Properties

Label 121.4.c.f.81.1
Level $121$
Weight $4$
Character 121.81
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 81.1
Root \(0.535233 - 1.64728i\) of defining polynomial
Character \(\chi\) \(=\) 121.81
Dual form 121.4.c.f.3.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.592242 - 0.430289i) q^{2} +(1.83192 - 5.63806i) q^{3} +(-2.30653 - 7.09878i) q^{4} +(10.4011 - 7.55681i) q^{5} +(-3.51093 + 2.55084i) q^{6} +(-5.23110 - 16.0997i) q^{7} +(-3.49823 + 10.7664i) q^{8} +(-6.58831 - 4.78668i) q^{9} +O(q^{10})\) \(q+(-0.592242 - 0.430289i) q^{2} +(1.83192 - 5.63806i) q^{3} +(-2.30653 - 7.09878i) q^{4} +(10.4011 - 7.55681i) q^{5} +(-3.51093 + 2.55084i) q^{6} +(-5.23110 - 16.0997i) q^{7} +(-3.49823 + 10.7664i) q^{8} +(-6.58831 - 4.78668i) q^{9} -9.41154 q^{10} -44.2487 q^{12} +(60.3859 + 43.8729i) q^{13} +(-3.82943 + 11.7858i) q^{14} +(-23.5519 - 72.4851i) q^{15} +(-41.6042 + 30.2272i) q^{16} +(-66.9742 + 48.6596i) q^{17} +(1.84221 + 5.66975i) q^{18} +(20.9894 - 64.5987i) q^{19} +(-77.6345 - 56.4048i) q^{20} -100.354 q^{21} +13.3538 q^{23} +(54.2934 + 39.4464i) q^{24} +(12.4494 - 38.3154i) q^{25} +(-16.8850 - 51.9667i) q^{26} +(90.4356 - 65.7053i) q^{27} +(-102.222 + 74.2689i) q^{28} +(-52.2223 - 160.724i) q^{29} +(-17.2412 + 53.0628i) q^{30} +(52.9885 + 38.4984i) q^{31} +128.210 q^{32} +60.6025 q^{34} +(-176.071 - 127.923i) q^{35} +(-18.7835 + 57.8096i) q^{36} +(12.6253 + 38.8568i) q^{37} +(-40.2269 + 29.2265i) q^{38} +(357.980 - 260.087i) q^{39} +(44.9747 + 138.418i) q^{40} +(-84.9575 + 261.472i) q^{41} +(59.4337 + 43.1811i) q^{42} +2.28719 q^{43} -104.697 q^{45} +(-7.90869 - 5.74600i) q^{46} +(22.2017 - 68.3297i) q^{47} +(94.2074 + 289.941i) q^{48} +(45.6576 - 33.1722i) q^{49} +(-23.8597 + 17.3351i) q^{50} +(151.654 + 466.744i) q^{51} +(172.162 - 529.860i) q^{52} +(120.548 + 87.5830i) q^{53} -81.8320 q^{54} +191.636 q^{56} +(-325.760 - 236.679i) q^{57} +(-38.2294 + 117.658i) q^{58} +(168.609 + 518.926i) q^{59} +(-460.233 + 334.379i) q^{60} +(81.9556 - 59.5442i) q^{61} +(-14.8166 - 45.6007i) q^{62} +(-42.6000 + 131.109i) q^{63} +(256.902 + 186.650i) q^{64} +959.615 q^{65} +411.641 q^{67} +(499.902 + 363.200i) q^{68} +(24.4631 - 75.2896i) q^{69} +(49.2327 + 151.523i) q^{70} +(380.752 - 276.633i) q^{71} +(74.5830 - 54.1877i) q^{72} +(-188.686 - 580.715i) q^{73} +(9.24238 - 28.4451i) q^{74} +(-193.218 - 140.381i) q^{75} -506.985 q^{76} -323.923 q^{78} +(-791.401 - 574.986i) q^{79} +(-204.306 + 628.790i) q^{80} +(-272.726 - 839.363i) q^{81} +(162.824 - 118.298i) q^{82} +(21.1590 - 15.3729i) q^{83} +(231.470 + 712.390i) q^{84} +(-328.891 + 1012.22i) q^{85} +(-1.35457 - 0.984151i) q^{86} -1001.84 q^{87} -352.887 q^{89} +(62.0061 + 45.0501i) q^{90} +(390.455 - 1201.70i) q^{91} +(-30.8011 - 94.7959i) q^{92} +(314.127 - 228.226i) q^{93} +(-42.5502 + 30.9146i) q^{94} +(-269.848 - 830.507i) q^{95} +(234.870 - 722.857i) q^{96} +(-685.710 - 498.198i) q^{97} -41.3140 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9} - 200 q^{10} - 160 q^{12} + 80 q^{13} + 4 q^{14} + 194 q^{15} + 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19} - 88 q^{20} - 304 q^{21} - 392 q^{23} + 252 q^{24} - 136 q^{25} + 40 q^{26} + 182 q^{27} - 128 q^{28} + 144 q^{29} - 266 q^{30} + 34 q^{31} + 416 q^{32} - 208 q^{34} - 172 q^{35} + 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} - 492 q^{40} + 536 q^{41} + 140 q^{42} + 240 q^{43} + 1712 q^{45} - 314 q^{46} + 272 q^{47} - 776 q^{48} + 390 q^{49} + 232 q^{50} - 164 q^{51} - 560 q^{52} + 492 q^{53} + 440 q^{54} + 480 q^{56} - 1512 q^{57} + 192 q^{58} - 634 q^{59} - 632 q^{60} + 840 q^{61} + 134 q^{62} + 248 q^{63} - 224 q^{64} + 3520 q^{65} + 3016 q^{67} + 640 q^{68} - 962 q^{69} - 284 q^{70} + 678 q^{71} - 744 q^{72} - 400 q^{73} + 6 q^{74} + 520 q^{75} - 1728 q^{76} - 1760 q^{78} + 316 q^{79} + 1544 q^{80} + 1294 q^{81} - 512 q^{82} + 468 q^{83} - 736 q^{84} + 452 q^{85} + 156 q^{86} - 4800 q^{87} - 7368 q^{89} + 1532 q^{90} - 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} + 2952 q^{95} - 952 q^{96} - 2194 q^{97} + 3480 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.592242 0.430289i −0.209389 0.152130i 0.478148 0.878279i \(-0.341308\pi\)
−0.687537 + 0.726149i \(0.741308\pi\)
\(3\) 1.83192 5.63806i 0.352552 1.08504i −0.604863 0.796330i \(-0.706772\pi\)
0.957415 0.288715i \(-0.0932279\pi\)
\(4\) −2.30653 7.09878i −0.288317 0.887348i
\(5\) 10.4011 7.55681i 0.930298 0.675901i −0.0157675 0.999876i \(-0.505019\pi\)
0.946066 + 0.323974i \(0.105019\pi\)
\(6\) −3.51093 + 2.55084i −0.238888 + 0.173563i
\(7\) −5.23110 16.0997i −0.282453 0.869301i −0.987151 0.159793i \(-0.948917\pi\)
0.704698 0.709508i \(-0.251083\pi\)
\(8\) −3.49823 + 10.7664i −0.154601 + 0.475814i
\(9\) −6.58831 4.78668i −0.244011 0.177285i
\(10\) −9.41154 −0.297619
\(11\) 0 0
\(12\) −44.2487 −1.06446
\(13\) 60.3859 + 43.8729i 1.28831 + 0.936012i 0.999770 0.0214564i \(-0.00683032\pi\)
0.288540 + 0.957468i \(0.406830\pi\)
\(14\) −3.82943 + 11.7858i −0.0731042 + 0.224992i
\(15\) −23.5519 72.4851i −0.405404 1.24771i
\(16\) −41.6042 + 30.2272i −0.650066 + 0.472300i
\(17\) −66.9742 + 48.6596i −0.955507 + 0.694216i −0.952103 0.305778i \(-0.901084\pi\)
−0.00340407 + 0.999994i \(0.501084\pi\)
\(18\) 1.84221 + 5.66975i 0.0241230 + 0.0742429i
\(19\) 20.9894 64.5987i 0.253436 0.779997i −0.740697 0.671839i \(-0.765505\pi\)
0.994134 0.108158i \(-0.0344953\pi\)
\(20\) −77.6345 56.4048i −0.867980 0.630624i
\(21\) −100.354 −1.04281
\(22\) 0 0
\(23\) 13.3538 0.121064 0.0605319 0.998166i \(-0.480720\pi\)
0.0605319 + 0.998166i \(0.480720\pi\)
\(24\) 54.2934 + 39.4464i 0.461774 + 0.335499i
\(25\) 12.4494 38.3154i 0.0995954 0.306523i
\(26\) −16.8850 51.9667i −0.127362 0.391981i
\(27\) 90.4356 65.7053i 0.644606 0.468333i
\(28\) −102.222 + 74.2689i −0.689936 + 0.501268i
\(29\) −52.2223 160.724i −0.334394 1.02916i −0.967020 0.254702i \(-0.918023\pi\)
0.632625 0.774458i \(-0.281977\pi\)
\(30\) −17.2412 + 53.0628i −0.104926 + 0.322930i
\(31\) 52.9885 + 38.4984i 0.307001 + 0.223049i 0.730608 0.682797i \(-0.239237\pi\)
−0.423608 + 0.905846i \(0.639237\pi\)
\(32\) 128.210 0.708268
\(33\) 0 0
\(34\) 60.6025 0.305684
\(35\) −176.071 127.923i −0.850327 0.617799i
\(36\) −18.7835 + 57.8096i −0.0869605 + 0.267637i
\(37\) 12.6253 + 38.8568i 0.0560970 + 0.172649i 0.975179 0.221417i \(-0.0710682\pi\)
−0.919082 + 0.394066i \(0.871068\pi\)
\(38\) −40.2269 + 29.2265i −0.171728 + 0.124768i
\(39\) 357.980 260.087i 1.46981 1.06788i
\(40\) 44.9747 + 138.418i 0.177778 + 0.547144i
\(41\) −84.9575 + 261.472i −0.323613 + 0.995978i 0.648450 + 0.761257i \(0.275418\pi\)
−0.972063 + 0.234721i \(0.924582\pi\)
\(42\) 59.4337 + 43.1811i 0.218353 + 0.158643i
\(43\) 2.28719 0.00811146 0.00405573 0.999992i \(-0.498709\pi\)
0.00405573 + 0.999992i \(0.498709\pi\)
\(44\) 0 0
\(45\) −104.697 −0.346830
\(46\) −7.90869 5.74600i −0.0253494 0.0184174i
\(47\) 22.2017 68.3297i 0.0689031 0.212062i −0.910676 0.413121i \(-0.864438\pi\)
0.979579 + 0.201060i \(0.0644385\pi\)
\(48\) 94.2074 + 289.941i 0.283285 + 0.871861i
\(49\) 45.6576 33.1722i 0.133113 0.0967120i
\(50\) −23.8597 + 17.3351i −0.0674856 + 0.0490311i
\(51\) 151.654 + 466.744i 0.416390 + 1.28152i
\(52\) 172.162 529.860i 0.459127 1.41305i
\(53\) 120.548 + 87.5830i 0.312425 + 0.226990i 0.732936 0.680297i \(-0.238149\pi\)
−0.420512 + 0.907287i \(0.638149\pi\)
\(54\) −81.8320 −0.206221
\(55\) 0 0
\(56\) 191.636 0.457293
\(57\) −325.760 236.679i −0.756982 0.549980i
\(58\) −38.2294 + 117.658i −0.0865476 + 0.266366i
\(59\) 168.609 + 518.926i 0.372052 + 1.14506i 0.945446 + 0.325778i \(0.105626\pi\)
−0.573395 + 0.819279i \(0.694374\pi\)
\(60\) −460.233 + 334.379i −0.990264 + 0.719469i
\(61\) 81.9556 59.5442i 0.172022 0.124981i −0.498443 0.866922i \(-0.666095\pi\)
0.670465 + 0.741941i \(0.266095\pi\)
\(62\) −14.8166 45.6007i −0.0303501 0.0934080i
\(63\) −42.6000 + 131.109i −0.0851919 + 0.262194i
\(64\) 256.902 + 186.650i 0.501762 + 0.364552i
\(65\) 959.615 1.83116
\(66\) 0 0
\(67\) 411.641 0.750596 0.375298 0.926904i \(-0.377540\pi\)
0.375298 + 0.926904i \(0.377540\pi\)
\(68\) 499.902 + 363.200i 0.891500 + 0.647713i
\(69\) 24.4631 75.2896i 0.0426813 0.131360i
\(70\) 49.2327 + 151.523i 0.0840634 + 0.258721i
\(71\) 380.752 276.633i 0.636437 0.462398i −0.222188 0.975004i \(-0.571320\pi\)
0.858624 + 0.512606i \(0.171320\pi\)
\(72\) 74.5830 54.1877i 0.122079 0.0886956i
\(73\) −188.686 580.715i −0.302520 0.931062i −0.980591 0.196065i \(-0.937184\pi\)
0.678070 0.734997i \(-0.262816\pi\)
\(74\) 9.24238 28.4451i 0.0145190 0.0446848i
\(75\) −193.218 140.381i −0.297479 0.216131i
\(76\) −506.985 −0.765199
\(77\) 0 0
\(78\) −323.923 −0.470219
\(79\) −791.401 574.986i −1.12708 0.818874i −0.141815 0.989893i \(-0.545294\pi\)
−0.985268 + 0.171019i \(0.945294\pi\)
\(80\) −204.306 + 628.790i −0.285527 + 0.878760i
\(81\) −272.726 839.363i −0.374109 1.15139i
\(82\) 162.824 118.298i 0.219279 0.159316i
\(83\) 21.1590 15.3729i 0.0279819 0.0203300i −0.573706 0.819061i \(-0.694495\pi\)
0.601688 + 0.798731i \(0.294495\pi\)
\(84\) 231.470 + 712.390i 0.300659 + 0.925335i
\(85\) −328.891 + 1012.22i −0.419685 + 1.29166i
\(86\) −1.35457 0.984151i −0.00169845 0.00123400i
\(87\) −1001.84 −1.23458
\(88\) 0 0
\(89\) −352.887 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(90\) 62.0061 + 45.0501i 0.0726224 + 0.0527633i
\(91\) 390.455 1201.70i 0.449789 1.38431i
\(92\) −30.8011 94.7959i −0.0349047 0.107426i
\(93\) 314.127 228.226i 0.350252 0.254473i
\(94\) −42.5502 + 30.9146i −0.0466885 + 0.0339212i
\(95\) −269.848 830.507i −0.291430 0.896928i
\(96\) 234.870 722.857i 0.249702 0.768502i
\(97\) −685.710 498.198i −0.717766 0.521488i 0.167903 0.985803i \(-0.446300\pi\)
−0.885670 + 0.464316i \(0.846300\pi\)
\(98\) −41.3140 −0.0425851
\(99\) 0 0
\(100\) −300.708 −0.300708
\(101\) 1046.43 + 760.277i 1.03093 + 0.749014i 0.968495 0.249035i \(-0.0801133\pi\)
0.0624351 + 0.998049i \(0.480113\pi\)
\(102\) 111.019 341.681i 0.107770 0.331681i
\(103\) −533.129 1640.80i −0.510007 1.56964i −0.792187 0.610279i \(-0.791057\pi\)
0.282179 0.959362i \(-0.408943\pi\)
\(104\) −683.599 + 496.663i −0.644542 + 0.468287i
\(105\) −1043.79 + 758.354i −0.970124 + 0.704836i
\(106\) −33.7074 103.741i −0.0308863 0.0950583i
\(107\) 149.620 460.482i 0.135180 0.416042i −0.860438 0.509555i \(-0.829810\pi\)
0.995618 + 0.0935137i \(0.0298099\pi\)
\(108\) −675.021 490.431i −0.601425 0.436961i
\(109\) 64.2563 0.0564645 0.0282323 0.999601i \(-0.491012\pi\)
0.0282323 + 0.999601i \(0.491012\pi\)
\(110\) 0 0
\(111\) 242.205 0.207109
\(112\) 704.284 + 511.693i 0.594184 + 0.431700i
\(113\) −619.604 + 1906.95i −0.515818 + 1.58753i 0.265970 + 0.963981i \(0.414308\pi\)
−0.781788 + 0.623544i \(0.785692\pi\)
\(114\) 91.0886 + 280.342i 0.0748353 + 0.230319i
\(115\) 138.894 100.912i 0.112625 0.0818271i
\(116\) −1020.49 + 741.429i −0.816811 + 0.593448i
\(117\) −187.835 578.096i −0.148422 0.456795i
\(118\) 123.430 379.880i 0.0962940 0.296363i
\(119\) 1133.75 + 823.719i 0.873369 + 0.634540i
\(120\) 862.797 0.656352
\(121\) 0 0
\(122\) −74.1587 −0.0550329
\(123\) 1318.56 + 957.990i 0.966590 + 0.702269i
\(124\) 151.072 464.952i 0.109409 0.336725i
\(125\) 336.551 + 1035.80i 0.240816 + 0.741157i
\(126\) 81.6443 59.3180i 0.0577258 0.0419403i
\(127\) 88.6723 64.4242i 0.0619558 0.0450135i −0.556376 0.830930i \(-0.687809\pi\)
0.618332 + 0.785917i \(0.287809\pi\)
\(128\) −388.788 1196.57i −0.268471 0.826269i
\(129\) 4.18993 12.8953i 0.00285971 0.00880129i
\(130\) −568.324 412.912i −0.383425 0.278575i
\(131\) −1156.71 −0.771469 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(132\) 0 0
\(133\) −1149.82 −0.749636
\(134\) −243.791 177.124i −0.157167 0.114188i
\(135\) 444.103 1366.81i 0.283128 0.871379i
\(136\) −289.600 891.296i −0.182595 0.561970i
\(137\) −160.447 + 116.571i −0.100058 + 0.0726962i −0.636689 0.771121i \(-0.719697\pi\)
0.536631 + 0.843817i \(0.319697\pi\)
\(138\) −46.8843 + 34.0635i −0.0289207 + 0.0210121i
\(139\) 896.192 + 2758.20i 0.546863 + 1.68307i 0.716518 + 0.697569i \(0.245735\pi\)
−0.169654 + 0.985504i \(0.554265\pi\)
\(140\) −501.985 + 1544.95i −0.303039 + 0.932658i
\(141\) −344.575 250.348i −0.205805 0.149526i
\(142\) −344.529 −0.203607
\(143\) 0 0
\(144\) 418.789 0.242355
\(145\) −1757.72 1277.06i −1.00670 0.731408i
\(146\) −138.128 + 425.113i −0.0782981 + 0.240977i
\(147\) −103.386 318.189i −0.0580076 0.178529i
\(148\) 246.715 179.249i 0.137026 0.0995552i
\(149\) 2822.13 2050.40i 1.55166 1.12735i 0.609211 0.793008i \(-0.291486\pi\)
0.942452 0.334341i \(-0.108514\pi\)
\(150\) 54.0273 + 166.279i 0.0294088 + 0.0905109i
\(151\) 359.487 1106.39i 0.193739 0.596268i −0.806250 0.591575i \(-0.798506\pi\)
0.999989 0.00469259i \(-0.00149370\pi\)
\(152\) 622.072 + 451.962i 0.331952 + 0.241177i
\(153\) 674.164 0.356228
\(154\) 0 0
\(155\) 842.061 0.436361
\(156\) −2672.00 1941.32i −1.37135 0.996345i
\(157\) 105.701 325.315i 0.0537318 0.165369i −0.920590 0.390532i \(-0.872291\pi\)
0.974321 + 0.225162i \(0.0722912\pi\)
\(158\) 221.290 + 681.062i 0.111424 + 0.342926i
\(159\) 714.631 519.210i 0.356440 0.258969i
\(160\) 1333.52 968.860i 0.658901 0.478719i
\(161\) −69.8552 214.992i −0.0341948 0.105241i
\(162\) −199.649 + 614.457i −0.0968266 + 0.298002i
\(163\) 1128.49 + 819.897i 0.542272 + 0.393983i 0.824928 0.565238i \(-0.191216\pi\)
−0.282656 + 0.959221i \(0.591216\pi\)
\(164\) 2052.09 0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) 387.279 + 281.374i 0.179452 + 0.130380i 0.673885 0.738836i \(-0.264624\pi\)
−0.494433 + 0.869216i \(0.664624\pi\)
\(168\) 351.061 1080.45i 0.161220 0.496183i
\(169\) 1042.71 + 3209.13i 0.474606 + 1.46069i
\(170\) 630.330 457.962i 0.284377 0.206612i
\(171\) −447.498 + 325.126i −0.200123 + 0.145398i
\(172\) −5.27548 16.2362i −0.00233867 0.00719769i
\(173\) −558.883 + 1720.07i −0.245613 + 0.755920i 0.749922 + 0.661527i \(0.230091\pi\)
−0.995535 + 0.0943936i \(0.969909\pi\)
\(174\) 593.329 + 431.079i 0.258507 + 0.187816i
\(175\) −681.990 −0.294592
\(176\) 0 0
\(177\) 3234.61 1.37361
\(178\) 208.995 + 151.843i 0.0880045 + 0.0639390i
\(179\) −1368.90 + 4213.03i −0.571599 + 1.75920i 0.0758796 + 0.997117i \(0.475824\pi\)
−0.647479 + 0.762084i \(0.724176\pi\)
\(180\) 241.488 + 743.224i 0.0999970 + 0.307759i
\(181\) −2758.08 + 2003.86i −1.13263 + 0.822905i −0.986076 0.166297i \(-0.946819\pi\)
−0.146557 + 0.989202i \(0.546819\pi\)
\(182\) −748.320 + 543.686i −0.304776 + 0.221432i
\(183\) −185.578 571.150i −0.0749635 0.230714i
\(184\) −46.7148 + 143.773i −0.0187166 + 0.0576038i
\(185\) 424.950 + 308.744i 0.168881 + 0.122699i
\(186\) −284.242 −0.112052
\(187\) 0 0
\(188\) −536.267 −0.208039
\(189\) −1530.91 1112.27i −0.589193 0.428074i
\(190\) −197.542 + 607.973i −0.0754275 + 0.232142i
\(191\) 903.490 + 2780.65i 0.342273 + 1.05341i 0.963027 + 0.269404i \(0.0868266\pi\)
−0.620754 + 0.784005i \(0.713173\pi\)
\(192\) 1522.97 1106.50i 0.572452 0.415911i
\(193\) −2009.75 + 1460.17i −0.749558 + 0.544586i −0.895690 0.444679i \(-0.853318\pi\)
0.146132 + 0.989265i \(0.453318\pi\)
\(194\) 191.737 + 590.107i 0.0709584 + 0.218388i
\(195\) 1757.93 5410.36i 0.645581 1.98689i
\(196\) −340.793 247.601i −0.124196 0.0902335i
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) 0 0
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) 368.970 + 268.072i 0.130450 + 0.0947778i
\(201\) 754.092 2320.86i 0.264624 0.814430i
\(202\) −292.602 900.536i −0.101918 0.313671i
\(203\) −2314.42 + 1681.52i −0.800199 + 0.581378i
\(204\) 2963.52 2153.12i 1.01710 0.738965i
\(205\) 1092.25 + 3361.59i 0.372126 + 1.14529i
\(206\) −390.277 + 1201.15i −0.132000 + 0.406253i
\(207\) −87.9791 63.9206i −0.0295409 0.0214627i
\(208\) −3838.46 −1.27956
\(209\) 0 0
\(210\) 944.484 0.310360
\(211\) 2513.89 + 1826.45i 0.820206 + 0.595915i 0.916772 0.399412i \(-0.130786\pi\)
−0.0965652 + 0.995327i \(0.530786\pi\)
\(212\) 343.685 1057.76i 0.111342 0.342674i
\(213\) −862.165 2653.47i −0.277345 0.853582i
\(214\) −286.751 + 208.337i −0.0915977 + 0.0665496i
\(215\) 23.7892 17.2838i 0.00754608 0.00548255i
\(216\) 391.048 + 1203.52i 0.123183 + 0.379117i
\(217\) 342.624 1054.49i 0.107183 0.329877i
\(218\) −38.0552 27.6487i −0.0118231 0.00858995i
\(219\) −3619.76 −1.11690
\(220\) 0 0
\(221\) −6179.13 −1.88078
\(222\) −143.444 104.218i −0.0433663 0.0315075i
\(223\) −3.80662 + 11.7156i −0.00114310 + 0.00351809i −0.951626 0.307257i \(-0.900589\pi\)
0.950483 + 0.310776i \(0.100589\pi\)
\(224\) −670.681 2064.14i −0.200052 0.615698i
\(225\) −265.424 + 192.842i −0.0786442 + 0.0571384i
\(226\) 1187.49 862.764i 0.349517 0.253939i
\(227\) −1426.39 4389.98i −0.417062 1.28358i −0.910394 0.413743i \(-0.864221\pi\)
0.493332 0.869841i \(-0.335779\pi\)
\(228\) −928.753 + 2858.41i −0.269773 + 0.830275i
\(229\) −4105.46 2982.79i −1.18470 0.860736i −0.192007 0.981394i \(-0.561500\pi\)
−0.992694 + 0.120658i \(0.961500\pi\)
\(230\) −125.680 −0.0360309
\(231\) 0 0
\(232\) 1913.11 0.541386
\(233\) 171.255 + 124.424i 0.0481514 + 0.0349840i 0.611601 0.791167i \(-0.290526\pi\)
−0.563449 + 0.826151i \(0.690526\pi\)
\(234\) −137.505 + 423.196i −0.0384143 + 0.118227i
\(235\) −285.434 878.474i −0.0792325 0.243853i
\(236\) 3294.84 2393.84i 0.908795 0.660278i
\(237\) −4691.59 + 3408.64i −1.28587 + 0.934239i
\(238\) −317.018 975.681i −0.0863413 0.265731i
\(239\) −1332.63 + 4101.42i −0.360673 + 1.11004i 0.591973 + 0.805958i \(0.298349\pi\)
−0.952646 + 0.304080i \(0.901651\pi\)
\(240\) 3170.88 + 2303.78i 0.852831 + 0.619618i
\(241\) 996.584 0.266372 0.133186 0.991091i \(-0.457479\pi\)
0.133186 + 0.991091i \(0.457479\pi\)
\(242\) 0 0
\(243\) −2213.80 −0.584426
\(244\) −611.725 444.444i −0.160499 0.116609i
\(245\) 224.211 690.052i 0.0584667 0.179942i
\(246\) −368.694 1134.72i −0.0955572 0.294095i
\(247\) 4101.59 2979.98i 1.05659 0.767658i
\(248\) −599.857 + 435.822i −0.153593 + 0.111592i
\(249\) −47.9117 147.457i −0.0121939 0.0375290i
\(250\) 246.373 758.257i 0.0623279 0.191825i
\(251\) 224.010 + 162.753i 0.0563323 + 0.0409278i 0.615595 0.788063i \(-0.288916\pi\)
−0.559263 + 0.828990i \(0.688916\pi\)
\(252\) 1028.97 0.257219
\(253\) 0 0
\(254\) −80.2364 −0.0198208
\(255\) 5104.46 + 3708.61i 1.25354 + 0.910753i
\(256\) 500.411 1540.11i 0.122171 0.376003i
\(257\) −999.725 3076.84i −0.242650 0.746801i −0.996014 0.0891969i \(-0.971570\pi\)
0.753364 0.657604i \(-0.228430\pi\)
\(258\) −8.03015 + 5.83425i −0.00193773 + 0.00140785i
\(259\) 559.537 406.527i 0.134239 0.0975304i
\(260\) −2213.39 6812.10i −0.527955 1.62488i
\(261\) −425.277 + 1308.87i −0.100858 + 0.310410i
\(262\) 685.053 + 497.720i 0.161537 + 0.117364i
\(263\) −207.944 −0.0487544 −0.0243772 0.999703i \(-0.507760\pi\)
−0.0243772 + 0.999703i \(0.507760\pi\)
\(264\) 0 0
\(265\) 1915.67 0.444071
\(266\) 680.968 + 494.752i 0.156966 + 0.114042i
\(267\) −646.460 + 1989.60i −0.148175 + 0.456035i
\(268\) −949.464 2922.15i −0.216410 0.666040i
\(269\) −4071.81 + 2958.34i −0.922910 + 0.670533i −0.944247 0.329239i \(-0.893208\pi\)
0.0213369 + 0.999772i \(0.493208\pi\)
\(270\) −851.139 + 618.389i −0.191847 + 0.139385i
\(271\) −459.512 1414.23i −0.103001 0.317005i 0.886255 0.463198i \(-0.153298\pi\)
−0.989256 + 0.146193i \(0.953298\pi\)
\(272\) 1315.56 4048.89i 0.293264 0.902573i
\(273\) −6059.95 4402.81i −1.34346 0.976082i
\(274\) 145.183 0.0320102
\(275\) 0 0
\(276\) −590.890 −0.128867
\(277\) −190.795 138.621i −0.0413855 0.0300683i 0.566900 0.823786i \(-0.308142\pi\)
−0.608286 + 0.793718i \(0.708142\pi\)
\(278\) 656.058 2019.14i 0.141539 0.435611i
\(279\) −164.825 507.279i −0.0353685 0.108853i
\(280\) 1993.21 1448.16i 0.425419 0.309085i
\(281\) −3976.33 + 2888.97i −0.844156 + 0.613316i −0.923529 0.383530i \(-0.874708\pi\)
0.0793722 + 0.996845i \(0.474708\pi\)
\(282\) 96.3496 + 296.534i 0.0203459 + 0.0626181i
\(283\) 1606.75 4945.07i 0.337496 1.03871i −0.627983 0.778227i \(-0.716119\pi\)
0.965479 0.260480i \(-0.0838808\pi\)
\(284\) −2841.97 2064.82i −0.593803 0.431423i
\(285\) −5176.78 −1.07595
\(286\) 0 0
\(287\) 4654.04 0.957210
\(288\) −844.688 613.702i −0.172825 0.125565i
\(289\) 599.583 1845.33i 0.122040 0.375601i
\(290\) 491.492 + 1512.66i 0.0995221 + 0.306298i
\(291\) −4065.03 + 2953.42i −0.818888 + 0.594957i
\(292\) −3687.16 + 2678.88i −0.738954 + 0.536882i
\(293\) 2744.35 + 8446.25i 0.547191 + 1.68408i 0.715723 + 0.698384i \(0.246097\pi\)
−0.168533 + 0.985696i \(0.553903\pi\)
\(294\) −75.6837 + 232.931i −0.0150135 + 0.0462067i
\(295\) 5675.13 + 4123.23i 1.12006 + 0.813774i
\(296\) −462.515 −0.0908215
\(297\) 0 0
\(298\) −2553.64 −0.496405
\(299\) 806.382 + 585.871i 0.155968 + 0.113317i
\(300\) −550.871 + 1695.41i −0.106015 + 0.326281i
\(301\) −11.9645 36.8230i −0.00229111 0.00705130i
\(302\) −688.968 + 500.565i −0.131277 + 0.0953784i
\(303\) 6203.46 4507.08i 1.17617 0.854538i
\(304\) 1079.39 + 3322.03i 0.203643 + 0.626748i
\(305\) 402.460 1238.64i 0.0755567 0.232540i
\(306\) −399.268 290.085i −0.0745903 0.0541930i
\(307\) 1497.93 0.278474 0.139237 0.990259i \(-0.455535\pi\)
0.139237 + 0.990259i \(0.455535\pi\)
\(308\) 0 0
\(309\) −10227.6 −1.88293
\(310\) −498.704 362.330i −0.0913693 0.0663837i
\(311\) −2312.90 + 7118.38i −0.421713 + 1.29790i 0.484395 + 0.874850i \(0.339040\pi\)
−0.906107 + 0.423048i \(0.860960\pi\)
\(312\) 1547.92 + 4764.01i 0.280878 + 0.864452i
\(313\) 532.627 386.976i 0.0961848 0.0698824i −0.538653 0.842527i \(-0.681067\pi\)
0.634838 + 0.772645i \(0.281067\pi\)
\(314\) −202.580 + 147.183i −0.0364085 + 0.0264523i
\(315\) 547.683 + 1685.59i 0.0979632 + 0.301500i
\(316\) −2256.31 + 6944.21i −0.401669 + 1.23621i
\(317\) −189.073 137.370i −0.0334998 0.0243390i 0.570909 0.821013i \(-0.306591\pi\)
−0.604409 + 0.796674i \(0.706591\pi\)
\(318\) −646.645 −0.114032
\(319\) 0 0
\(320\) 4082.53 0.713189
\(321\) −2322.13 1687.13i −0.403766 0.293353i
\(322\) −51.1376 + 157.385i −0.00885027 + 0.0272383i
\(323\) 1737.60 + 5347.77i 0.299327 + 0.921233i
\(324\) −5329.41 + 3872.04i −0.913822 + 0.663930i
\(325\) 2432.78 1767.52i 0.415219 0.301674i
\(326\) −315.547 971.154i −0.0536090 0.164992i
\(327\) 117.712 362.280i 0.0199067 0.0612665i
\(328\) −2517.93 1829.38i −0.423869 0.307959i
\(329\) −1216.23 −0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) −157.933 114.745i −0.0261075 0.0189682i
\(333\) 102.816 316.434i 0.0169197 0.0520734i
\(334\) −108.290 333.283i −0.0177407 0.0546002i
\(335\) 4281.50 3110.69i 0.698278 0.507329i
\(336\) 4175.14 3033.42i 0.677895 0.492519i
\(337\) −3612.77 11119.0i −0.583977 1.79730i −0.603339 0.797485i \(-0.706163\pi\)
0.0193617 0.999813i \(-0.493837\pi\)
\(338\) 763.317 2349.25i 0.122837 0.378054i
\(339\) 9616.41 + 6986.73i 1.54068 + 1.11937i
\(340\) 7944.14 1.26715
\(341\) 0 0
\(342\) 404.925 0.0640229
\(343\) −5470.36 3974.45i −0.861141 0.625656i
\(344\) −8.00111 + 24.6249i −0.00125404 + 0.00385955i
\(345\) −314.507 967.954i −0.0490797 0.151052i
\(346\) 1071.12 778.213i 0.166427 0.120916i
\(347\) 3720.50 2703.10i 0.575582 0.418185i −0.261547 0.965191i \(-0.584232\pi\)
0.837129 + 0.547006i \(0.184232\pi\)
\(348\) 2310.77 + 7111.81i 0.355949 + 1.09550i
\(349\) −2076.68 + 6391.36i −0.318516 + 0.980291i 0.655767 + 0.754963i \(0.272345\pi\)
−0.974283 + 0.225328i \(0.927655\pi\)
\(350\) 403.903 + 293.452i 0.0616843 + 0.0448163i
\(351\) 8343.72 1.26882
\(352\) 0 0
\(353\) 5738.70 0.865270 0.432635 0.901569i \(-0.357584\pi\)
0.432635 + 0.901569i \(0.357584\pi\)
\(354\) −1915.67 1391.82i −0.287618 0.208967i
\(355\) 1869.76 5754.54i 0.279540 0.860337i
\(356\) 813.947 + 2505.07i 0.121177 + 0.372945i
\(357\) 6721.11 4883.17i 0.996412 0.723936i
\(358\) 2623.54 1906.11i 0.387314 0.281400i
\(359\) 1271.69 + 3913.85i 0.186956 + 0.575391i 0.999977 0.00684400i \(-0.00217853\pi\)
−0.813021 + 0.582235i \(0.802179\pi\)
\(360\) 366.255 1127.22i 0.0536204 0.165027i
\(361\) 1816.61 + 1319.85i 0.264851 + 0.192426i
\(362\) 2495.69 0.362349
\(363\) 0 0
\(364\) −9431.18 −1.35804
\(365\) −6350.88 4614.18i −0.910740 0.661692i
\(366\) −135.852 + 418.111i −0.0194020 + 0.0597131i
\(367\) 2986.03 + 9190.05i 0.424712 + 1.30713i 0.903269 + 0.429074i \(0.141160\pi\)
−0.478557 + 0.878057i \(0.658840\pi\)
\(368\) −555.575 + 403.649i −0.0786994 + 0.0571784i
\(369\) 1811.31 1315.99i 0.255537 0.185658i
\(370\) −118.824 365.702i −0.0166956 0.0513836i
\(371\) 779.461 2398.94i 0.109077 0.335705i
\(372\) −2344.67 1703.51i −0.326789 0.237426i
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) 0 0
\(375\) 6456.42 0.889088
\(376\) 658.001 + 478.066i 0.0902495 + 0.0655701i
\(377\) 3897.92 11996.6i 0.532502 1.63887i
\(378\) 428.072 + 1317.47i 0.0582477 + 0.179268i
\(379\) 2281.21 1657.40i 0.309177 0.224630i −0.422366 0.906425i \(-0.638800\pi\)
0.731543 + 0.681795i \(0.238800\pi\)
\(380\) −5273.17 + 3831.18i −0.711863 + 0.517199i
\(381\) −200.787 617.959i −0.0269990 0.0830945i
\(382\) 661.400 2035.58i 0.0885869 0.272642i
\(383\) 5127.42 + 3725.29i 0.684070 + 0.497006i 0.874705 0.484655i \(-0.161055\pi\)
−0.190636 + 0.981661i \(0.561055\pi\)
\(384\) −7458.53 −0.991189
\(385\) 0 0
\(386\) 1818.55 0.239797
\(387\) −15.0687 10.9480i −0.00197929 0.00143804i
\(388\) −1954.98 + 6016.82i −0.255797 + 0.787262i
\(389\) −2720.97 8374.29i −0.354650 1.09150i −0.956212 0.292674i \(-0.905455\pi\)
0.601562 0.798826i \(-0.294545\pi\)
\(390\) −3369.14 + 2447.82i −0.437444 + 0.317821i
\(391\) −894.361 + 649.792i −0.115677 + 0.0840444i
\(392\) 197.426 + 607.614i 0.0254375 + 0.0782887i
\(393\) −2119.00 + 6521.61i −0.271983 + 0.837078i
\(394\) −3035.64 2205.52i −0.388155 0.282011i
\(395\) −12576.5 −1.60200
\(396\) 0 0
\(397\) 4315.26 0.545534 0.272767 0.962080i \(-0.412061\pi\)
0.272767 + 0.962080i \(0.412061\pi\)
\(398\) 4.55564 + 3.30986i 0.000573752 + 0.000416855i
\(399\) −2106.36 + 6482.72i −0.264286 + 0.813389i
\(400\) 640.219 + 1970.39i 0.0800274 + 0.246299i
\(401\) −292.606 + 212.591i −0.0364390 + 0.0264745i −0.605856 0.795575i \(-0.707169\pi\)
0.569417 + 0.822049i \(0.307169\pi\)
\(402\) −1445.24 + 1050.03i −0.179309 + 0.130275i
\(403\) 1510.72 + 4649.52i 0.186735 + 0.574712i
\(404\) 2983.41 9182.00i 0.367402 1.13075i
\(405\) −9179.54 6669.33i −1.12626 0.818275i
\(406\) 2094.24 0.255998
\(407\) 0 0
\(408\) −5555.70 −0.674137
\(409\) 7459.54 + 5419.67i 0.901835 + 0.655222i 0.938937 0.344090i \(-0.111812\pi\)
−0.0371015 + 0.999312i \(0.511812\pi\)
\(410\) 799.581 2460.86i 0.0963134 0.296422i
\(411\) 363.311 + 1118.16i 0.0436030 + 0.134196i
\(412\) −10418.0 + 7569.13i −1.24577 + 0.905107i
\(413\) 7472.52 5429.11i 0.890312 0.646850i
\(414\) 24.6006 + 75.7128i 0.00292042 + 0.00898812i
\(415\) 103.905 319.788i 0.0122904 0.0378260i
\(416\) 7742.08 + 5624.95i 0.912469 + 0.662947i
\(417\) 17192.6 2.01901
\(418\) 0 0
\(419\) −14912.9 −1.73876 −0.869380 0.494144i \(-0.835481\pi\)
−0.869380 + 0.494144i \(0.835481\pi\)
\(420\) 7790.92 + 5660.43i 0.905138 + 0.657621i
\(421\) −4167.41 + 12826.0i −0.482439 + 1.48480i 0.353217 + 0.935542i \(0.385088\pi\)
−0.835656 + 0.549254i \(0.814912\pi\)
\(422\) −702.931 2163.40i −0.0810857 0.249556i
\(423\) −473.344 + 343.905i −0.0544085 + 0.0395301i
\(424\) −1364.66 + 991.484i −0.156306 + 0.113563i
\(425\) 1030.62 + 3171.92i 0.117629 + 0.362026i
\(426\) −631.149 + 1942.48i −0.0717823 + 0.220923i
\(427\) −1387.36 1007.98i −0.157234 0.114237i
\(428\) −3613.96 −0.408148
\(429\) 0 0
\(430\) −21.5260 −0.00241413
\(431\) 328.731 + 238.837i 0.0367388 + 0.0266923i 0.606003 0.795462i \(-0.292772\pi\)
−0.569264 + 0.822155i \(0.692772\pi\)
\(432\) −1776.41 + 5467.24i −0.197842 + 0.608895i
\(433\) −545.938 1680.23i −0.0605915 0.186481i 0.916179 0.400769i \(-0.131257\pi\)
−0.976771 + 0.214288i \(0.931257\pi\)
\(434\) −656.650 + 477.084i −0.0726272 + 0.0527668i
\(435\) −10420.1 + 7570.68i −1.14852 + 0.834451i
\(436\) −148.209 456.141i −0.0162797 0.0501037i
\(437\) 280.289 862.639i 0.0306820 0.0944294i
\(438\) 2143.77 + 1557.54i 0.233866 + 0.169914i
\(439\) −7824.19 −0.850634 −0.425317 0.905044i \(-0.639837\pi\)
−0.425317 + 0.905044i \(0.639837\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) 3659.54 + 2658.81i 0.393815 + 0.286124i
\(443\) 3605.58 11096.8i 0.386695 1.19013i −0.548548 0.836119i \(-0.684819\pi\)
0.935243 0.354007i \(-0.115181\pi\)
\(444\) −558.654 1719.36i −0.0597130 0.183778i
\(445\) −3670.40 + 2666.70i −0.390997 + 0.284076i
\(446\) 7.29552 5.30050i 0.000774558 0.000562749i
\(447\) −6390.35 19667.5i −0.676182 2.08107i
\(448\) 1661.13 5112.43i 0.175181 0.539151i
\(449\) −13733.3 9977.80i −1.44346 1.04873i −0.987305 0.158833i \(-0.949227\pi\)
−0.456153 0.889901i \(-0.650773\pi\)
\(450\) 240.173 0.0251597
\(451\) 0 0
\(452\) 14966.1 1.55741
\(453\) −5579.32 4053.61i −0.578674 0.420431i
\(454\) −1044.19 + 3213.69i −0.107943 + 0.332216i
\(455\) −5019.85 15449.5i −0.517218 1.59183i
\(456\) 3687.77 2679.32i 0.378719 0.275155i
\(457\) −13100.3 + 9517.92i −1.34093 + 0.974244i −0.341523 + 0.939874i \(0.610943\pi\)
−0.999409 + 0.0343703i \(0.989057\pi\)
\(458\) 1147.96 + 3533.07i 0.117120 + 0.360457i
\(459\) −2859.66 + 8801.12i −0.290800 + 0.894992i
\(460\) −1036.72 753.220i −0.105081 0.0763458i
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) −7917.20 −0.794694 −0.397347 0.917668i \(-0.630069\pi\)
−0.397347 + 0.917668i \(0.630069\pi\)
\(464\) 7030.90 + 5108.25i 0.703451 + 0.511087i
\(465\) 1542.59 4747.59i 0.153840 0.473471i
\(466\) −47.8860 147.378i −0.00476025 0.0146505i
\(467\) 12260.6 8907.86i 1.21489 0.882670i 0.219225 0.975674i \(-0.429647\pi\)
0.995666 + 0.0930047i \(0.0296472\pi\)
\(468\) −3670.53 + 2666.80i −0.362543 + 0.263403i
\(469\) −2153.34 6627.29i −0.212008 0.652494i
\(470\) −208.952 + 643.088i −0.0205069 + 0.0631137i
\(471\) −1640.51 1191.90i −0.160490 0.116603i
\(472\) −6176.82 −0.602354
\(473\) 0 0
\(474\) 4245.25 0.411373
\(475\) −2213.82 1608.43i −0.213846 0.155368i
\(476\) 3232.36 9948.20i 0.311250 0.957930i
\(477\) −374.973 1154.05i −0.0359933 0.110776i
\(478\) 2554.04 1855.62i 0.244391 0.177560i
\(479\) 8091.07 5878.51i 0.771796 0.560743i −0.130709 0.991421i \(-0.541725\pi\)
0.902506 + 0.430678i \(0.141725\pi\)
\(480\) −3019.59 9293.34i −0.287135 0.883710i
\(481\) −942.367 + 2900.31i −0.0893311 + 0.274933i
\(482\) −590.218 428.819i −0.0557753 0.0405232i
\(483\) −1340.11 −0.126246
\(484\) 0 0
\(485\) −10896.9 −1.02021
\(486\) 1311.11 + 952.575i 0.122372 + 0.0889088i
\(487\) 2176.88 6699.76i 0.202554 0.623398i −0.797251 0.603648i \(-0.793713\pi\)
0.999805 0.0197497i \(-0.00628694\pi\)
\(488\) 354.380 + 1090.67i 0.0328730 + 0.101173i
\(489\) 6689.93 4860.52i 0.618669 0.449489i
\(490\) −429.709 + 312.202i −0.0396169 + 0.0287833i
\(491\) 4118.09 + 12674.2i 0.378507 + 1.16492i 0.941082 + 0.338178i \(0.109811\pi\)
−0.562575 + 0.826746i \(0.690189\pi\)
\(492\) 3759.26 11569.8i 0.344473 1.06018i
\(493\) 11318.3 + 8223.22i 1.03398 + 0.751227i
\(494\) −3711.38 −0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) −6445.45 4682.90i −0.581727 0.422649i
\(498\) −35.0738 + 107.946i −0.00315602 + 0.00971322i
\(499\) −6201.70 19086.9i −0.556365 1.71232i −0.692311 0.721600i \(-0.743407\pi\)
0.135945 0.990716i \(-0.456593\pi\)
\(500\) 6576.64 4778.21i 0.588232 0.427376i
\(501\) 2295.87 1668.05i 0.204734 0.148748i
\(502\) −62.6375 192.778i −0.00556902 0.0171397i
\(503\) −2404.88 + 7401.45i −0.213177 + 0.656092i 0.786101 + 0.618099i \(0.212097\pi\)
−0.999278 + 0.0379939i \(0.987903\pi\)
\(504\) −1262.56 917.300i −0.111585 0.0810710i
\(505\) 16629.3 1.46533
\(506\) 0 0
\(507\) 20003.4 1.75224
\(508\) −661.859 480.868i −0.0578056 0.0419982i
\(509\) −456.088 + 1403.69i −0.0397166 + 0.122235i −0.968949 0.247261i \(-0.920470\pi\)
0.929232 + 0.369496i \(0.120470\pi\)
\(510\) −1427.30 4392.78i −0.123925 0.381403i
\(511\) −8362.29 + 6075.56i −0.723925 + 0.525963i
\(512\) −9101.93 + 6612.94i −0.785649 + 0.570807i
\(513\) −2346.29 7221.14i −0.201932 0.621483i
\(514\) −731.850 + 2252.40i −0.0628025 + 0.193286i
\(515\) −17944.3 13037.3i −1.53538 1.11552i
\(516\) −101.205 −0.00863431
\(517\) 0 0
\(518\) −506.305 −0.0429455
\(519\) 8674.00 + 6302.03i 0.733616 + 0.533003i
\(520\) −3356.95 + 10331.6i −0.283100 + 0.871293i
\(521\) 2351.44 + 7237.00i 0.197732 + 0.608558i 0.999934 + 0.0115042i \(0.00366198\pi\)
−0.802201 + 0.597053i \(0.796338\pi\)
\(522\) 815.058 592.174i 0.0683412 0.0496528i
\(523\) 10074.6 7319.63i 0.842318 0.611980i −0.0806995 0.996738i \(-0.525715\pi\)
0.923017 + 0.384759i \(0.125715\pi\)
\(524\) 2668.00 + 8211.25i 0.222427 + 0.684561i
\(525\) −1249.35 + 3845.10i −0.103859 + 0.319645i
\(526\) 123.153 + 89.4761i 0.0102086 + 0.00741700i
\(527\) −5422.18 −0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) −1134.54 824.291i −0.0929835 0.0675565i
\(531\) 1373.08 4225.92i 0.112216 0.345366i
\(532\) 2652.09 + 8162.29i 0.216133 + 0.665188i
\(533\) −16601.8 + 12061.9i −1.34916 + 0.980223i
\(534\) 1238.96 900.159i 0.100403 0.0729470i
\(535\) −1923.57 5920.14i −0.155445 0.478411i
\(536\) −1440.01 + 4431.91i −0.116043 + 0.357144i
\(537\) 21245.6 + 15435.8i 1.70729 + 1.24042i
\(538\) 3684.44 0.295255
\(539\) 0 0
\(540\) −10727.0 −0.854847
\(541\) 7533.70 + 5473.55i 0.598704 + 0.434984i 0.845419 0.534104i \(-0.179351\pi\)
−0.246714 + 0.969088i \(0.579351\pi\)
\(542\) −336.386 + 1035.29i −0.0266587 + 0.0820470i
\(543\) 6245.32 + 19221.1i 0.493577 + 1.51907i
\(544\) −8586.77 + 6238.66i −0.676755 + 0.491691i
\(545\) 668.333 485.572i 0.0525289 0.0381644i
\(546\) 1694.47 + 5215.06i 0.132815 + 0.408762i
\(547\) 3404.92 10479.3i 0.266150 0.819124i −0.725277 0.688458i \(-0.758288\pi\)
0.991426 0.130667i \(-0.0417119\pi\)
\(548\) 1197.59 + 870.101i 0.0933551 + 0.0678264i
\(549\) −824.968 −0.0641325
\(550\) 0 0
\(551\) −11478.6 −0.887490
\(552\) 725.024 + 526.761i 0.0559041 + 0.0406167i
\(553\) −5117.20 + 15749.1i −0.393500 + 1.21107i
\(554\) 53.3499 + 164.194i 0.00409137 + 0.0125919i
\(555\) 2519.19 1830.30i 0.192673 0.139985i
\(556\) 17512.7 12723.7i 1.33580 0.970516i
\(557\) 3713.90 + 11430.2i 0.282519 + 0.869503i 0.987131 + 0.159911i \(0.0511207\pi\)
−0.704613 + 0.709592i \(0.748879\pi\)
\(558\) −120.660 + 371.354i −0.00915404 + 0.0281732i
\(559\) 138.114 + 100.346i 0.0104501 + 0.00759242i
\(560\) 11192.1 0.844555
\(561\) 0 0
\(562\) 3598.04 0.270061
\(563\) −7090.13 5151.28i −0.530752 0.385614i 0.289887 0.957061i \(-0.406382\pi\)
−0.820639 + 0.571447i \(0.806382\pi\)
\(564\) −982.395 + 3023.50i −0.0733445 + 0.225731i
\(565\) 7965.89 + 24516.5i 0.593146 + 1.82551i
\(566\) −3079.39 + 2237.31i −0.228687 + 0.166151i
\(567\) −12086.8 + 8781.59i −0.895236 + 0.650427i
\(568\) 1646.39 + 5067.07i 0.121622 + 0.374313i
\(569\) 3174.58 9770.35i 0.233893 0.719850i −0.763373 0.645958i \(-0.776458\pi\)
0.997266 0.0738917i \(-0.0235419\pi\)
\(570\) 3065.91 + 2227.51i 0.225292 + 0.163684i
\(571\) −2602.62 −0.190747 −0.0953734 0.995442i \(-0.530404\pi\)
−0.0953734 + 0.995442i \(0.530404\pi\)
\(572\) 0 0
\(573\) 17332.6 1.26366
\(574\) −2756.32 2002.58i −0.200429 0.145620i
\(575\) 166.247 511.657i 0.0120574 0.0371088i
\(576\) −799.114 2459.42i −0.0578063 0.177909i
\(577\) 15959.5 11595.3i 1.15148 0.836598i 0.162801 0.986659i \(-0.447947\pi\)
0.988677 + 0.150061i \(0.0479471\pi\)
\(578\) −1149.12 + 834.885i −0.0826940 + 0.0600807i
\(579\) 4550.82 + 14006.0i 0.326642 + 1.00530i
\(580\) −5011.33 + 15423.3i −0.358766 + 1.10417i
\(581\) −358.183 260.235i −0.0255765 0.0185824i
\(582\) 3678.30 0.261977
\(583\) 0 0
\(584\) 6912.30 0.489783
\(585\) −6322.24 4593.38i −0.446825 0.324637i
\(586\) 2009.01 6183.09i 0.141623 0.435872i
\(587\) −3126.06 9621.03i −0.219806 0.676495i −0.998777 0.0494347i \(-0.984258\pi\)
0.778971 0.627060i \(-0.215742\pi\)
\(588\) −2020.29 + 1467.83i −0.141693 + 0.102946i
\(589\) 3599.14 2614.93i 0.251783 0.182931i
\(590\) −1586.87 4883.89i −0.110730 0.340791i
\(591\) 9389.80 28898.8i 0.653544 2.01140i
\(592\) −1699.80 1234.98i −0.118009 0.0857385i
\(593\) −3130.32 −0.216774 −0.108387 0.994109i \(-0.534569\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(594\) 0 0
\(595\) 18016.9 1.24138
\(596\) −21064.7 15304.4i −1.44772 1.05183i
\(597\) −14.0914 + 43.3690i −0.000966038 + 0.00297316i
\(598\) −225.479 693.954i −0.0154190 0.0474547i
\(599\) −8154.96 + 5924.92i −0.556265 + 0.404150i −0.830090 0.557629i \(-0.811711\pi\)
0.273825 + 0.961779i \(0.411711\pi\)
\(600\) 2187.33 1589.19i 0.148829 0.108130i
\(601\) −1476.18 4543.21i −0.100191 0.308355i 0.888381 0.459107i \(-0.151831\pi\)
−0.988572 + 0.150752i \(0.951831\pi\)
\(602\) −8.75863 + 26.9563i −0.000592982 + 0.00182501i
\(603\) −2712.02 1970.40i −0.183154 0.133069i
\(604\) −8683.16 −0.584955
\(605\) 0 0
\(606\) −5613.29 −0.376278
\(607\) −2080.27 1511.40i −0.139103 0.101064i 0.516058 0.856554i \(-0.327399\pi\)
−0.655160 + 0.755490i \(0.727399\pi\)
\(608\) 2691.05 8282.21i 0.179501 0.552447i
\(609\) 5240.71 + 16129.2i 0.348710 + 1.07322i
\(610\) −771.328 + 560.403i −0.0511970 + 0.0371968i
\(611\) 4338.49 3152.10i 0.287261 0.208707i
\(612\) −1554.98 4785.75i −0.102707 0.316098i
\(613\) −3928.18 + 12089.7i −0.258822 + 0.796571i 0.734231 + 0.678900i \(0.237543\pi\)
−0.993053 + 0.117671i \(0.962457\pi\)
\(614\) −887.138 644.544i −0.0583094 0.0423643i
\(615\) 20953.8 1.37388
\(616\) 0 0
\(617\) 16236.1 1.05939 0.529693 0.848189i \(-0.322307\pi\)
0.529693 + 0.848189i \(0.322307\pi\)
\(618\) 6057.20 + 4400.81i 0.394266 + 0.286451i
\(619\) 3911.32 12037.8i 0.253973 0.781649i −0.740057 0.672544i \(-0.765202\pi\)
0.994030 0.109105i \(-0.0347984\pi\)
\(620\) −1942.24 5977.61i −0.125810 0.387204i
\(621\) 1207.66 877.418i 0.0780383 0.0566982i
\(622\) 4432.75 3220.58i 0.285751 0.207610i
\(623\) 1845.99 + 5681.37i 0.118713 + 0.365360i
\(624\) −7031.74 + 21641.5i −0.451113 + 1.38838i
\(625\) 15401.9 + 11190.2i 0.985724 + 0.716170i
\(626\) −481.955 −0.0307713
\(627\) 0 0
\(628\) −2553.15 −0.162232
\(629\) −2736.32 1988.06i −0.173457 0.126024i
\(630\) 400.931 1233.94i 0.0253547 0.0780339i
\(631\) −1220.61 3756.64i −0.0770073 0.237004i 0.905141 0.425111i \(-0.139765\pi\)
−0.982149 + 0.188107i \(0.939765\pi\)
\(632\) 8959.06 6509.14i 0.563880 0.409683i
\(633\) 14902.9 10827.6i 0.935760 0.679869i
\(634\) 52.8684 + 162.712i 0.00331179 + 0.0101926i
\(635\) 435.444 1340.16i 0.0272127 0.0837520i
\(636\) −5334.08 3875.44i −0.332563 0.241621i
\(637\) 4212.44 0.262014
\(638\) 0 0
\(639\) −3832.67 −0.237274
\(640\) −13086.0 9507.55i −0.808235 0.587217i
\(641\) −2286.19 + 7036.17i −0.140872 + 0.433560i −0.996457 0.0841024i \(-0.973198\pi\)
0.855585 + 0.517663i \(0.173198\pi\)
\(642\) 649.311 + 1998.37i 0.0399163 + 0.122850i
\(643\) 10106.0 7342.43i 0.619815 0.450322i −0.233042 0.972467i \(-0.574868\pi\)
0.852857 + 0.522145i \(0.174868\pi\)
\(644\) −1365.06 + 991.774i −0.0835263 + 0.0606854i
\(645\) −53.8675 165.787i −0.00328842 0.0101207i
\(646\) 1272.01 3914.84i 0.0774714 0.238433i
\(647\) 8472.01 + 6155.27i 0.514790 + 0.374017i 0.814638 0.579970i \(-0.196936\pi\)
−0.299848 + 0.953987i \(0.596936\pi\)
\(648\) 9991.02 0.605685
\(649\) 0 0
\(650\) −2201.33 −0.132836
\(651\) −5317.60 3863.46i −0.320143 0.232598i
\(652\) 3217.37 9902.04i 0.193254 0.594776i
\(653\) 1958.53 + 6027.73i 0.117371 + 0.361230i 0.992434 0.122778i \(-0.0391804\pi\)
−0.875063 + 0.484009i \(0.839180\pi\)
\(654\) −225.599 + 163.907i −0.0134887 + 0.00980013i
\(655\) −12031.0 + 8741.05i −0.717696 + 0.521437i
\(656\) −4368.99 13446.4i −0.260031 0.800294i
\(657\) −1536.58 + 4729.11i −0.0912446 + 0.280822i
\(658\) 720.299 + 523.328i 0.0426751 + 0.0310052i
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) −5053.57 3671.63i −0.296696 0.215562i
\(663\) −11319.6 + 34838.3i −0.663074 + 2.04073i
\(664\) 91.4924 + 281.585i 0.00534728 + 0.0164572i
\(665\) −11959.3 + 8688.93i −0.697385 + 0.506680i
\(666\) −197.049 + 143.165i −0.0114647 + 0.00832961i
\(667\) −697.367 2146.28i −0.0404830 0.124594i
\(668\) 1104.14 3398.21i 0.0639530 0.196827i
\(669\) 59.0797 + 42.9239i 0.00341428 + 0.00248062i
\(670\) −3874.18 −0.223392
\(671\) 0 0
\(672\) −12866.4 −0.738589
\(673\) 18768.9 + 13636.4i 1.07502 + 0.781047i 0.976808 0.214118i \(-0.0686878\pi\)
0.0982115 + 0.995166i \(0.468688\pi\)
\(674\) −2644.73 + 8139.66i −0.151144 + 0.465175i
\(675\) −1391.65 4283.07i −0.0793553 0.244230i
\(676\) 20375.9 14803.9i 1.15930 0.842282i
\(677\) −1735.65 + 1261.02i −0.0985322 + 0.0715879i −0.635960 0.771722i \(-0.719396\pi\)
0.537428 + 0.843309i \(0.319396\pi\)
\(678\) −2688.93 8275.66i −0.152312 0.468768i
\(679\) −4433.80 + 13645.8i −0.250595 + 0.771251i
\(680\) −9747.49 7081.97i −0.549705 0.399384i
\(681\) −27364.0 −1.53978
\(682\) 0 0
\(683\) −29544.6 −1.65519 −0.827593 0.561329i \(-0.810290\pi\)
−0.827593 + 0.561329i \(0.810290\pi\)
\(684\) 3340.17 + 2426.77i 0.186717 + 0.135658i
\(685\) −787.908 + 2424.93i −0.0439481 + 0.135258i
\(686\) 1529.61 + 4707.66i 0.0851325 + 0.262011i
\(687\) −24338.0 + 17682.6i −1.35161 + 0.981999i
\(688\) −95.1566 + 69.1353i −0.00527298 + 0.00383105i
\(689\) 3436.85 + 10577.6i 0.190034 + 0.584866i
\(690\) −230.235 + 708.592i −0.0127028 + 0.0390951i
\(691\) −22493.2 16342.2i −1.23832 0.899693i −0.240836 0.970566i \(-0.577422\pi\)
−0.997485 + 0.0708727i \(0.977422\pi\)
\(692\) 13499.5 0.741579
\(693\) 0 0
\(694\) −3366.55 −0.184139
\(695\) 30164.5 + 21915.8i 1.64634 + 1.19613i
\(696\) 3504.65 10786.2i 0.190867 0.587428i
\(697\) −7033.17 21645.9i −0.382210 1.17632i
\(698\) 3980.02 2891.66i 0.215825 0.156806i
\(699\) 1015.23 737.610i 0.0549351 0.0399127i
\(700\) 1573.03 + 4841.30i 0.0849358 + 0.261405i
\(701\) 6086.94 18733.7i 0.327961 1.00936i −0.642125 0.766600i \(-0.721947\pi\)
0.970086 0.242760i \(-0.0780528\pi\)
\(702\) −4941.50 3590.21i −0.265676 0.193025i
\(703\) 2775.09 0.148883
\(704\) 0 0
\(705\) −5475.78 −0.292524
\(706\) −3398.70 2469.30i −0.181178 0.131633i
\(707\) 6766.23 20824.3i 0.359930 1.10775i
\(708\) −7460.74 22961.8i −0.396033 1.21887i
\(709\) −15470.4 + 11239.9i −0.819470 + 0.595380i −0.916561 0.399896i \(-0.869046\pi\)
0.0970906 + 0.995276i \(0.469046\pi\)
\(710\) −3583.47 + 2603.54i −0.189416 + 0.137619i
\(711\) 2461.71 + 7576.37i 0.129847 + 0.399629i
\(712\) 1234.48 3799.34i 0.0649777 0.199981i
\(713\) 707.600 + 514.101i 0.0371666 + 0.0270031i
\(714\) −6081.70 −0.318770
\(715\) 0 0
\(716\) 33064.8 1.72582
\(717\) 20682.8 + 15026.9i 1.07728 + 0.782693i
\(718\) 930.940 2865.14i 0.0483877 0.148922i
\(719\) 567.801 + 1747.51i 0.0294512 + 0.0906414i 0.964702 0.263345i \(-0.0848258\pi\)
−0.935250 + 0.353987i \(0.884826\pi\)
\(720\) 4355.85 3164.71i 0.225462 0.163808i
\(721\) −23627.5 + 17166.4i −1.22044 + 0.886699i
\(722\) −507.959 1563.34i −0.0261832 0.0805837i
\(723\) 1825.66 5618.80i 0.0939100 0.289025i
\(724\) 20586.6 + 14957.0i 1.05676 + 0.767781i
\(725\) −6808.33 −0.348765
\(726\) 0 0
\(727\) −7555.46 −0.385442 −0.192721 0.981254i \(-0.561731\pi\)
−0.192721 + 0.981254i \(0.561731\pi\)
\(728\) 11572.1 + 8407.62i 0.589135 + 0.428032i
\(729\) 3308.09 10181.3i 0.168068 0.517262i
\(730\) 1775.82 + 5465.42i 0.0900359 + 0.277102i
\(731\) −153.182 + 111.294i −0.00775056 + 0.00563111i
\(732\) −3626.43 + 2634.75i −0.183110 + 0.133037i
\(733\) −3703.45 11398.1i −0.186617 0.574348i 0.813356 0.581767i \(-0.197638\pi\)
−0.999972 + 0.00741920i \(0.997638\pi\)
\(734\) 2185.93 6727.59i 0.109924 0.338310i
\(735\) −3479.81 2528.23i −0.174632 0.126878i
\(736\) 1712.10 0.0857456
\(737\) 0 0
\(738\) −1638.99 −0.0817508
\(739\) −21958.7 15953.9i −1.09305 0.794148i −0.113139 0.993579i \(-0.536091\pi\)
−0.979912 + 0.199431i \(0.936091\pi\)
\(740\) 1211.55 3728.75i 0.0601855 0.185232i
\(741\) −9287.53 28584.1i −0.460440 1.41709i
\(742\) −1493.86 + 1085.36i −0.0739103 + 0.0536990i
\(743\) −23641.6 + 17176.6i −1.16733 + 0.848115i −0.990687 0.136160i \(-0.956524\pi\)
−0.176644 + 0.984275i \(0.556524\pi\)
\(744\) 1358.30 + 4180.42i 0.0669324 + 0.205997i
\(745\) 13858.7 42652.6i 0.681533 2.09754i
\(746\) −83.9681 61.0064i −0.00412103 0.00299411i
\(747\) −212.987 −0.0104321
\(748\) 0 0
\(749\) −8196.29 −0.399847
\(750\) −3823.76 2778.12i −0.186165 0.135257i
\(751\) −2737.70 + 8425.78i −0.133023 + 0.409402i −0.995277 0.0970731i \(-0.969052\pi\)
0.862254 + 0.506475i \(0.169052\pi\)
\(752\) 1141.73 + 3513.90i 0.0553654 + 0.170397i
\(753\) 1327.98 964.833i 0.0642686 0.0466939i
\(754\) −7470.50 + 5427.64i −0.360822 + 0.262152i
\(755\) −4621.71 14224.2i −0.222783 0.685655i
\(756\) −4364.68 + 13433.1i −0.209976 + 0.646240i
\(757\) −28909.7 21004.2i −1.38803 1.00847i −0.996078 0.0884828i \(-0.971798\pi\)
−0.391957 0.919984i \(-0.628202\pi\)
\(758\) −2064.19 −0.0989112
\(759\) 0 0
\(760\) 9885.59 0.471826
\(761\) 27825.9 + 20216.7i 1.32548 + 0.963014i 0.999847 + 0.0175169i \(0.00557610\pi\)
0.325629 + 0.945498i \(0.394424\pi\)
\(762\) −146.986 + 452.377i −0.00698786 + 0.0215064i
\(763\) −336.131 1034.51i −0.0159486 0.0490847i
\(764\) 17655.3 12827.4i 0.836057 0.607431i
\(765\) 7012.02 5094.53i 0.331399 0.240775i
\(766\) −1433.72 4412.54i −0.0676272 0.208135i
\(767\) −12585.2 + 38733.1i −0.592469 + 1.82343i