921220i
\(260\) −34.5173 25.0783i −0.00823334 0.00598187i
\(261\) −725.062 + 526.788i −0.171955 + 0.124932i
\(262\) −1351.40 + 4159.19i −0.318664 + 0.980746i
\(263\) −6180.06 −1.44897 −0.724484 0.689292i \(-0.757922\pi\)
−0.724484 + 0.689292i \(0.757922\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) −362.872 + 1116.80i −0.0836432 + 0.257427i
\(267\) −9551.24 + 6939.39i −2.18924 + 1.59057i
\(268\) 148.430 + 107.841i 0.0338314 + 0.0245799i
\(269\) 304.989 + 938.659i 0.0691282 + 0.212755i 0.979653 0.200700i \(-0.0643218\pi\)
−0.910524 + 0.413455i \(0.864322\pi\)
\(270\) 880.678 + 2710.45i 0.198505 + 0.610936i
\(271\) 3702.86 + 2690.29i 0.830011 + 0.603038i 0.919562 0.392944i \(-0.128543\pi\)
−0.0895518 + 0.995982i \(0.528543\pi\)
\(272\) 1981.49 1439.63i 0.441710 0.320921i
\(273\) −40.3304 + 124.124i −0.00894104 + 0.0275177i
\(274\) −4403.18 −0.970825
\(275\) 0 0
\(276\) −473.110 −0.103181
\(277\) −175.471 + 540.044i −0.0380615 + 0.117141i −0.968282 0.249860i \(-0.919615\pi\)
0.930221 + 0.367001i \(0.119615\pi\)
\(278\) 70.4236 51.1658i 0.0151933 0.0110386i
\(279\) −913.691 663.835i −0.196062 0.142447i
\(280\) −328.872 1012.16i −0.0701923 0.216030i
\(281\) −1641.19 5051.07i −0.348418 1.07232i −0.959729 0.280929i \(-0.909357\pi\)
0.611311 0.791391i \(-0.290643\pi\)
\(282\) 6025.39 + 4377.70i 1.27236 + 0.924427i
\(283\) −3825.39 + 2779.31i −0.803519 + 0.583790i −0.911944 0.410314i \(-0.865419\pi\)
0.108426 + 0.994105i \(0.465419\pi\)
\(284\) 34.3399 105.687i 0.00717498 0.0220823i
\(285\) 16480.8 3.42539
\(286\) 0 0
\(287\) 801.960 0.164941
\(288\) −268.255 + 825.605i −0.0548857 + 0.168921i
\(289\) 2600.42 1889.31i 0.529293 0.384554i
\(290\) 820.750 + 596.309i 0.166193 + 0.120747i
\(291\) −3298.65 10152.2i −0.664503 2.04513i
\(292\) −167.357 515.072i −0.0335405 0.103227i
\(293\) 1884.13 + 1368.90i 0.375673 + 0.272942i 0.759559 0.650438i \(-0.225415\pi\)
−0.383886 + 0.923380i \(0.625415\pi\)
\(294\) 5845.21 4246.80i 1.15952 0.842443i
\(295\) 405.693 1248.59i 0.0800690 0.246427i
\(296\) 306.515 0.0601886
\(297\) 0 0
\(298\) −6634.36 −1.28966
\(299\) 184.404 567.537i 0.0356667 0.109771i
\(300\) −328.992 + 239.026i −0.0633145 + 0.0460007i
\(301\) 143.424 + 104.204i 0.0274646 + 0.0199542i
\(302\) −2175.36 6695.07i −0.414496 1.27569i
\(303\) −395.572 1217.45i −0.0750001 0.230827i
\(304\) −6726.99 4887.44i −1.26914 0.922086i
\(305\) 8878.47 6450.58i 1.66682 1.21101i
\(306\) −1247.66 + 3839.91i −0.233085 + 0.717363i
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) 0 0
\(309\) 275.578 0.0507349
\(310\) −395.057 + 1215.86i −0.0723798 + 0.222762i
\(311\) −2890.38 + 2099.98i −0.527005 + 0.382891i −0.819236 0.573456i \(-0.805602\pi\)
0.292232 + 0.956348i \(0.405602\pi\)
\(312\) −801.591 582.390i −0.145452 0.105677i
\(313\) 2220.09 + 6832.74i 0.400917 + 1.23389i 0.924257 + 0.381771i \(0.124686\pi\)
−0.523340 + 0.852124i \(0.675314\pi\)
\(314\) −2090.32 6433.33i −0.375679 1.15622i
\(315\) 1323.83 + 961.815i 0.236791 + 0.172039i
\(316\) −561.113 + 407.672i −0.0998894 + 0.0725739i
\(317\) −4.85393 + 14.9389i −0.000860013 + 0.00264685i −0.951486 0.307693i \(-0.900443\pi\)
0.950626 + 0.310340i \(0.100443\pi\)
\(318\) −7429.36 −1.31012
\(319\) 0 0
\(320\) 8045.47 1.40549
\(321\) 2038.80 6274.77i 0.354500 1.09104i
\(322\) 756.039 549.294i 0.130846 0.0950651i
\(323\) 4665.59 + 3389.75i 0.803716 + 0.583934i
\(324\) 68.1353 + 209.699i 0.0116830 + 0.0359566i
\(325\) −158.502 487.819i −0.0270527 0.0832595i
\(326\) −6023.24 4376.14i −1.02330 0.743472i
\(327\) −6697.91 + 4866.32i −1.13271 + 0.822960i
\(328\) −1881.40 + 5790.34i −0.316716 + 0.974751i
\(329\) 1056.23 0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) 73.1705 225.196i 0.0120956 0.0372265i
\(333\) −381.275 + 277.013i −0.0627440 + 0.0455862i
\(334\) −6050.18 4395.71i −0.991171 0.720128i
\(335\) 1571.73 + 4837.29i 0.256337 + 0.788923i
\(336\) −447.222 1376.41i −0.0726130 0.223480i
\(337\) −193.503 140.588i −0.0312783 0.0227250i 0.572036 0.820228i \(-0.306154\pi\)
−0.603315 + 0.797503i \(0.706154\pi\)
\(338\) −4792.50 + 3481.95i −0.771235 + 0.560335i
\(339\) −722.935 + 2224.97i −0.115824 + 0.356471i
\(340\) −328.137 −0.0523404
\(341\) 0 0
\(342\) 13707.1 2.16723
\(343\) 642.220 1976.55i 0.101098 0.311148i
\(344\) −1088.85 + 791.096i −0.170659 + 0.123991i
\(345\) −10610.9 7709.25i −1.65586 1.20305i
\(346\) 1948.04 + 5995.44i 0.302679 + 0.931551i
\(347\) 1811.70 + 5575.85i 0.280280 + 0.862614i 0.987774 + 0.155894i \(0.0498259\pi\)
−0.707493 + 0.706720i \(0.750174\pi\)
\(348\) −85.9143 62.4204i −0.0132342 0.00961518i
\(349\) 2824.87 2052.39i 0.433271 0.314790i −0.349684 0.936868i \(-0.613711\pi\)
0.782956 + 0.622078i \(0.213711\pi\)
\(350\) 248.218 763.937i 0.0379081 0.116669i
\(351\) 376.283 0.0572208
\(352\) 0 0
\(353\) −10916.7 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(354\) 591.490 1820.42i 0.0888060 0.273317i
\(355\) 2492.33 1810.78i 0.372617 0.270722i
\(356\) −645.606 469.060i −0.0961153 0.0698319i
\(357\) 310.177 + 954.625i 0.0459840 + 0.141524i
\(358\) 1107.79 + 3409.42i 0.163543 + 0.503333i
\(359\) −9304.29 6759.96i −1.36786 0.993808i −0.997901 0.0647598i \(-0.979372\pi\)
−0.369959 0.929048i \(-0.620628\pi\)
\(360\) −10050.2 + 7301.92i −1.47137 + 1.06901i
\(361\) 3930.53 12096.9i 0.573047 1.76366i
\(362\) 2194.31 0.318592
\(363\) 0 0
\(364\) −8.82180 −0.00127030
\(365\) 4639.54 14279.0i 0.665328 2.04767i
\(366\) 12944.6 9404.78i 1.84870 1.34316i
\(367\) −5474.62 3977.55i −0.778673 0.565739i 0.125908 0.992042i \(-0.459816\pi\)
−0.904580 + 0.426303i \(0.859816\pi\)
\(368\) 2044.85 + 6293.40i 0.289661 + 0.891484i
\(369\) −2892.74 8902.93i −0.408103 1.25601i
\(370\) 431.593 + 313.571i 0.0606417 + 0.0440588i
\(371\) −852.389 + 619.297i −0.119283 + 0.0866638i
\(372\) 41.3537 127.274i 0.00576368 0.0177388i
\(373\) 5310.22 0.737139 0.368569 0.929600i \(-0.379848\pi\)
0.368569 + 0.929600i \(0.379848\pi\)
\(374\) 0 0
\(375\) 3449.58 0.475028
\(376\) −2477.90 + 7626.20i −0.339862 + 1.04599i
\(377\) 108.365 78.7321i 0.0148040 0.0107557i
\(378\) 476.729 + 346.364i 0.0648684 + 0.0471297i
\(379\) −259.039 797.239i −0.0351080 0.108051i 0.931967 0.362544i \(-0.118092\pi\)
−0.967075 + 0.254492i \(0.918092\pi\)
\(380\) 344.245 + 1059.48i 0.0464721 + 0.143026i
\(381\) 8451.19 + 6140.15i 1.13640 + 0.825641i
\(382\) 3797.80 2759.26i 0.508671 0.369571i
\(383\) −875.187 + 2693.55i −0.116762 + 0.359357i −0.992311 0.123773i \(-0.960500\pi\)
0.875548 + 0.483131i \(0.160500\pi\)
\(384\) 10194.5 1.35479
\(385\) 0 0
\(386\) 3661.45 0.482806
\(387\) 639.472 1968.09i 0.0839953 0.258511i
\(388\) 583.740 424.112i 0.0763786 0.0554923i
\(389\) −2517.06 1828.75i −0.328072 0.238358i 0.411540 0.911392i \(-0.364991\pi\)
−0.739612 + 0.673034i \(0.764991\pi\)
\(390\) −532.896 1640.08i −0.0691903 0.212946i
\(391\) −1418.23 4364.87i −0.183435 0.564554i
\(392\) 6293.25 + 4572.31i 0.810860 + 0.589124i
\(393\) 10267.1 7459.45i 1.31782 0.957454i
\(394\) −2970.35 + 9141.79i −0.379807 + 1.16893i
\(395\) −19227.5 −2.44922
\(396\) 0 0
\(397\) 14208.7 1.79626 0.898131 0.439728i \(-0.144925\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(398\) −695.402 + 2140.23i −0.0875813 + 0.269548i
\(399\) 2756.86 2002.97i 0.345903 0.251314i
\(400\) 4601.52 + 3343.20i 0.575190 + 0.417900i
\(401\) −1934.97 5955.21i −0.240967 0.741619i −0.996274 0.0862478i \(-0.972512\pi\)
0.755307 0.655371i \(-0.227488\pi\)
\(402\) 2291.54 + 7052.64i 0.284308 + 0.875009i
\(403\) 136.557 + 99.2147i 0.0168794 + 0.0122636i
\(404\) 70.0017 50.8592i 0.00862058 0.00626322i
\(405\) −1888.88 + 5813.37i −0.231751 + 0.713256i
\(406\) 209.764 0.0256415
\(407\) 0 0
\(408\) −7620.30 −0.924660
\(409\) 1295.55 3987.31i 0.156628 0.482053i −0.841694 0.539955i \(-0.818441\pi\)
0.998322 + 0.0579024i \(0.0184412\pi\)
\(410\) −8572.75 + 6228.47i −1.03263 + 0.750249i
\(411\) 10337.4 + 7510.54i 1.24065 + 0.901382i
\(412\) 5.75618 + 17.7157i 0.000688318 + 0.00211842i
\(413\) −83.8834 258.167i −0.00999427 0.0307592i
\(414\) −8825.07 6411.79i −1.04765 0.761165i
\(415\) 5310.59 3858.37i 0.628160 0.456385i
\(416\) 40.0926 123.392i 0.00472524 0.0145428i
\(417\) −252.608 −0.0296649
\(418\) 0 0
\(419\) −9287.15 −1.08283 −0.541416 0.840755i \(-0.682112\pi\)
−0.541416 + 0.840755i \(0.682112\pi\)
\(420\) −59.9164 + 184.404i −0.00696100 + 0.0214238i
\(421\) −10635.3 + 7727.03i −1.23120 + 0.894519i −0.996980 0.0776651i \(-0.975254\pi\)
−0.234220 + 0.972184i \(0.575254\pi\)
\(422\) 237.258 + 172.378i 0.0273686 + 0.0198844i
\(423\) −3809.90 11725.7i −0.437928 1.34780i
\(424\) −2471.77 7607.32i −0.283113 0.871331i
\(425\) −3191.44 2318.72i −0.364254 0.264646i
\(426\) 3633.75 2640.07i 0.413276 0.300263i
\(427\) 701.199 2158.07i 0.0794693 0.244581i
\(428\) 445.964 0.0503656
\(429\) 0 0
\(430\) −2342.47 −0.262707
\(431\) −1517.17 + 4669.37i −0.169558 + 0.521846i −0.999343 0.0362369i \(-0.988463\pi\)
0.829785 + 0.558083i \(0.188463\pi\)
\(432\) −3375.70 + 2452.59i −0.375957 + 0.273149i
\(433\) 9500.53 + 6902.54i 1.05443 + 0.766085i 0.973049 0.230598i \(-0.0740682\pi\)
0.0813771 + 0.996683i \(0.474068\pi\)
\(434\) 81.6843 + 251.398i 0.00903450 + 0.0278053i
\(435\) −909.749 2799.92i −0.100274 0.308611i
\(436\) −452.738 328.934i −0.0497299 0.0361309i
\(437\) −12605.3 + 9158.26i −1.37984 + 1.00252i
\(438\) 6764.34 20818.5i 0.737928 2.27111i
\(439\) 11824.2 1.28551 0.642754 0.766073i \(-0.277792\pi\)
0.642754 + 0.766073i \(0.277792\pi\)
\(440\) 0 0
\(441\) −11960.4 −1.29148
\(442\) 186.472 573.901i 0.0200669 0.0617595i
\(443\) −8172.78 + 5937.87i −0.876525 + 0.636833i −0.932330 0.361609i \(-0.882228\pi\)
0.0558049 + 0.998442i \(0.482228\pi\)
\(444\) −45.1782 32.8239i −0.00482897 0.00350845i
\(445\) −6836.34 21040.1i −0.728255 2.24134i
\(446\) 3321.01 + 10221.0i 0.352588 + 1.08516i
\(447\) 15575.5 + 11316.3i 1.64809 + 1.19741i
\(448\) 1345.82 977.797i 0.141929 0.103117i
\(449\) −106.689 + 328.356i −0.0112138 + 0.0345124i −0.956507 0.291710i \(-0.905776\pi\)
0.945293 + 0.326222i \(0.105776\pi\)
\(450\) −9376.17 −0.982216
\(451\) 0 0
\(452\) −158.134 −0.0164557
\(453\) −6312.73 + 19428.6i −0.654741 + 2.01509i
\(454\) 3916.39 2845.42i 0.404858 0.294146i
\(455\) −197.855 143.750i −0.0203859 0.0148112i
\(456\) 7994.37 + 24604.2i 0.820989 + 2.52674i
\(457\) 3265.43 + 10050.0i 0.334246 + 1.02870i 0.967092 + 0.254426i \(0.0818864\pi\)
−0.632847 + 0.774277i \(0.718114\pi\)
\(458\) 4233.49 + 3075.81i 0.431918 + 0.313806i
\(459\) 2341.26 1701.02i 0.238084 0.172978i
\(460\) 273.958 843.156i 0.0277682 0.0854616i
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) 3431.20 0.344409 0.172204 0.985061i \(-0.444911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(464\) −458.994 + 1412.64i −0.0459229 + 0.141336i
\(465\) 3001.38 2180.63i 0.299324 0.217472i
\(466\) −9717.07 7059.87i −0.965954 0.701807i
\(467\) 1581.23 + 4866.52i 0.156682 + 0.482218i 0.998327 0.0578129i \(-0.0184127\pi\)
−0.841645 + 0.540031i \(0.818413\pi\)
\(468\) 31.8210 + 97.9350i 0.00314301 + 0.00967318i
\(469\) 850.809 + 618.149i 0.0837669 + 0.0608602i
\(470\) −11290.8 + 8203.24i −1.10810 + 0.805079i
\(471\) −6065.94 + 18669.0i −0.593426 + 1.82638i
\(472\) 2060.82 0.200968
\(473\) 0 0
\(474\) −28033.2 −2.71648
\(475\) −4138.49 + 12737.0i −0.399762 + 1.23034i
\(476\) −54.8898 + 39.8798i −0.00528545 + 0.00384010i
\(477\) 9949.75 + 7228.91i 0.955068 + 0.693898i
\(478\) −3448.33 10612.9i −0.329965 1.01553i
\(479\) −3574.36 11000.8i −0.340954 1.04935i −0.963714 0.266936i \(-0.913989\pi\)
0.622761 0.782412i \(-0.286011\pi\)
\(480\) −2306.99 1676.12i −0.219373 0.159384i
\(481\) 56.9842 41.4014i 0.00540178 0.00392462i
\(482\) 3299.82 10155.8i 0.311832 0.959719i
\(483\) −2711.89 −0.255477
\(484\) 0 0
\(485\) 20002.9 1.87275
\(486\) −4354.48 + 13401.7i −0.406426 + 1.25085i
\(487\) 14826.5 10772.1i 1.37957 1.00232i 0.382653 0.923892i \(-0.375010\pi\)
0.996920 0.0784263i \(-0.0249895\pi\)
\(488\) 13936.8 + 10125.7i 1.29280 + 0.939277i
\(489\) 6676.38 + 20547.8i 0.617415 + 1.90021i
\(490\) 4183.73 + 12876.2i 0.385718 + 1.18712i
\(491\) −6162.75 4477.50i −0.566438 0.411541i 0.267371 0.963594i \(-0.413845\pi\)
−0.833810 + 0.552052i \(0.813845\pi\)
\(492\) 897.377 651.982i 0.0822294 0.0597432i
\(493\) 318.341 979.752i 0.0290818 0.0895047i
\(494\) −2048.62 −0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) 196.838 605.804i 0.0177654 0.0546761i
\(498\) 7742.70 5625.40i 0.696704 0.506185i
\(499\) −10443.7 7587.79i −0.936922 0.680714i 0.0107555 0.999942i \(-0.496576\pi\)
−0.947678 + 0.319228i \(0.896576\pi\)
\(500\) 72.0537 + 221.758i 0.00644468 + 0.0198347i
\(501\) 6706.24 + 20639.7i 0.598029 + 1.84055i
\(502\) 2420.01 + 1758.24i 0.215160 + 0.156323i
\(503\) 8224.18 5975.22i 0.729022 0.529666i −0.160232 0.987079i \(-0.551224\pi\)
0.889254 + 0.457414i \(0.151224\pi\)
\(504\) −793.742 + 2442.89i −0.0701510 + 0.215903i
\(505\) 2398.74 0.211371
\(506\) 0 0
\(507\) 17190.6 1.50584
\(508\) −218.198 + 671.543i −0.0190570 + 0.0586514i
\(509\) −5218.10 + 3791.18i −0.454398 + 0.330139i −0.791330 0.611390i \(-0.790611\pi\)
0.336932 + 0.941529i \(0.390611\pi\)
\(510\) −10729.9 7795.71i −0.931621 0.676862i
\(511\) −959.299 2952.42i −0.0830468 0.255592i
\(512\) 3870.56 + 11912.4i 0.334094 + 1.02824i
\(513\) −7948.39 5774.84i −0.684074 0.497009i
\(514\) 1731.04 1257.68i 0.148547 0.107925i
\(515\) −159.575 + 491.123i −0.0136539 + 0.0420222i
\(516\) 245.205 0.0209197
\(517\) 0 0
\(518\) 110.305 0.00935623
\(519\) 5653.05 17398.3i 0.478114 1.47148i
\(520\) 1502.08 1091.32i 0.126674 0.0920339i
\(521\) 15636.2 + 11360.4i 1.31485 + 0.955292i 0.999981 + 0.00615574i \(0.00195944\pi\)
0.314866 + 0.949136i \(0.398041\pi\)
\(522\) −756.638 2328.69i −0.0634428 0.195257i
\(523\) −1934.17 5952.75i −0.161712 0.497697i 0.837067 0.547100i \(-0.184268\pi\)
−0.998779 + 0.0494027i \(0.984268\pi\)
\(524\) 693.990 + 504.213i 0.0578571 + 0.0420356i
\(525\) −1885.80 + 1370.11i −0.156767 + 0.113898i
\(526\) 5217.51 16057.9i 0.432499 1.33109i
\(527\) 1298.18 0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 4302.02 13240.3i 0.352581 1.08513i
\(531\) −2563.46 + 1862.46i −0.209500 + 0.152211i
\(532\) 186.347 + 135.389i 0.0151864 + 0.0110336i
\(533\) 432.339 + 1330.60i 0.0351345 + 0.108133i
\(534\) −9967.21 30675.9i −0.807721 2.48591i
\(535\) 10002.0 + 7266.90i 0.808272 + 0.587244i
\(536\) −6459.18 + 4692.87i −0.520511 + 0.378174i
\(537\) 3214.71 9893.87i 0.258333 0.795069i
\(538\) −2696.44 −0.216081
\(539\) 0 0
\(540\) 559.022 0.0445490
\(541\) 4328.76 13322.6i 0.344007 1.05875i −0.618106 0.786095i \(-0.712100\pi\)
0.962113 0.272651i \(-0.0879004\pi\)
\(542\) −10116.4 + 7350.00i −0.801729 + 0.582490i
\(543\) −5151.60 3742.85i −0.407139 0.295803i
\(544\) −308.348 948.997i −0.0243020 0.0747939i
\(545\) −4794.06 14754.6i −0.376798 1.15966i
\(546\) −288.467 209.584i −0.0226103 0.0164274i
\(547\) −4004.19 + 2909.21i −0.312992 + 0.227402i −0.733179 0.680035i \(-0.761964\pi\)
0.420187 + 0.907437i \(0.361964\pi\)
\(548\) −266.896 + 821.423i −0.0208052 + 0.0640318i
\(549\) −26487.0 −2.05909
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) 6362.10 19580.5i 0.490559 1.50979i
\(553\) −3216.33 + 2336.80i −0.247327 + 0.179694i
\(554\) −1255.07 911.864i −0.0962508 0.0699303i
\(555\) −478.393 1472.34i −0.0365886 0.112608i
\(556\) −5.27639 16.2391i −0.000402462 0.00123865i
\(557\) −3075.54 2234.51i −0.233958 0.169981i 0.464629 0.885505i \(-0.346188\pi\)
−0.698587 + 0.715525i \(0.746188\pi\)
\(558\) 2496.25 1813.63i 0.189381 0.137594i
\(559\) −95.5734 + 294.145i −0.00723135 + 0.0222558i
\(560\) 2711.94 0.204644
\(561\) 0 0
\(562\) 14510.0 1.08908
\(563\) 3059.30 9415.57i 0.229013 0.704829i −0.768847 0.639433i \(-0.779169\pi\)
0.997859 0.0653958i \(-0.0208310\pi\)
\(564\) 1181.90 858.697i 0.0882389 0.0641093i
\(565\) −3546.61 2576.76i −0.264083 0.191868i
\(566\) −3991.99 12286.1i −0.296459 0.912407i
\(567\) 390.555 + 1202.01i 0.0289273 + 0.0890291i
\(568\) 3912.27 + 2842.43i 0.289006 + 0.209975i
\(569\) 4311.38 3132.40i 0.317649 0.230786i −0.417523 0.908667i \(-0.637102\pi\)
0.735172 + 0.677881i \(0.237102\pi\)
\(570\) −13913.9 + 42822.6i −1.02244 + 3.14674i
\(571\) 16962.6 1.24319 0.621597 0.783337i \(-0.286484\pi\)
0.621597 + 0.783337i \(0.286484\pi\)
\(572\) 0 0
\(573\) −13622.6 −0.993181
\(574\) −677.054 + 2083.76i −0.0492329 + 0.151523i
\(575\) 8622.49 6264.61i 0.625361 0.454352i
\(576\) −15709.5 11413.6i −1.13639 0.825637i
\(577\) −4785.74 14729.0i −0.345291 1.06270i −0.961428 0.275057i \(-0.911303\pi\)
0.616137 0.787639i \(-0.288697\pi\)
\(578\) 2713.67 + 8351.81i 0.195283 + 0.601020i
\(579\) −8596.01 6245.37i −0.616991 0.448270i
\(580\) 160.992 116.968i 0.0115256 0.00837382i
\(581\) 419.417 1290.83i 0.0299490 0.0921734i
\(582\) 29163.7 2.07710
\(583\) 0 0
\(584\) 23567.7 1.66993
\(585\) −882.156 + 2715.00i −0.0623464 + 0.191883i
\(586\) −5147.55 + 3739.91i −0.362872 + 0.263642i
\(587\) −8967.27 6515.10i −0.630526 0.458104i 0.226056 0.974114i \(-0.427417\pi\)
−0.856582 + 0.516010i \(0.827417\pi\)
\(588\) −437.944 1347.85i −0.0307152 0.0945316i
\(589\) −1361.90 4191.51i −0.0952738 0.293223i
\(590\) 2901.76 + 2108.25i 0.202481 + 0.147111i
\(591\) 22566.7 16395.7i 1.57068 1.14117i
\(592\) −241.363 + 742.838i −0.0167567 + 0.0515717i
\(593\) −4349.68 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(594\) 0 0
\(595\) −1880.90 −0.129596
\(596\) −402.138 + 1237.65i −0.0276379 + 0.0850608i
\(597\) 5283.20 3838.47i 0.362190 0.263146i
\(598\) 1318.97 + 958.286i 0.0901950 + 0.0655305i
\(599\) 4074.05 + 12538.7i 0.277899 + 0.855284i 0.988438 + 0.151627i \(0.0484512\pi\)
−0.710539 + 0.703658i \(0.751549\pi\)
\(600\) −5468.46 16830.2i −0.372082 1.14515i
\(601\) −15181.2 11029.8i −1.03037 0.748611i −0.0619905 0.998077i \(-0.519745\pi\)
−0.968384 + 0.249466i \(0.919745\pi\)
\(602\) −391.842 + 284.690i −0.0265287 + 0.0192742i
\(603\) 3793.42 11674.9i 0.256186 0.788459i
\(604\) −1380.84 −0.0930223
\(605\) 0 0
\(606\) 3497.29 0.234435
\(607\) −6758.62 + 20800.9i −0.451934 + 1.39091i 0.422763 + 0.906240i \(0.361060\pi\)
−0.874697 + 0.484669i \(0.838940\pi\)
\(608\) −2740.60 + 1991.16i −0.182806 + 0.132816i
\(609\) −492.465 357.797i −0.0327680 0.0238073i
\(610\) 9265.13 + 28515.1i 0.614974 + 1.89270i
\(611\) 569.415 + 1752.48i 0.0377022 + 0.116036i
\(612\) 640.717 + 465.508i 0.0423194 + 0.0307468i
\(613\) −2854.09 + 2073.62i −0.188052 + 0.136628i −0.677828 0.735221i \(-0.737079\pi\)
0.489776 + 0.871848i \(0.337079\pi\)
\(614\) −1416.71 + 4360.18i −0.0931167 + 0.286584i
\(615\) 30750.2 2.01621
\(616\) 0 0
\(617\) −22728.1 −1.48298 −0.741490 0.670963i \(-0.765881\pi\)
−0.741490 + 0.670963i \(0.765881\pi\)
\(618\) −232.657 + 716.044i −0.0151437 + 0.0466076i
\(619\) 17348.0 12604.1i 1.12645 0.818417i 0.141279 0.989970i \(-0.454879\pi\)
0.985175 + 0.171553i \(0.0548785\pi\)
\(620\) 202.875 + 147.397i 0.0131414 + 0.00954778i
\(621\) 2416.13 + 7436.08i 0.156129 + 0.480514i
\(622\) −3016.26 9283.09i −0.194439 0.598421i
\(623\) −3700.65 2688.68i −0.237983 0.172905i
\(624\) 2042.62 1484.05i 0.131042 0.0952079i
\(625\) −5694.61 + 17526.2i −0.364455 + 1.12168i
\(626\) −19628.0 −1.25319
\(627\) 0 0
\(628\) −1326.85 −0.0843109
\(629\) 167.400 515.205i 0.0106116 0.0326591i
\(630\) −3616.76 + 2627.73i −0.228722 + 0.166177i
\(631\) −17419.7 12656.2i −1.09900 0.798469i −0.118103 0.993001i \(-0.537681\pi\)
−0.980896 + 0.194532i \(0.937681\pi\)
\(632\) −9326.75 28704.8i −0.587022 1.80667i
\(633\) −262.985 809.386i −0.0165130 0.0508218i
\(634\) −34.7183 25.2243i −0.00217482 0.00158010i
\(635\) −15836.4 + 11505.8i −0.989683 + 0.719047i
\(636\) −450.326 + 1385.96i −0.0280764 + 0.0864103i
\(637\) 1787.56 0.111187
\(638\) 0 0
\(639\) −7435.33 −0.460309
\(640\) −5903.22 + 18168.2i −0.364602 + 1.12213i
\(641\) −16300.3 + 11842.9i −1.00440 + 0.729742i −0.963028 0.269402i \(-0.913174\pi\)
−0.0413758 + 0.999144i \(0.513174\pi\)
\(642\) 14582.7 + 10595.0i 0.896470 + 0.651323i
\(643\) 8921.22 + 27456.7i 0.547152 + 1.68396i 0.715818 + 0.698287i \(0.246054\pi\)
−0.168666 + 0.985673i \(0.553946\pi\)
\(644\) −56.6451 174.336i −0.00346604 0.0106674i
\(645\) 5499.44 + 3995.58i 0.335721 + 0.243916i
\(646\) −12746.6 + 9260.96i −0.776330 + 0.564037i
\(647\) −491.344 + 1512.20i −0.0298558 + 0.0918868i −0.964874 0.262713i \(-0.915383\pi\)
0.935018 + 0.354600i \(0.115383\pi\)
\(648\) −9595.02 −0.581679
\(649\) 0 0
\(650\) 1401.33 0.0845612
\(651\) 237.042 729.539i 0.0142710 0.0439215i
\(652\) −1181.47 + 858.390i −0.0709663 + 0.0515601i
\(653\) −16203.0 11772.2i −0.971017 0.705485i −0.0153339 0.999882i \(-0.504881\pi\)
−0.955683 + 0.294397i \(0.904881\pi\)
\(654\) −6989.61 21511.8i −0.417913 1.28621i
\(655\) 7348.68 + 22616.9i 0.438377 + 1.34918i
\(656\) −12551.4 9119.11i −0.747026 0.542746i
\(657\) −29315.9 + 21299.3i −1.74083 + 1.26478i
\(658\) −891.718 + 2744.43i −0.0528310 + 0.162597i
\(659\) 10520.7 0.621897 0.310948 0.950427i \(-0.399353\pi\)
0.310948 + 0.950427i \(0.399353\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) 1113.53 3427.08i 0.0653752 0.201204i
\(663\) −1416.69 + 1029.28i −0.0829858 + 0.0602927i
\(664\) 8336.17 + 6056.58i 0.487208 + 0.353977i
\(665\) 1973.23 + 6072.98i 0.115066 + 0.354135i
\(666\) −397.880 1224.55i −0.0231494 0.0712467i
\(667\) 2251.71 + 1635.97i 0.130715 + 0.0949698i
\(668\) −1186.76 + 862.230i −0.0687381 + 0.0499411i
\(669\) 9637.32 29660.6i 0.556951 1.71412i
\(670\) −13895.8 −0.801257
\(671\) 0 0
\(672\) −589.612 −0.0338464
\(673\) 367.000 1129.51i 0.0210205 0.0646946i −0.939996 0.341185i \(-0.889172\pi\)
0.961017 + 0.276491i \(0.0891716\pi\)
\(674\) 528.660 384.094i 0.0302125 0.0219507i
\(675\) 5437.01 + 3950.22i 0.310030 + 0.225250i
\(676\) 359.071 + 1105.11i 0.0204296 + 0.0628759i
\(677\) −4085.63 12574.3i −0.231940 0.713839i −0.997513 0.0704888i \(-0.977544\pi\)
0.765572 0.643350i \(-0.222456\pi\)
\(678\) −5170.87 3756.86i −0.292900 0.212804i
\(679\) 3346.02 2431.03i 0.189114 0.137400i
\(680\) 4412.59 13580.6i 0.248846 0.765868i
\(681\) −14048.0 −0.790485
\(682\) 0 0
\(683\) −13831.4 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(684\) 830.847 2557.08i 0.0464448 0.142942i
\(685\) −19370.9 + 14073.8i −1.08047 + 0.785009i
\(686\) 4593.54 + 3337.40i 0.255659 + 0.185747i
\(687\) −4692.56 14442.2i −0.260600 0.802045i
\(688\) −1059.81 3261.76i −0.0587281 0.180746i
\(689\) −1487.06 1080.41i −0.0822240 0.0597393i
\(690\) 28989.5 21062.1i 1.59943 1.16206i
\(691\) −3033.64 + 9336.59i −0.167012 + 0.514010i −0.999179 0.0405154i \(-0.987100\pi\)
0.832167 + 0.554525i \(0.187100\pi\)
\(692\) 1236.54 0.0679280
\(693\) 0 0
\(694\) −16017.4 −0.876101
\(695\) 146.274 450.186i 0.00798346 0.0245706i
\(696\) 3738.70 2716.33i 0.203614 0.147934i
\(697\) 8705.17 + 6324.67i 0.473073 + 0.343707i
\(698\) 2947.89 + 9072.68i 0.159856 + 0.491986i
\(699\) 10770.8 + 33149.0i 0.582815 + 1.79372i
\(700\) −127.468 92.6112i −0.00688265 0.00500054i
\(701\) 24229.9 17604.0i 1.30549 0.948495i 0.305498 0.952193i \(-0.401177\pi\)
0.999993 + 0.00369814i \(0.00117716\pi\)
\(702\) −317.677 + 977.710i −0.0170797 + 0.0525659i
\(703\) −1839.09 −0.0986667
\(704\) 0 0
\(705\) 40499.8 2.16356
\(706\) 9216.43 28365.2i 0.491310 1.51210i
\(707\) 401.253 291.528i 0.0213447 0.0155078i
\(708\) −303.750 220.687i −0.0161238 0.0117146i
\(709\) 3494.21 + 10754.1i 0.185088 + 0.569644i 0.999950 0.0100121i \(-0.00318701\pi\)
−0.814861 + 0.579656i \(0.803187\pi\)
\(710\) 2600.87 + 8004.65i 0.137477 + 0.423112i
\(711\) 37543.5 + 27276.9i 1.98030 + 1.43877i
\(712\) 28094.6 20411.9i 1.47878 1.07440i
\(713\) −1083.83 + 3335.70i −0.0569283 + 0.175207i
\(714\) −2742.30 −0.143737
\(715\) 0 0
\(716\) 703.181 0.0367027
\(717\) −10006.8 + 30797.8i −0.521214 + 1.60413i
\(718\) 25419.8 18468.6i 1.32125 0.959945i
\(719\) 26392.9 + 19175.6i 1.36897 + 0.994615i 0.997817 + 0.0660438i \(0.0210377\pi\)
0.371154 + 0.928571i \(0.378962\pi\)
\(720\) −9782.20 30106.5i −0.506335 1.55834i
\(721\) 32.9947 + 101.547i 0.00170428 + 0.00524524i
\(722\) 28113.5 + 20425.7i 1.44914 + 1.05286i
\(723\) −25069.9 + 18214.3i −1.28957 + 0.936926i
\(724\) 133.007 409.353i 0.00682758 0.0210131i
\(725\) 2392.33 0.122550
\(726\) 0 0
\(727\) −502.545 −0.0256373 −0.0128187 0.999918i \(-0.504080\pi\)
−0.0128187 + 0.999918i \(0.504080\pi\)
\(728\) 118.630 365.106i 0.00603946 0.0185876i
\(729\) 24095.1 17506.1i 1.22416 0.889404i
\(730\) 33184.8 + 24110.2i 1.68250 + 1.22241i
\(731\) 735.045 + 2262.24i 0.0371910 + 0.114462i
\(732\) −969.853 2984.90i −0.0489711 0.150717i
\(733\) 6982.93 + 5073.39i 0.351870 + 0.255648i 0.749653 0.661831i \(-0.230220\pi\)
−0.397783 + 0.917479i \(0.630220\pi\)
\(734\) 14956.9 10866.9i 0.752140 0.546462i
\(735\) 12140.9 37365.8i 0.609283 1.87518i
\(736\) 2695.90 0.135017
\(737\) 0 0
\(738\) 25575.0 1.27565
\(739\) 5672.79 17459.0i 0.282377 0.869068i −0.704795 0.709411i \(-0.748961\pi\)
0.987173 0.159657i \(-0.0510388\pi\)
\(740\) 84.6580 61.5076i 0.00420553 0.00305549i
\(741\) 4809.55 + 3494.34i 0.238439 + 0.173236i
\(742\) −889.511 2737.63i −0.0440094 0.135447i
\(743\) −3455.63 10635.3i −0.170625 0.525131i 0.828781 0.559573i \(-0.189035\pi\)
−0.999407 + 0.0344418i \(0.989035\pi\)
\(744\) 4711.35 + 3423.00i 0.232159 + 0.168674i
\(745\) −29186.5 + 21205.2i −1.43531 + 1.04282i
\(746\) −4483.15 + 13797.7i −0.220027 + 0.677173i
\(747\) −15843.0 −0.775991
\(748\) 0 0
\(749\) 2556.29 0.124706
\(750\) −2912.31 + 8963.16i −0.141790 + 0.436385i
\(751\) −13537.6 + 9835.64i −0.657782 + 0.477906i −0.865913 0.500195i \(-0.833262\pi\)
0.208131 + 0.978101i \(0.433262\pi\)
\(752\) −16530.9 12010.4i −0.801620 0.582411i
\(753\) −2682.43 8255.67i −0.129818 0.399540i
\(754\) 113.085 + 348.039i 0.00546194 + 0.0168101i
\(755\) −30969.3 22500.5i −1.49283 1.08461i
\(756\) 93.5115 67.9401i 0.00449865 0.00326846i
\(757\) −7540.76 + 23208.1i −0.362052 + 1.11428i 0.589754 + 0.807583i \(0.299225\pi\)
−0.951806 + 0.306699i \(0.900775\pi\)
\(758\) 2290.19 0.109741
\(759\) 0 0
\(760\) −48477.6 −2.31377
\(761\) −2617.17 + 8054.81i −0.124668 + 0.383688i −0.993840 0.110821i \(-0.964652\pi\)
0.869173 + 0.494509i \(0.164652\pi\)
\(762\) −23089.1 + 16775.2i −1.09768 + 0.797508i
\(763\) −2595.12 1885.46i −0.123132 0.0894605i
\(764\) −284.545 875.738i −0.0134744 0.0414700i
\(765\) 6784.57 + 20880.8i 0.320649 + 0.986857i
\(766\) −6259.86 4548.06i −0.295272 0.214527i
\(767\) 383.126 278.357i 0.0180363 0.0131042i
\(768\) 2007.40 6178.14i