Properties

Label 121.4.c.f.27.2
Level $121$
Weight $4$
Character 121.27
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 27.2
Root \(-1.40126 - 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 121.27
Dual form 121.4.c.f.9.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.226216 + 0.696222i) q^{2} +(-4.79602 - 3.48451i) q^{3} +(6.03859 - 4.38729i) q^{4} +(-3.97285 + 12.2272i) q^{5} +(1.34106 - 4.12734i) q^{6} +(13.6952 - 9.95015i) q^{7} +(9.15848 + 6.65403i) q^{8} +(2.51651 + 7.74502i) q^{9} +O(q^{10})\) \(q+(0.226216 + 0.696222i) q^{2} +(-4.79602 - 3.48451i) q^{3} +(6.03859 - 4.38729i) q^{4} +(-3.97285 + 12.2272i) q^{5} +(1.34106 - 4.12734i) q^{6} +(13.6952 - 9.95015i) q^{7} +(9.15848 + 6.65403i) q^{8} +(2.51651 + 7.74502i) q^{9} -9.41154 q^{10} -44.2487 q^{12} +(-23.0653 - 70.9878i) q^{13} +(10.0256 + 7.28401i) q^{14} +(61.6595 - 44.7983i) q^{15} +(15.8914 - 48.9087i) q^{16} +(25.5819 - 78.7328i) q^{17} +(-4.82297 + 3.50410i) q^{18} +(-54.9509 - 39.9242i) q^{19} +(29.6537 + 91.2648i) q^{20} -100.354 q^{21} +13.3538 q^{23} +(-20.7382 - 63.8257i) q^{24} +(-32.5930 - 23.6802i) q^{25} +(44.2055 - 32.1172i) q^{26} +(-34.5433 + 106.313i) q^{27} +(39.0455 - 120.170i) q^{28} +(136.720 - 99.3327i) q^{29} +(45.1379 + 32.7946i) q^{30} +(-20.2398 - 62.2918i) q^{31} +128.210 q^{32} +60.6025 q^{34} +(67.2532 + 206.984i) q^{35} +(49.1758 + 35.7283i) q^{36} +(-33.0535 + 24.0148i) q^{37} +(15.3653 - 47.2895i) q^{38} +(-136.736 + 420.830i) q^{39} +(-117.745 + 85.5469i) q^{40} +(222.422 + 161.599i) q^{41} +(-22.7017 - 69.8685i) q^{42} +2.28719 q^{43} -104.697 q^{45} +(3.02085 + 9.29723i) q^{46} +(-58.1247 - 42.2301i) q^{47} +(-246.638 + 179.193i) q^{48} +(-17.4397 + 53.6738i) q^{49} +(9.11361 - 28.0488i) q^{50} +(-397.036 + 288.464i) q^{51} +(-450.726 - 327.472i) q^{52} +(-46.0451 - 141.712i) q^{53} -81.8320 q^{54} +191.636 q^{56} +(124.429 + 382.954i) q^{57} +(100.086 + 72.7166i) q^{58} +(-441.425 + 320.714i) q^{59} +(175.793 - 541.036i) q^{60} +(-31.3042 + 96.3445i) q^{61} +(38.7903 - 28.1828i) q^{62} +(111.528 + 81.0300i) q^{63} +(-98.1279 - 302.007i) q^{64} +959.615 q^{65} +411.641 q^{67} +(-190.946 - 587.670i) q^{68} +(-64.0452 - 46.5316i) q^{69} +(-128.893 + 93.6462i) q^{70} +(-145.434 + 447.601i) q^{71} +(-28.4882 + 87.6775i) q^{72} +(493.986 - 358.902i) q^{73} +(-24.1969 - 17.5800i) q^{74} +(73.8027 + 227.141i) q^{75} -506.985 q^{76} -323.923 q^{78} +(302.288 + 930.348i) q^{79} +(534.881 + 388.613i) q^{80} +(714.005 - 518.755i) q^{81} +(-62.1932 + 191.411i) q^{82} +(-8.08200 + 24.8738i) q^{83} +(-605.995 + 440.281i) q^{84} +(861.047 + 625.587i) q^{85} +(0.517399 + 1.59239i) q^{86} -1001.84 q^{87} -352.887 q^{89} +(-23.6842 - 72.8926i) q^{90} +(-1022.22 - 742.689i) q^{91} +(80.6382 - 58.5871i) q^{92} +(-119.986 + 369.278i) q^{93} +(16.2527 - 50.0208i) q^{94} +(706.471 - 513.281i) q^{95} +(-614.898 - 446.750i) q^{96} +(261.918 + 806.101i) q^{97} -41.3140 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} - 26 q^{6} + 20 q^{7} - 12 q^{8} - 44 q^{9} - 200 q^{10} - 160 q^{12} + 80 q^{13} + 4 q^{14} + 194 q^{15} + 8 q^{16} - 124 q^{17} + 92 q^{18} + 72 q^{19} - 88 q^{20} - 304 q^{21} - 392 q^{23} + 252 q^{24} - 136 q^{25} + 40 q^{26} + 182 q^{27} - 128 q^{28} + 144 q^{29} - 266 q^{30} + 34 q^{31} + 416 q^{32} - 208 q^{34} - 172 q^{35} + 80 q^{36} - 54 q^{37} - 432 q^{38} + 400 q^{39} - 492 q^{40} + 536 q^{41} + 140 q^{42} + 240 q^{43} + 1712 q^{45} - 314 q^{46} + 272 q^{47} - 776 q^{48} + 390 q^{49} + 232 q^{50} - 164 q^{51} - 560 q^{52} + 492 q^{53} + 440 q^{54} + 480 q^{56} - 1512 q^{57} + 192 q^{58} - 634 q^{59} - 632 q^{60} + 840 q^{61} + 134 q^{62} + 248 q^{63} - 224 q^{64} + 3520 q^{65} + 3016 q^{67} + 640 q^{68} - 962 q^{69} - 284 q^{70} + 678 q^{71} - 744 q^{72} - 400 q^{73} + 6 q^{74} + 520 q^{75} - 1728 q^{76} - 1760 q^{78} + 316 q^{79} + 1544 q^{80} + 1294 q^{81} - 512 q^{82} + 468 q^{83} - 736 q^{84} + 452 q^{85} + 156 q^{86} - 4800 q^{87} - 7368 q^{89} + 1532 q^{90} - 1280 q^{91} + 40 q^{92} + 638 q^{93} - 992 q^{94} + 2952 q^{95} - 952 q^{96} - 2194 q^{97} + 3480 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.226216 + 0.696222i 0.0799795 + 0.246152i 0.983049 0.183343i \(-0.0586918\pi\)
−0.903070 + 0.429494i \(0.858692\pi\)
\(3\) −4.79602 3.48451i −0.922994 0.670594i 0.0212735 0.999774i \(-0.493228\pi\)
−0.944267 + 0.329179i \(0.893228\pi\)
\(4\) 6.03859 4.38729i 0.754823 0.548411i
\(5\) −3.97285 + 12.2272i −0.355342 + 1.09363i 0.600468 + 0.799648i \(0.294981\pi\)
−0.955811 + 0.293983i \(0.905019\pi\)
\(6\) 1.34106 4.12734i 0.0912473 0.280830i
\(7\) 13.6952 9.95015i 0.739472 0.537258i −0.153074 0.988215i \(-0.548917\pi\)
0.892546 + 0.450957i \(0.148917\pi\)
\(8\) 9.15848 + 6.65403i 0.404752 + 0.294069i
\(9\) 2.51651 + 7.74502i 0.0932040 + 0.286853i
\(10\) −9.41154 −0.297619
\(11\) 0 0
\(12\) −44.2487 −1.06446
\(13\) −23.0653 70.9878i −0.492090 1.51450i −0.821443 0.570291i \(-0.806830\pi\)
0.329352 0.944207i \(-0.393170\pi\)
\(14\) 10.0256 + 7.28401i 0.191389 + 0.139052i
\(15\) 61.6595 44.7983i 1.06136 0.771124i
\(16\) 15.8914 48.9087i 0.248303 0.764198i
\(17\) 25.5819 78.7328i 0.364971 1.12327i −0.585028 0.811013i \(-0.698916\pi\)
0.949999 0.312253i \(-0.101084\pi\)
\(18\) −4.82297 + 3.50410i −0.0631548 + 0.0458846i
\(19\) −54.9509 39.9242i −0.663505 0.482065i 0.204340 0.978900i \(-0.434495\pi\)
−0.867845 + 0.496835i \(0.834495\pi\)
\(20\) 29.6537 + 91.2648i 0.331539 + 1.02037i
\(21\) −100.354 −1.04281
\(22\) 0 0
\(23\) 13.3538 0.121064 0.0605319 0.998166i \(-0.480720\pi\)
0.0605319 + 0.998166i \(0.480720\pi\)
\(24\) −20.7382 63.8257i −0.176382 0.542848i
\(25\) −32.5930 23.6802i −0.260744 0.189442i
\(26\) 44.2055 32.1172i 0.333439 0.242258i
\(27\) −34.5433 + 106.313i −0.246217 + 0.757779i
\(28\) 39.0455 120.170i 0.263532 0.811069i
\(29\) 136.720 99.3327i 0.875456 0.636056i −0.0565897 0.998398i \(-0.518023\pi\)
0.932045 + 0.362342i \(0.118023\pi\)
\(30\) 45.1379 + 32.7946i 0.274701 + 0.199582i
\(31\) −20.2398 62.2918i −0.117264 0.360901i 0.875149 0.483854i \(-0.160763\pi\)
−0.992412 + 0.122953i \(0.960763\pi\)
\(32\) 128.210 0.708268
\(33\) 0 0
\(34\) 60.6025 0.305684
\(35\) 67.2532 + 206.984i 0.324796 + 0.999619i
\(36\) 49.1758 + 35.7283i 0.227666 + 0.165409i
\(37\) −33.0535 + 24.0148i −0.146864 + 0.106703i −0.658791 0.752326i \(-0.728932\pi\)
0.511927 + 0.859029i \(0.328932\pi\)
\(38\) 15.3653 47.2895i 0.0655942 0.201878i
\(39\) −136.736 + 420.830i −0.561418 + 1.72787i
\(40\) −117.745 + 85.5469i −0.465429 + 0.338154i
\(41\) 222.422 + 161.599i 0.847230 + 0.615548i 0.924381 0.381471i \(-0.124582\pi\)
−0.0771511 + 0.997019i \(0.524582\pi\)
\(42\) −22.7017 69.8685i −0.0834034 0.256689i
\(43\) 2.28719 0.00811146 0.00405573 0.999992i \(-0.498709\pi\)
0.00405573 + 0.999992i \(0.498709\pi\)
\(44\) 0 0
\(45\) −104.697 −0.346830
\(46\) 3.02085 + 9.29723i 0.00968261 + 0.0298000i
\(47\) −58.1247 42.2301i −0.180391 0.131061i 0.493926 0.869504i \(-0.335562\pi\)
−0.674316 + 0.738443i \(0.735562\pi\)
\(48\) −246.638 + 179.193i −0.741649 + 0.538840i
\(49\) −17.4397 + 53.6738i −0.0508445 + 0.156483i
\(50\) 9.11361 28.0488i 0.0257772 0.0793340i
\(51\) −397.036 + 288.464i −1.09012 + 0.792020i
\(52\) −450.726 327.472i −1.20201 0.873311i
\(53\) −46.0451 141.712i −0.119336 0.367277i 0.873491 0.486840i \(-0.161851\pi\)
−0.992827 + 0.119563i \(0.961851\pi\)
\(54\) −81.8320 −0.206221
\(55\) 0 0
\(56\) 191.636 0.457293
\(57\) 124.429 + 382.954i 0.289141 + 0.889886i
\(58\) 100.086 + 72.7166i 0.226585 + 0.164623i
\(59\) −441.425 + 320.714i −0.974044 + 0.707684i −0.956370 0.292160i \(-0.905626\pi\)
−0.0176741 + 0.999844i \(0.505626\pi\)
\(60\) 175.793 541.036i 0.378247 1.16413i
\(61\) −31.3042 + 96.3445i −0.0657065 + 0.202224i −0.978520 0.206154i \(-0.933905\pi\)
0.912813 + 0.408378i \(0.133905\pi\)
\(62\) 38.7903 28.1828i 0.0794576 0.0577293i
\(63\) 111.528 + 81.0300i 0.223035 + 0.162045i
\(64\) −98.1279 302.007i −0.191656 0.589857i
\(65\) 959.615 1.83116
\(66\) 0 0
\(67\) 411.641 0.750596 0.375298 0.926904i \(-0.377540\pi\)
0.375298 + 0.926904i \(0.377540\pi\)
\(68\) −190.946 587.670i −0.340523 1.04802i
\(69\) −64.0452 46.5316i −0.111741 0.0811847i
\(70\) −128.893 + 93.6462i −0.220081 + 0.159898i
\(71\) −145.434 + 447.601i −0.243097 + 0.748176i 0.752846 + 0.658196i \(0.228680\pi\)
−0.995944 + 0.0899799i \(0.971320\pi\)
\(72\) −28.4882 + 87.6775i −0.0466300 + 0.143512i
\(73\) 493.986 358.902i 0.792009 0.575428i −0.116550 0.993185i \(-0.537184\pi\)
0.908559 + 0.417757i \(0.137184\pi\)
\(74\) −24.1969 17.5800i −0.0380112 0.0276167i
\(75\) 73.8027 + 227.141i 0.113627 + 0.349707i
\(76\) −506.985 −0.765199
\(77\) 0 0
\(78\) −323.923 −0.470219
\(79\) 302.288 + 930.348i 0.430507 + 1.32497i 0.897621 + 0.440768i \(0.145294\pi\)
−0.467114 + 0.884197i \(0.654706\pi\)
\(80\) 534.881 + 388.613i 0.747518 + 0.543104i
\(81\) 714.005 518.755i 0.979431 0.711598i
\(82\) −62.1932 + 191.411i −0.0837572 + 0.257778i
\(83\) −8.08200 + 24.8738i −0.0106881 + 0.0328947i −0.956258 0.292523i \(-0.905505\pi\)
0.945570 + 0.325418i \(0.105505\pi\)
\(84\) −605.995 + 440.281i −0.787137 + 0.571888i
\(85\) 861.047 + 625.587i 1.09875 + 0.798288i
\(86\) 0.517399 + 1.59239i 0.000648750 + 0.00199665i
\(87\) −1001.84 −1.23458
\(88\) 0 0
\(89\) −352.887 −0.420292 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(90\) −23.6842 72.8926i −0.0277393 0.0853728i
\(91\) −1022.22 742.689i −1.17756 0.855549i
\(92\) 80.6382 58.5871i 0.0913817 0.0663927i
\(93\) −119.986 + 369.278i −0.133784 + 0.411746i
\(94\) 16.2527 50.0208i 0.0178334 0.0548857i
\(95\) 706.471 513.281i 0.762973 0.554332i
\(96\) −614.898 446.750i −0.653727 0.474961i
\(97\) 261.918 + 806.101i 0.274162 + 0.843785i 0.989440 + 0.144944i \(0.0463003\pi\)
−0.715277 + 0.698841i \(0.753700\pi\)
\(98\) −41.3140 −0.0425851
\(99\) 0 0
\(100\) −300.708 −0.300708
\(101\) −399.702 1230.15i −0.393780 1.21193i −0.929908 0.367793i \(-0.880113\pi\)
0.536127 0.844137i \(-0.319887\pi\)
\(102\) −290.651 211.170i −0.282144 0.204990i
\(103\) 1395.75 1014.07i 1.33522 0.970091i 0.335611 0.942001i \(-0.391057\pi\)
0.999605 0.0280904i \(-0.00894263\pi\)
\(104\) 261.111 803.618i 0.246193 0.757704i
\(105\) 398.691 1227.04i 0.370554 1.14045i
\(106\) 88.2470 64.1152i 0.0808614 0.0587493i
\(107\) −391.709 284.593i −0.353906 0.257128i 0.396600 0.917992i \(-0.370190\pi\)
−0.750506 + 0.660864i \(0.770190\pi\)
\(108\) 257.835 + 793.535i 0.229724 + 0.707018i
\(109\) 64.2563 0.0564645 0.0282323 0.999601i \(-0.491012\pi\)
0.0282323 + 0.999601i \(0.491012\pi\)
\(110\) 0 0
\(111\) 242.205 0.207109
\(112\) −269.013 827.936i −0.226958 0.698505i
\(113\) 1622.15 + 1178.56i 1.35043 + 0.981145i 0.998990 + 0.0449344i \(0.0143079\pi\)
0.351440 + 0.936210i \(0.385692\pi\)
\(114\) −238.473 + 173.261i −0.195921 + 0.142345i
\(115\) −53.0527 + 163.280i −0.0430191 + 0.132399i
\(116\) 389.792 1199.66i 0.311994 0.960219i
\(117\) 491.758 357.283i 0.388573 0.282315i
\(118\) −323.145 234.779i −0.252101 0.183162i
\(119\) −433.055 1332.81i −0.333597 1.02671i
\(120\) 862.797 0.656352
\(121\) 0 0
\(122\) −74.1587 −0.0550329
\(123\) −503.645 1550.06i −0.369205 1.13629i
\(124\) −395.512 287.356i −0.286436 0.208108i
\(125\) −881.102 + 640.158i −0.630465 + 0.458060i
\(126\) −31.1853 + 95.9786i −0.0220493 + 0.0678608i
\(127\) −33.8698 + 104.240i −0.0236650 + 0.0728334i −0.962192 0.272374i \(-0.912191\pi\)
0.938527 + 0.345207i \(0.112191\pi\)
\(128\) 1017.86 739.518i 0.702867 0.510662i
\(129\) −10.9694 7.96973i −0.00748683 0.00543950i
\(130\) 217.080 + 668.105i 0.146456 + 0.450744i
\(131\) −1156.71 −0.771469 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(132\) 0 0
\(133\) −1149.82 −0.749636
\(134\) 93.1198 + 286.593i 0.0600323 + 0.184760i
\(135\) −1162.68 844.735i −0.741240 0.538542i
\(136\) 758.181 550.851i 0.478041 0.347317i
\(137\) 61.2853 188.617i 0.0382186 0.117625i −0.930127 0.367238i \(-0.880303\pi\)
0.968346 + 0.249613i \(0.0803035\pi\)
\(138\) 17.9082 55.1158i 0.0110467 0.0339983i
\(139\) −2346.26 + 1704.66i −1.43171 + 1.04020i −0.442011 + 0.897010i \(0.645735\pi\)
−0.989696 + 0.143186i \(0.954265\pi\)
\(140\) 1314.21 + 954.831i 0.793366 + 0.576414i
\(141\) 131.616 + 405.072i 0.0786104 + 0.241938i
\(142\) −344.529 −0.203607
\(143\) 0 0
\(144\) 418.789 0.242355
\(145\) 671.391 + 2066.33i 0.384524 + 1.18344i
\(146\) 361.623 + 262.734i 0.204987 + 0.148932i
\(147\) 270.668 196.652i 0.151866 0.110337i
\(148\) −94.2367 + 290.031i −0.0523393 + 0.161084i
\(149\) −1077.96 + 3317.61i −0.592683 + 1.82409i −0.0267432 + 0.999642i \(0.508514\pi\)
−0.565939 + 0.824447i \(0.691486\pi\)
\(150\) −141.445 + 102.766i −0.0769931 + 0.0559388i
\(151\) −941.148 683.784i −0.507216 0.368514i 0.304551 0.952496i \(-0.401494\pi\)
−0.811766 + 0.583982i \(0.801494\pi\)
\(152\) −237.610 731.290i −0.126794 0.390233i
\(153\) 674.164 0.356228
\(154\) 0 0
\(155\) 842.061 0.436361
\(156\) 1020.61 + 3141.12i 0.523810 + 1.61212i
\(157\) −276.730 201.056i −0.140672 0.102204i 0.515224 0.857056i \(-0.327709\pi\)
−0.655895 + 0.754852i \(0.727709\pi\)
\(158\) −579.346 + 420.919i −0.291711 + 0.211940i
\(159\) −272.965 + 840.099i −0.136148 + 0.419020i
\(160\) −509.360 + 1567.65i −0.251678 + 0.774584i
\(161\) 182.883 132.873i 0.0895232 0.0650424i
\(162\) 522.688 + 379.755i 0.253495 + 0.184175i
\(163\) −431.045 1326.62i −0.207129 0.637479i −0.999619 0.0275936i \(-0.991216\pi\)
0.792490 0.609885i \(-0.208784\pi\)
\(164\) 2052.09 0.977082
\(165\) 0 0
\(166\) −19.1460 −0.00895191
\(167\) −147.927 455.273i −0.0685447 0.210959i 0.910917 0.412590i \(-0.135376\pi\)
−0.979462 + 0.201631i \(0.935376\pi\)
\(168\) −919.089 667.757i −0.422079 0.306658i
\(169\) −2729.85 + 1983.35i −1.24254 + 0.902755i
\(170\) −240.765 + 740.998i −0.108622 + 0.334305i
\(171\) 170.929 526.065i 0.0764401 0.235259i
\(172\) 13.8114 10.0346i 0.00612272 0.00444841i
\(173\) 1463.18 + 1063.06i 0.643024 + 0.467184i 0.860888 0.508795i \(-0.169909\pi\)
−0.217864 + 0.975979i \(0.569909\pi\)
\(174\) −226.631 697.500i −0.0987407 0.303893i
\(175\) −681.990 −0.294592
\(176\) 0 0
\(177\) 3234.61 1.37361
\(178\) −79.8288 245.688i −0.0336147 0.103456i
\(179\) 3583.82 + 2603.80i 1.49647 + 1.08725i 0.971763 + 0.235960i \(0.0758235\pi\)
0.524703 + 0.851285i \(0.324176\pi\)
\(180\) −632.224 + 459.338i −0.261795 + 0.190206i
\(181\) 1053.49 3242.32i 0.432627 1.33149i −0.462872 0.886425i \(-0.653181\pi\)
0.895499 0.445064i \(-0.146819\pi\)
\(182\) 285.833 879.703i 0.116414 0.358285i
\(183\) 485.849 352.990i 0.196257 0.142589i
\(184\) 122.301 + 88.8567i 0.0490007 + 0.0356011i
\(185\) −162.316 499.558i −0.0645067 0.198531i
\(186\) −284.242 −0.112052
\(187\) 0 0
\(188\) −536.267 −0.208039
\(189\) 584.757 + 1799.70i 0.225052 + 0.692638i
\(190\) 517.173 + 375.748i 0.197472 + 0.143472i
\(191\) −2365.37 + 1718.54i −0.896083 + 0.651043i −0.937457 0.348101i \(-0.886827\pi\)
0.0413737 + 0.999144i \(0.486827\pi\)
\(192\) −581.722 + 1790.36i −0.218657 + 0.672958i
\(193\) 767.655 2362.60i 0.286306 0.881159i −0.699698 0.714438i \(-0.746682\pi\)
0.986004 0.166720i \(-0.0533177\pi\)
\(194\) −501.975 + 364.706i −0.185772 + 0.134971i
\(195\) −4602.33 3343.79i −1.69015 1.22797i
\(196\) 130.171 + 400.626i 0.0474386 + 0.146001i
\(197\) 5125.67 1.85375 0.926876 0.375369i \(-0.122484\pi\)
0.926876 + 0.375369i \(0.122484\pi\)
\(198\) 0 0
\(199\) −7.69219 −0.00274013 −0.00137006 0.999999i \(-0.500436\pi\)
−0.00137006 + 0.999999i \(0.500436\pi\)
\(200\) −140.934 433.750i −0.0498276 0.153354i
\(201\) −1974.24 1434.37i −0.692796 0.503346i
\(202\) 766.042 556.562i 0.266824 0.193859i
\(203\) 884.029 2720.76i 0.305649 0.940690i
\(204\) −1131.96 + 3483.83i −0.388497 + 1.19567i
\(205\) −2859.54 + 2077.58i −0.974240 + 0.707826i
\(206\) 1021.76 + 742.352i 0.345579 + 0.251078i
\(207\) 33.6050 + 103.426i 0.0112836 + 0.0347274i
\(208\) −3838.46 −1.27956
\(209\) 0 0
\(210\) 944.484 0.310360
\(211\) −960.222 2955.26i −0.313291 0.964211i −0.976452 0.215734i \(-0.930786\pi\)
0.663161 0.748477i \(-0.269214\pi\)
\(212\) −899.780 653.729i −0.291496 0.211784i
\(213\) 2257.18 1639.94i 0.726100 0.527542i
\(214\) 109.529 337.096i 0.0349872 0.107680i
\(215\) −9.08665 + 27.9658i −0.00288234 + 0.00887095i
\(216\) −1023.78 + 743.818i −0.322496 + 0.234307i
\(217\) −897.001 651.709i −0.280610 0.203875i
\(218\) 14.5358 + 44.7366i 0.00451600 + 0.0138988i
\(219\) −3619.76 −1.11690
\(220\) 0 0
\(221\) −6179.13 −1.88078
\(222\) 54.7907 + 168.628i 0.0165645 + 0.0509802i
\(223\) 9.96586 + 7.24062i 0.00299266 + 0.00217430i 0.589281 0.807928i \(-0.299411\pi\)
−0.586288 + 0.810103i \(0.699411\pi\)
\(224\) 1755.87 1275.71i 0.523744 0.380522i
\(225\) 101.383 312.025i 0.0300394 0.0924518i
\(226\) −453.582 + 1395.98i −0.133504 + 0.410882i
\(227\) 3734.34 2713.16i 1.09188 0.793298i 0.112165 0.993690i \(-0.464221\pi\)
0.979716 + 0.200391i \(0.0642214\pi\)
\(228\) 2431.51 + 1766.59i 0.706274 + 0.513138i
\(229\) 1568.15 + 4826.26i 0.452516 + 1.39270i 0.874027 + 0.485877i \(0.161500\pi\)
−0.421512 + 0.906823i \(0.638500\pi\)
\(230\) −125.680 −0.0360309
\(231\) 0 0
\(232\) 1913.11 0.541386
\(233\) −65.4135 201.322i −0.0183922 0.0566054i 0.941439 0.337183i \(-0.109474\pi\)
−0.959831 + 0.280577i \(0.909474\pi\)
\(234\) 359.992 + 261.549i 0.100570 + 0.0730684i
\(235\) 747.275 542.927i 0.207433 0.150709i
\(236\) −1258.52 + 3873.31i −0.347129 + 1.06835i
\(237\) 1792.03 5515.29i 0.491159 1.51163i
\(238\) 829.964 603.004i 0.226044 0.164231i
\(239\) 3488.88 + 2534.82i 0.944254 + 0.686041i 0.949441 0.313946i \(-0.101651\pi\)
−0.00518659 + 0.999987i \(0.501651\pi\)
\(240\) −1211.17 3727.59i −0.325753 1.00256i
\(241\) 996.584 0.266372 0.133186 0.991091i \(-0.457479\pi\)
0.133186 + 0.991091i \(0.457479\pi\)
\(242\) 0 0
\(243\) −2213.80 −0.584426
\(244\) 233.658 + 719.125i 0.0613050 + 0.188677i
\(245\) −586.993 426.475i −0.153068 0.111210i
\(246\) 965.253 701.297i 0.250172 0.181761i
\(247\) −1566.67 + 4821.71i −0.403582 + 1.24210i
\(248\) 229.125 705.174i 0.0586671 0.180559i
\(249\) 125.435 91.1335i 0.0319241 0.0231942i
\(250\) −645.012 468.628i −0.163176 0.118555i
\(251\) −85.5644 263.340i −0.0215170 0.0662226i 0.939721 0.341941i \(-0.111084\pi\)
−0.961238 + 0.275718i \(0.911084\pi\)
\(252\) 1028.97 0.257219
\(253\) 0 0
\(254\) −80.2364 −0.0198208
\(255\) −1949.73 6000.65i −0.478811 1.47363i
\(256\) −1310.09 951.838i −0.319847 0.232382i
\(257\) 2617.31 1901.59i 0.635267 0.461548i −0.222954 0.974829i \(-0.571570\pi\)
0.858221 + 0.513281i \(0.171570\pi\)
\(258\) 3.06724 9.44001i 0.000740148 0.00227794i
\(259\) −213.724 + 657.775i −0.0512748 + 0.157808i
\(260\) 5794.72 4210.11i 1.38220 1.00423i
\(261\) 1113.39 + 808.925i 0.264050 + 0.191844i
\(262\) −261.667 805.328i −0.0617017 0.189898i
\(263\) −207.944 −0.0487544 −0.0243772 0.999703i \(-0.507760\pi\)
−0.0243772 + 0.999703i \(0.507760\pi\)
\(264\) 0 0
\(265\) 1915.67 0.444071
\(266\) −260.107 800.526i −0.0599555 0.184524i
\(267\) 1692.45 + 1229.64i 0.387927 + 0.281845i
\(268\) 2485.73 1805.99i 0.566567 0.411635i
\(269\) 1555.29 4786.70i 0.352520 1.08495i −0.604913 0.796291i \(-0.706792\pi\)
0.957433 0.288654i \(-0.0932078\pi\)
\(270\) 325.106 1000.57i 0.0732790 0.225530i
\(271\) 1203.02 874.043i 0.269661 0.195920i −0.444734 0.895663i \(-0.646702\pi\)
0.714395 + 0.699742i \(0.246702\pi\)
\(272\) −3444.19 2502.35i −0.767774 0.557821i
\(273\) 2314.70 + 7123.90i 0.513157 + 1.57933i
\(274\) 145.183 0.0320102
\(275\) 0 0
\(276\) −590.890 −0.128867
\(277\) 72.8773 + 224.293i 0.0158078 + 0.0486515i 0.958649 0.284590i \(-0.0918575\pi\)
−0.942841 + 0.333242i \(0.891858\pi\)
\(278\) −1717.58 1247.90i −0.370553 0.269223i
\(279\) 431.517 313.515i 0.0925959 0.0672748i
\(280\) −761.340 + 2343.16i −0.162496 + 0.500110i
\(281\) 1518.82 4674.46i 0.322439 0.992365i −0.650144 0.759811i \(-0.725292\pi\)
0.972583 0.232555i \(-0.0747084\pi\)
\(282\) −252.246 + 183.268i −0.0532662 + 0.0387001i
\(283\) −4206.53 3056.22i −0.883577 0.641956i 0.0506182 0.998718i \(-0.483881\pi\)
−0.934195 + 0.356762i \(0.883881\pi\)
\(284\) 1085.54 + 3340.94i 0.226813 + 0.698058i
\(285\) −5176.78 −1.07595
\(286\) 0 0
\(287\) 4654.04 0.957210
\(288\) 322.642 + 992.991i 0.0660134 + 0.203169i
\(289\) −1569.73 1140.47i −0.319505 0.232134i
\(290\) −1286.74 + 934.874i −0.260552 + 0.189302i
\(291\) 1552.70 4778.73i 0.312787 0.962660i
\(292\) 1408.37 4334.52i 0.282255 0.868693i
\(293\) −7184.81 + 5220.07i −1.43256 + 1.04082i −0.443032 + 0.896506i \(0.646097\pi\)
−0.989532 + 0.144313i \(0.953903\pi\)
\(294\) 198.143 + 143.959i 0.0393058 + 0.0285573i
\(295\) −2167.71 6671.52i −0.427827 1.31671i
\(296\) −462.515 −0.0908215
\(297\) 0 0
\(298\) −2553.64 −0.496405
\(299\) −308.011 947.959i −0.0595743 0.183351i
\(300\) 1442.20 + 1047.82i 0.277551 + 0.201653i
\(301\) 31.3235 22.7579i 0.00599819 0.00435794i
\(302\) 263.163 809.931i 0.0501434 0.154325i
\(303\) −2369.51 + 7292.61i −0.449257 + 1.38267i
\(304\) −2825.88 + 2053.13i −0.533143 + 0.387351i
\(305\) −1053.65 765.524i −0.197810 0.143717i
\(306\) 152.507 + 469.368i 0.0284910 + 0.0876862i
\(307\) 1497.93 0.278474 0.139237 0.990259i \(-0.455535\pi\)
0.139237 + 0.990259i \(0.455535\pi\)
\(308\) 0 0
\(309\) −10227.6 −1.88293
\(310\) 190.488 + 586.261i 0.0349000 + 0.107411i
\(311\) 6055.25 + 4399.40i 1.10406 + 0.802145i 0.981718 0.190343i \(-0.0609601\pi\)
0.122340 + 0.992488i \(0.460960\pi\)
\(312\) −4052.51 + 2944.32i −0.735347 + 0.534261i
\(313\) −203.445 + 626.140i −0.0367393 + 0.113072i −0.967744 0.251934i \(-0.918933\pi\)
0.931005 + 0.365007i \(0.118933\pi\)
\(314\) 77.3787 238.147i 0.0139068 0.0428007i
\(315\) −1433.85 + 1041.75i −0.256471 + 0.186337i
\(316\) 5907.10 + 4291.76i 1.05158 + 0.764020i
\(317\) 72.2196 + 222.269i 0.0127958 + 0.0393813i 0.957251 0.289260i \(-0.0934092\pi\)
−0.944455 + 0.328641i \(0.893409\pi\)
\(318\) −646.645 −0.114032
\(319\) 0 0
\(320\) 4082.53 0.713189
\(321\) 886.976 + 2729.83i 0.154225 + 0.474655i
\(322\) 133.880 + 97.2695i 0.0231703 + 0.0168342i
\(323\) −4549.09 + 3305.11i −0.783647 + 0.569353i
\(324\) 2035.65 6265.09i 0.349049 1.07426i
\(325\) −929.238 + 2859.90i −0.158599 + 0.488119i
\(326\) 826.113 600.206i 0.140350 0.101970i
\(327\) −308.174 223.902i −0.0521164 0.0378648i
\(328\) 961.762 + 2960.00i 0.161904 + 0.498288i
\(329\) −1216.23 −0.203808
\(330\) 0 0
\(331\) 8532.95 1.41696 0.708480 0.705731i \(-0.249381\pi\)
0.708480 + 0.705731i \(0.249381\pi\)
\(332\) 60.3249 + 185.661i 0.00997216 + 0.0306912i
\(333\) −269.174 195.567i −0.0442963 0.0321832i
\(334\) 283.508 205.980i 0.0464457 0.0337448i
\(335\) −1635.39 + 5033.20i −0.266719 + 0.820876i
\(336\) −1594.76 + 4908.17i −0.258933 + 0.796913i
\(337\) 9458.37 6871.90i 1.52887 1.11079i 0.572011 0.820246i \(-0.306163\pi\)
0.956861 0.290545i \(-0.0938366\pi\)
\(338\) −1998.39 1451.92i −0.321592 0.233650i
\(339\) −3673.14 11304.8i −0.588489 1.81118i
\(340\) 7944.14 1.26715
\(341\) 0 0
\(342\) 404.925 0.0640229
\(343\) 2089.49 + 6430.79i 0.328927 + 1.01233i
\(344\) 20.9472 + 15.2190i 0.00328313 + 0.00238533i
\(345\) 823.391 598.229i 0.128492 0.0933552i
\(346\) −409.131 + 1259.18i −0.0635694 + 0.195647i
\(347\) −1421.11 + 4373.71i −0.219853 + 0.676637i 0.778921 + 0.627123i \(0.215768\pi\)
−0.998773 + 0.0495148i \(0.984232\pi\)
\(348\) −6049.67 + 4395.34i −0.931886 + 0.677055i
\(349\) 5436.81 + 3950.08i 0.833885 + 0.605853i 0.920656 0.390375i \(-0.127655\pi\)
−0.0867706 + 0.996228i \(0.527655\pi\)
\(350\) −154.277 474.816i −0.0235613 0.0725142i
\(351\) 8343.72 1.26882
\(352\) 0 0
\(353\) 5738.70 0.865270 0.432635 0.901569i \(-0.357584\pi\)
0.432635 + 0.901569i \(0.357584\pi\)
\(354\) 731.721 + 2252.01i 0.109860 + 0.338115i
\(355\) −4895.11 3556.50i −0.731846 0.531717i
\(356\) −2130.94 + 1548.22i −0.317246 + 0.230493i
\(357\) −2567.24 + 7901.14i −0.380595 + 1.17135i
\(358\) −1002.10 + 3084.15i −0.147941 + 0.455315i
\(359\) −3329.32 + 2418.89i −0.489456 + 0.355611i −0.804975 0.593308i \(-0.797821\pi\)
0.315519 + 0.948919i \(0.397821\pi\)
\(360\) −958.869 696.659i −0.140380 0.101992i
\(361\) −693.885 2135.56i −0.101164 0.311351i
\(362\) 2495.69 0.362349
\(363\) 0 0
\(364\) −9431.18 −1.35804
\(365\) 2425.82 + 7465.91i 0.347872 + 1.07064i
\(366\) 355.666 + 258.407i 0.0507950 + 0.0369047i
\(367\) −7817.53 + 5679.77i −1.11191 + 0.807851i −0.982964 0.183800i \(-0.941160\pi\)
−0.128948 + 0.991651i \(0.541160\pi\)
\(368\) 212.211 653.118i 0.0300605 0.0925167i
\(369\) −691.859 + 2129.32i −0.0976064 + 0.300402i
\(370\) 311.085 226.016i 0.0437095 0.0317568i
\(371\) −2040.66 1482.62i −0.285568 0.207477i
\(372\) 895.586 + 2756.33i 0.124822 + 0.384164i
\(373\) 141.780 0.0196812 0.00984062 0.999952i \(-0.496868\pi\)
0.00984062 + 0.999952i \(0.496868\pi\)
\(374\) 0 0
\(375\) 6456.42 0.889088
\(376\) −251.334 773.527i −0.0344723 0.106095i
\(377\) −10204.9 7414.29i −1.39411 1.01288i
\(378\) −1120.71 + 814.241i −0.152494 + 0.110794i
\(379\) −871.345 + 2681.73i −0.118095 + 0.363459i −0.992580 0.121594i \(-0.961200\pi\)
0.874485 + 0.485053i \(0.161200\pi\)
\(380\) 2014.17 6198.99i 0.271908 0.836845i
\(381\) 525.667 381.920i 0.0706844 0.0513552i
\(382\) −1731.57 1258.06i −0.231923 0.168502i
\(383\) −1958.50 6027.64i −0.261291 0.804172i −0.992525 0.122045i \(-0.961055\pi\)
0.731233 0.682128i \(-0.238945\pi\)
\(384\) −7458.53 −0.991189
\(385\) 0 0
\(386\) 1818.55 0.239797
\(387\) 5.75573 + 17.7143i 0.000756021 + 0.00232679i
\(388\) 5118.21 + 3718.60i 0.669685 + 0.486555i
\(389\) 7123.60 5175.60i 0.928486 0.674584i −0.0171360 0.999853i \(-0.505455\pi\)
0.945622 + 0.325269i \(0.105455\pi\)
\(390\) 1286.90 3960.66i 0.167089 0.514246i
\(391\) 341.616 1051.38i 0.0441848 0.135987i
\(392\) −516.868 + 375.526i −0.0665963 + 0.0483851i
\(393\) 5547.61 + 4030.58i 0.712061 + 0.517343i
\(394\) 1159.51 + 3568.60i 0.148262 + 0.456304i
\(395\) −12576.5 −1.60200
\(396\) 0 0
\(397\) 4315.26 0.545534 0.272767 0.962080i \(-0.412061\pi\)
0.272767 + 0.962080i \(0.412061\pi\)
\(398\) −1.74010 5.35547i −0.000219154 0.000674486i
\(399\) 5514.53 + 4006.54i 0.691910 + 0.502702i
\(400\) −1676.12 + 1217.77i −0.209515 + 0.152221i
\(401\) 111.766 343.979i 0.0139185 0.0428367i −0.943856 0.330357i \(-0.892831\pi\)
0.957775 + 0.287520i \(0.0928309\pi\)
\(402\) 552.033 1698.98i 0.0684899 0.210790i
\(403\) −3955.12 + 2873.56i −0.488880 + 0.355192i
\(404\) −7810.68 5674.79i −0.961870 0.698840i
\(405\) 3506.27 + 10791.2i 0.430193 + 1.32400i
\(406\) 2094.24 0.255998
\(407\) 0 0
\(408\) −5555.70 −0.674137
\(409\) −2849.29 8769.22i −0.344470 1.06017i −0.961867 0.273519i \(-0.911812\pi\)
0.617396 0.786652i \(-0.288188\pi\)
\(410\) −2093.33 1520.89i −0.252152 0.183199i
\(411\) −951.162 + 691.060i −0.114154 + 0.0829378i
\(412\) 3979.33 12247.1i 0.475843 1.46449i
\(413\) −2854.25 + 8784.48i −0.340069 + 1.04662i
\(414\) −64.4052 + 46.7931i −0.00764575 + 0.00555496i
\(415\) −272.028 197.640i −0.0321767 0.0233777i
\(416\) −2957.21 9101.37i −0.348532 1.07267i
\(417\) 17192.6 2.01901
\(418\) 0 0
\(419\) −14912.9 −1.73876 −0.869380 0.494144i \(-0.835481\pi\)
−0.869380 + 0.494144i \(0.835481\pi\)
\(420\) −2975.87 9158.78i −0.345732 1.06405i
\(421\) 10910.4 + 7926.88i 1.26304 + 0.917654i 0.998903 0.0468306i \(-0.0149121\pi\)
0.264139 + 0.964485i \(0.414912\pi\)
\(422\) 1840.30 1337.05i 0.212285 0.154234i
\(423\) 180.801 556.449i 0.0207822 0.0639610i
\(424\) 521.254 1604.26i 0.0597036 0.183749i
\(425\) −2698.20 + 1960.36i −0.307958 + 0.223744i
\(426\) 1652.37 + 1200.52i 0.187928 + 0.136538i
\(427\) 529.925 + 1630.94i 0.0600582 + 0.184840i
\(428\) −3613.96 −0.408148
\(429\) 0 0
\(430\) −21.5260 −0.00241413
\(431\) −125.564 386.447i −0.0140330 0.0431890i 0.943795 0.330532i \(-0.107228\pi\)
−0.957828 + 0.287343i \(0.907228\pi\)
\(432\) 4650.71 + 3378.94i 0.517957 + 0.376318i
\(433\) 1429.29 1038.44i 0.158631 0.115252i −0.505638 0.862746i \(-0.668743\pi\)
0.664269 + 0.747494i \(0.268743\pi\)
\(434\) 250.818 771.938i 0.0277411 0.0853784i
\(435\) 3980.14 12249.6i 0.438697 1.35017i
\(436\) 388.017 281.911i 0.0426207 0.0309658i
\(437\) −733.805 533.140i −0.0803264 0.0583606i
\(438\) −818.848 2520.16i −0.0893289 0.274926i
\(439\) −7824.19 −0.850634 −0.425317 0.905044i \(-0.639837\pi\)
−0.425317 + 0.905044i \(0.639837\pi\)
\(440\) 0 0
\(441\) −459.591 −0.0496265
\(442\) −1397.82 4302.04i −0.150424 0.462958i
\(443\) −9439.52 6858.21i −1.01238 0.735538i −0.0476744 0.998863i \(-0.515181\pi\)
−0.964707 + 0.263325i \(0.915181\pi\)
\(444\) 1462.58 1062.62i 0.156331 0.113581i
\(445\) 1401.97 4314.81i 0.149348 0.459644i
\(446\) −2.78664 + 8.57640i −0.000295855 + 0.000910547i
\(447\) 16730.2 12155.2i 1.77027 1.28617i
\(448\) −4348.89 3159.66i −0.458629 0.333214i
\(449\) 5245.64 + 16144.4i 0.551352 + 1.69689i 0.705387 + 0.708822i \(0.250773\pi\)
−0.154035 + 0.988065i \(0.549227\pi\)
\(450\) 240.173 0.0251597
\(451\) 0 0
\(452\) 14966.1 1.55741
\(453\) 2131.11 + 6558.88i 0.221034 + 0.680272i
\(454\) 2733.73 + 1986.17i 0.282600 + 0.205321i
\(455\) 13142.1 9548.31i 1.35409 0.983806i
\(456\) −1408.60 + 4335.23i −0.144658 + 0.445210i
\(457\) 5003.87 15400.3i 0.512190 1.57636i −0.276146 0.961116i \(-0.589057\pi\)
0.788337 0.615244i \(-0.210943\pi\)
\(458\) −3005.41 + 2183.56i −0.306623 + 0.222775i
\(459\) 7486.68 + 5439.39i 0.761325 + 0.553135i
\(460\) 395.991 + 1218.73i 0.0401373 + 0.123530i
\(461\) −8586.04 −0.867444 −0.433722 0.901047i \(-0.642800\pi\)
−0.433722 + 0.901047i \(0.642800\pi\)
\(462\) 0 0
\(463\) −7917.20 −0.794694 −0.397347 0.917668i \(-0.630069\pi\)
−0.397347 + 0.917668i \(0.630069\pi\)
\(464\) −2685.56 8265.31i −0.268694 0.826956i
\(465\) −4038.54 2934.17i −0.402759 0.292621i
\(466\) 125.367 91.0846i 0.0124625 0.00905454i
\(467\) −4683.14 + 14413.2i −0.464047 + 1.42819i 0.396130 + 0.918194i \(0.370353\pi\)
−0.860177 + 0.509995i \(0.829647\pi\)
\(468\) 1402.02 4314.97i 0.138479 0.426195i
\(469\) 5637.51 4095.89i 0.555045 0.403264i
\(470\) 547.043 + 397.450i 0.0536877 + 0.0390064i
\(471\) 626.619 + 1928.53i 0.0613017 + 0.188667i
\(472\) −6176.82 −0.602354
\(473\) 0 0
\(474\) 4245.25 0.411373
\(475\) 845.603 + 2602.50i 0.0816819 + 0.251391i
\(476\) −8462.44 6148.32i −0.814864 0.592033i
\(477\) 981.691 713.241i 0.0942318 0.0684634i
\(478\) −975.555 + 3002.45i −0.0933491 + 0.287299i
\(479\) −3090.51 + 9511.62i −0.294800 + 0.907301i 0.688489 + 0.725247i \(0.258275\pi\)
−0.983289 + 0.182054i \(0.941725\pi\)
\(480\) 7905.38 5743.60i 0.751729 0.546163i
\(481\) 2467.15 + 1792.49i 0.233872 + 0.169918i
\(482\) 225.443 + 693.843i 0.0213043 + 0.0655678i
\(483\) −1340.11 −0.126246
\(484\) 0 0
\(485\) −10896.9 −1.02021
\(486\) −500.798 1541.30i −0.0467421 0.143857i
\(487\) −5699.15 4140.68i −0.530294 0.385281i 0.290174 0.956974i \(-0.406287\pi\)
−0.820468 + 0.571693i \(0.806287\pi\)
\(488\) −927.779 + 674.071i −0.0860626 + 0.0625282i
\(489\) −2555.33 + 7864.48i −0.236310 + 0.727289i
\(490\) 164.134 505.153i 0.0151323 0.0465724i
\(491\) −10781.3 + 7833.07i −0.990944 + 0.719963i −0.960128 0.279562i \(-0.909811\pi\)
−0.0308160 + 0.999525i \(0.509811\pi\)
\(492\) −9841.87 7150.54i −0.901841 0.655226i
\(493\) −4323.20 13305.4i −0.394944 1.21551i
\(494\) −3711.38 −0.338022
\(495\) 0 0
\(496\) −3368.25 −0.304917
\(497\) 2461.94 + 7577.09i 0.222200 + 0.683861i
\(498\) 91.8245 + 66.7144i 0.00826256 + 0.00600310i
\(499\) 16236.3 11796.3i 1.45658 1.05827i 0.472346 0.881413i \(-0.343407\pi\)
0.984237 0.176856i \(-0.0565928\pi\)
\(500\) −2512.05 + 7731.30i −0.224685 + 0.691509i
\(501\) −876.943 + 2698.95i −0.0782015 + 0.240679i
\(502\) 163.987 119.144i 0.0145799 0.0105929i
\(503\) 6296.05 + 4574.35i 0.558106 + 0.405487i 0.830765 0.556623i \(-0.187903\pi\)
−0.272660 + 0.962111i \(0.587903\pi\)
\(504\) 482.253 + 1484.22i 0.0426216 + 0.131176i
\(505\) 16629.3 1.46533
\(506\) 0 0
\(507\) 20003.4 1.75224
\(508\) 252.808 + 778.062i 0.0220798 + 0.0679545i
\(509\) 1194.05 + 867.531i 0.103979 + 0.0755455i 0.638560 0.769572i \(-0.279530\pi\)
−0.534581 + 0.845117i \(0.679530\pi\)
\(510\) 3736.73 2714.89i 0.324441 0.235720i
\(511\) 3194.11 9830.46i 0.276515 0.851025i
\(512\) 3476.63 10700.0i 0.300091 0.923586i
\(513\) 6142.66 4462.91i 0.528665 0.384098i
\(514\) 1916.01 + 1392.06i 0.164419 + 0.119458i
\(515\) 6854.12 + 21094.8i 0.586463 + 1.80495i
\(516\) −101.205 −0.00863431
\(517\) 0 0
\(518\) −506.305 −0.0429455
\(519\) −3313.17 10196.9i −0.280216 0.862417i
\(520\) 8788.62 + 6385.31i 0.741166 + 0.538489i
\(521\) −6156.16 + 4472.71i −0.517670 + 0.376109i −0.815725 0.578439i \(-0.803662\pi\)
0.298055 + 0.954549i \(0.403662\pi\)
\(522\) −311.324 + 958.158i −0.0261040 + 0.0803399i
\(523\) −3848.16 + 11843.4i −0.321737 + 0.990204i 0.651155 + 0.758944i \(0.274285\pi\)
−0.972892 + 0.231259i \(0.925715\pi\)
\(524\) −6984.91 + 5074.83i −0.582323 + 0.423082i
\(525\) 3270.83 + 2376.40i 0.271906 + 0.197552i
\(526\) −47.0404 144.775i −0.00389935 0.0120010i
\(527\) −5422.18 −0.448186
\(528\) 0 0
\(529\) −11988.7 −0.985344
\(530\) 433.356 + 1333.73i 0.0355165 + 0.109309i
\(531\) −3594.78 2611.76i −0.293786 0.213448i
\(532\) −6943.26 + 5044.57i −0.565843 + 0.411109i
\(533\) 6341.31 19516.6i 0.515334 1.58603i
\(534\) −473.241 + 1456.49i −0.0383505 + 0.118031i
\(535\) 5035.97 3658.85i 0.406961 0.295674i
\(536\) 3770.01 + 2739.07i 0.303805 + 0.220727i
\(537\) −8115.10 24975.7i −0.652128 2.00704i
\(538\) 3684.44 0.295255
\(539\) 0 0
\(540\) −10727.0 −0.854847
\(541\) −2877.62 8856.40i −0.228685 0.703819i −0.997897 0.0648254i \(-0.979351\pi\)
0.769212 0.638994i \(-0.220649\pi\)
\(542\) 880.670 + 639.844i 0.0697933 + 0.0507078i
\(543\) −16350.5 + 11879.3i −1.29220 + 0.938839i
\(544\) 3279.86 10094.4i 0.258497 0.795573i
\(545\) −255.280 + 785.672i −0.0200642 + 0.0617514i
\(546\) −4436.19 + 3223.08i −0.347713 + 0.252629i
\(547\) −8914.20 6476.54i −0.696789 0.506247i 0.182096 0.983281i \(-0.441712\pi\)
−0.878885 + 0.477034i \(0.841712\pi\)
\(548\) −457.439 1407.85i −0.0356585 0.109745i
\(549\) −824.968 −0.0641325
\(550\) 0 0
\(551\) −11478.6 −0.887490
\(552\) −276.935 852.317i −0.0213535 0.0657192i
\(553\) 13397.0 + 9733.49i 1.03020 + 0.748481i
\(554\) −139.672 + 101.477i −0.0107113 + 0.00778225i
\(555\) −962.244 + 2961.48i −0.0735946 + 0.226501i
\(556\) −6689.27 + 20587.4i −0.510230 + 1.57033i
\(557\) −9723.11 + 7064.25i −0.739643 + 0.537382i −0.892599 0.450851i \(-0.851121\pi\)
0.152956 + 0.988233i \(0.451121\pi\)
\(558\) 315.892 + 229.509i 0.0239656 + 0.0174120i
\(559\) −52.7548 162.362i −0.00399157 0.0122848i
\(560\) 11192.1 0.844555
\(561\) 0 0
\(562\) 3598.04 0.270061
\(563\) 2708.19 + 8334.95i 0.202729 + 0.623937i 0.999799 + 0.0200493i \(0.00638233\pi\)
−0.797070 + 0.603887i \(0.793618\pi\)
\(564\) 2571.94 + 1868.63i 0.192018 + 0.139510i
\(565\) −20855.0 + 15152.0i −1.55288 + 1.12823i
\(566\) 1176.22 3620.05i 0.0873505 0.268837i
\(567\) 4616.76 14208.9i 0.341950 1.05241i
\(568\) −4310.31 + 3131.62i −0.318410 + 0.231338i
\(569\) −8311.16 6038.41i −0.612341 0.444892i 0.237897 0.971290i \(-0.423542\pi\)
−0.850238 + 0.526399i \(0.823542\pi\)
\(570\) −1171.07 3604.19i −0.0860540 0.264847i
\(571\) −2602.62 −0.190747 −0.0953734 0.995442i \(-0.530404\pi\)
−0.0953734 + 0.995442i \(0.530404\pi\)
\(572\) 0 0
\(573\) 17332.6 1.26366
\(574\) 1052.82 + 3240.24i 0.0765572 + 0.235619i
\(575\) −435.242 316.222i −0.0315667 0.0229345i
\(576\) 2092.11 1520.00i 0.151339 0.109954i
\(577\) −6095.99 + 18761.5i −0.439825 + 1.35364i 0.448235 + 0.893916i \(0.352053\pi\)
−0.888060 + 0.459728i \(0.847947\pi\)
\(578\) 438.925 1350.87i 0.0315863 0.0972127i
\(579\) −11914.2 + 8656.17i −0.855159 + 0.621309i
\(580\) 13119.8 + 9532.12i 0.939261 + 0.682413i
\(581\) 136.814 + 421.069i 0.00976935 + 0.0300670i
\(582\) 3678.30 0.261977
\(583\) 0 0
\(584\) 6912.30 0.489783
\(585\) 2414.88 + 7432.24i 0.170672 + 0.525274i
\(586\) −5259.65 3821.36i −0.370775 0.269384i
\(587\) 8184.14 5946.12i 0.575461 0.418097i −0.261624 0.965170i \(-0.584258\pi\)
0.837085 + 0.547073i \(0.184258\pi\)
\(588\) 771.683 2374.99i 0.0541219 0.166570i
\(589\) −1374.75 + 4231.05i −0.0961725 + 0.295988i
\(590\) 4154.49 3018.41i 0.289894 0.210620i
\(591\) −24582.8 17860.5i −1.71100 1.24312i
\(592\) 649.265 + 1998.23i 0.0450754 + 0.138728i
\(593\) −3130.32 −0.216774 −0.108387 0.994109i \(-0.534569\pi\)
−0.108387 + 0.994109i \(0.534569\pi\)
\(594\) 0 0
\(595\) 18016.9 1.24138
\(596\) 8045.98 + 24763.0i 0.552980 + 1.70190i
\(597\) 36.8919 + 26.8035i 0.00252912 + 0.00183751i
\(598\) 590.313 428.887i 0.0403674 0.0293286i
\(599\) 3114.92 9586.73i 0.212474 0.653928i −0.786849 0.617145i \(-0.788289\pi\)
0.999323 0.0367829i \(-0.0117110\pi\)
\(600\) −835.484 + 2571.36i −0.0568475 + 0.174959i
\(601\) 3864.69 2807.86i 0.262303 0.190574i −0.448859 0.893603i \(-0.648169\pi\)
0.711162 + 0.703029i \(0.248169\pi\)
\(602\) 22.9304 + 16.6599i 0.00155245 + 0.00112792i
\(603\) 1035.90 + 3188.17i 0.0699586 + 0.215310i
\(604\) −8683.16 −0.584955
\(605\) 0 0
\(606\) −5613.29 −0.376278
\(607\) 794.591 + 2445.50i 0.0531325 + 0.163525i 0.974102 0.226110i \(-0.0726010\pi\)
−0.920969 + 0.389635i \(0.872601\pi\)
\(608\) −7045.27 5118.69i −0.469940 0.341431i
\(609\) −13720.3 + 9968.41i −0.912933 + 0.663285i
\(610\) 294.621 906.751i 0.0195555 0.0601857i
\(611\) −1657.15 + 5100.20i −0.109724 + 0.337695i
\(612\) 4071.00 2957.75i 0.268889 0.195360i
\(613\) 10284.1 + 7471.84i 0.677604 + 0.492308i 0.872562 0.488504i \(-0.162457\pi\)
−0.194958 + 0.980812i \(0.562457\pi\)
\(614\) 338.857 + 1042.89i 0.0222722 + 0.0685468i
\(615\) 20953.8 1.37388
\(616\) 0 0
\(617\) 16236.1 1.05939 0.529693 0.848189i \(-0.322307\pi\)
0.529693 + 0.848189i \(0.322307\pi\)
\(618\) −2313.64 7120.66i −0.150596 0.463487i
\(619\) −10240.0 7439.78i −0.664910 0.483086i 0.203407 0.979094i \(-0.434798\pi\)
−0.868318 + 0.496009i \(0.834798\pi\)
\(620\) 5084.86 3694.37i 0.329376 0.239305i
\(621\) −461.286 + 1419.69i −0.0298080 + 0.0917396i
\(622\) −1693.16 + 5211.01i −0.109147 + 0.335921i
\(623\) −4832.86 + 3511.28i −0.310794 + 0.225805i
\(624\) 18409.3 + 13375.2i 1.18103 + 0.858069i
\(625\) −5883.02 18106.1i −0.376513 1.15879i
\(626\) −481.955 −0.0307713
\(627\) 0 0
\(628\) −2553.15 −0.162232
\(629\) 1045.18 + 3216.74i 0.0662546 + 0.203911i
\(630\) −1049.65 762.617i −0.0663796 0.0482276i
\(631\) 3195.59 2321.73i 0.201608 0.146477i −0.482401 0.875951i \(-0.660235\pi\)
0.684008 + 0.729474i \(0.260235\pi\)
\(632\) −3422.06 + 10532.0i −0.215383 + 0.662881i
\(633\) −5692.39 + 17519.4i −0.357428 + 1.10005i
\(634\) −138.411 + 100.562i −0.00867038 + 0.00629940i
\(635\) −1140.01 828.263i −0.0712437 0.0517616i
\(636\) 2037.44 + 6270.59i 0.127028 + 0.390951i
\(637\) 4212.44 0.262014
\(638\) 0 0
\(639\) −3832.67 −0.237274
\(640\) 4998.41 + 15383.5i 0.308718 + 0.950137i
\(641\) 5985.32 + 4348.59i 0.368808 + 0.267955i 0.756717 0.653743i \(-0.226802\pi\)
−0.387908 + 0.921698i \(0.626802\pi\)
\(642\) −1699.92 + 1235.06i −0.104502 + 0.0759253i
\(643\) −3860.14 + 11880.3i −0.236748 + 0.728637i 0.760136 + 0.649764i \(0.225132\pi\)
−0.996885 + 0.0788729i \(0.974868\pi\)
\(644\) 521.407 1604.72i 0.0319042 0.0981910i
\(645\) 141.027 102.462i 0.00860919 0.00625494i
\(646\) −3330.16 2419.51i −0.202823 0.147359i
\(647\) −3236.02 9959.44i −0.196632 0.605172i −0.999954 0.00962607i \(-0.996936\pi\)
0.803321 0.595546i \(-0.203064\pi\)
\(648\) 9991.02 0.605685
\(649\) 0 0
\(650\) −2201.33 −0.132836
\(651\) 2031.14 + 6251.22i 0.122284 + 0.376351i
\(652\) −8423.18 6119.80i −0.505946 0.367592i
\(653\) −5127.50 + 3725.34i −0.307281 + 0.223253i −0.730729 0.682668i \(-0.760820\pi\)
0.423448 + 0.905920i \(0.360820\pi\)
\(654\) 86.1712 265.208i 0.00515223 0.0158569i
\(655\) 4595.44 14143.3i 0.274136 0.843703i
\(656\) 11438.2 8310.32i 0.680771 0.494609i
\(657\) 4022.82 + 2922.75i 0.238881 + 0.173557i
\(658\) −275.130 846.762i −0.0163004 0.0501675i
\(659\) −15196.7 −0.898302 −0.449151 0.893456i \(-0.648274\pi\)
−0.449151 + 0.893456i \(0.648274\pi\)
\(660\) 0 0
\(661\) 2298.17 0.135232 0.0676161 0.997711i \(-0.478461\pi\)
0.0676161 + 0.997711i \(0.478461\pi\)
\(662\) 1930.29 + 5940.83i 0.113328 + 0.348787i
\(663\) 29635.2 + 21531.2i 1.73595 + 1.26124i
\(664\) −239.530 + 174.029i −0.0139994 + 0.0101711i
\(665\) 4568.04 14059.0i 0.266377 0.819826i
\(666\) 75.2662 231.645i 0.00437914 0.0134776i
\(667\) 1825.73 1326.47i 0.105986 0.0770033i
\(668\) −2890.69 2100.21i −0.167431 0.121646i
\(669\) −22.5664 69.4523i −0.00130414 0.00401372i
\(670\) −3874.18 −0.223392
\(671\) 0 0
\(672\) −12866.4 −0.738589
\(673\) −7169.08 22064.2i −0.410621 1.26376i −0.916110 0.400928i \(-0.868688\pi\)
0.505489 0.862833i \(-0.331312\pi\)
\(674\) 6924.00 + 5030.58i 0.395701 + 0.287494i
\(675\) 3643.40 2647.08i 0.207755 0.150943i
\(676\) −7782.90 + 23953.3i −0.442814 + 1.36284i
\(677\) 662.958 2040.38i 0.0376360 0.115832i −0.930473 0.366359i \(-0.880604\pi\)
0.968109 + 0.250528i \(0.0806041\pi\)
\(678\) 7039.70 5114.64i 0.398758 0.289715i
\(679\) 11607.8 + 8433.59i 0.656065 + 0.476659i
\(680\) 3723.21 + 11458.9i 0.209968 + 0.646217i
\(681\) −27364.0 −1.53978
\(682\) 0 0
\(683\) −29544.6 −1.65519 −0.827593 0.561329i \(-0.810290\pi\)
−0.827593 + 0.561329i \(0.810290\pi\)
\(684\) −1275.83 3926.60i −0.0713196 0.219499i
\(685\) 2062.77 + 1498.69i 0.115058 + 0.0835942i
\(686\) −4004.58 + 2909.50i −0.222880 + 0.161932i
\(687\) 9296.29 28611.1i 0.516267 1.58891i
\(688\) 36.3466 111.863i 0.00201410 0.00619876i
\(689\) −8997.80 + 6537.29i −0.497517 + 0.361467i
\(690\) 602.764 + 437.934i 0.0332563 + 0.0241621i
\(691\) 8591.62 + 26442.3i 0.472997 + 1.45573i 0.848641 + 0.528970i \(0.177422\pi\)
−0.375644 + 0.926764i \(0.622578\pi\)
\(692\) 13499.5 0.741579
\(693\) 0 0
\(694\) −3366.55 −0.184139
\(695\) −11521.8 35460.5i −0.628845 1.93539i
\(696\) −9175.30 6666.24i −0.499696 0.363051i
\(697\) 18413.1 13377.9i 1.00064 0.727007i
\(698\) −1520.23 + 4678.80i −0.0824380 + 0.253718i
\(699\) −387.785 + 1193.48i −0.0209834 + 0.0645801i
\(700\) −4118.25 + 2992.09i −0.222365 + 0.161557i
\(701\) −15935.8 11578.0i −0.858613 0.623819i 0.0688945 0.997624i \(-0.478053\pi\)
−0.927507 + 0.373805i \(0.878053\pi\)
\(702\) 1887.48 + 5809.08i 0.101479 + 0.312321i
\(703\) 2775.09 0.148883
\(704\) 0 0
\(705\) −5475.78 −0.292524
\(706\) 1298.19 + 3995.41i 0.0692038 + 0.212987i
\(707\) −17714.2 12870.1i −0.942308 0.684627i
\(708\) 19532.5 14191.2i 1.03683 0.753300i
\(709\) 5909.18 18186.6i 0.313010 0.963345i −0.663556 0.748126i \(-0.730954\pi\)
0.976566 0.215218i \(-0.0690464\pi\)
\(710\) 1368.76 4212.62i 0.0723504 0.222672i
\(711\) −6444.85 + 4682.46i −0.339945 + 0.246984i
\(712\) −3231.91 2348.12i −0.170114 0.123595i
\(713\) −270.279 831.833i −0.0141964 0.0436920i
\(714\) −6081.70 −0.318770
\(715\) 0 0
\(716\) 33064.8 1.72582
\(717\) −7900.12 24314.1i −0.411486 1.26642i
\(718\) −2437.23 1770.75i −0.126681 0.0920389i
\(719\) −1486.52 + 1080.02i −0.0771042 + 0.0560195i −0.625670 0.780088i \(-0.715174\pi\)
0.548565 + 0.836108i \(0.315174\pi\)
\(720\) −1663.79 + 5120.61i −0.0861190 + 0.265047i
\(721\) 9024.91 27775.8i 0.466165 1.43471i
\(722\) 1329.85 966.196i 0.0685486 0.0498034i
\(723\) −4779.63 3472.61i −0.245860 0.178627i
\(724\) −7863.38 24201.0i −0.403647 1.24230i
\(725\) −6808.33 −0.348765
\(726\) 0 0
\(727\) −7555.46 −0.385442 −0.192721 0.981254i \(-0.561731\pi\)
−0.192721 + 0.981254i \(0.561731\pi\)
\(728\) −4420.15 13603.8i −0.225030 0.692570i
\(729\) −8660.70 6292.36i −0.440009 0.319685i
\(730\) −4649.17 + 3377.82i −0.235717 + 0.171258i
\(731\) 58.5105 180.077i 0.00296045 0.00911133i
\(732\) 1385.17 4263.12i 0.0699419 0.215259i
\(733\) 9695.77 7044.39i 0.488569 0.354966i −0.316065 0.948738i \(-0.602362\pi\)
0.804634 + 0.593771i \(0.202362\pi\)
\(734\) −5722.83 4157.88i −0.287784 0.209087i
\(735\) 1329.17 + 4090.77i 0.0667037 + 0.205293i
\(736\) 1712.10 0.0857456
\(737\) 0 0
\(738\) −1638.99 −0.0817508
\(739\) 8387.49 + 25814.0i 0.417508 + 1.28496i 0.909988 + 0.414635i \(0.136091\pi\)
−0.492479 + 0.870324i \(0.663909\pi\)
\(740\) −3171.87 2304.50i −0.157568 0.114480i
\(741\) 24315.1 17665.9i 1.20545 0.875809i
\(742\) 570.605 1756.14i 0.0282312 0.0868868i
\(743\) 9030.29 27792.4i 0.445881 1.37228i −0.435634 0.900124i \(-0.643476\pi\)
0.881515 0.472156i \(-0.156524\pi\)
\(744\) −3556.07 + 2583.64i −0.175231 + 0.127313i
\(745\) −36282.4 26360.7i −1.78428 1.29635i
\(746\) 32.0730 + 98.7104i 0.00157409 + 0.00484457i
\(747\) −212.987 −0.0104321
\(748\) 0 0
\(749\) −8196.29 −0.399847
\(750\) 1460.55 + 4495.10i 0.0711088 + 0.218850i
\(751\) 7167.40 + 5207.42i 0.348258 + 0.253025i 0.748138 0.663543i \(-0.230948\pi\)
−0.399880 + 0.916568i \(0.630948\pi\)
\(752\) −2989.10 + 2171.71i −0.144948 + 0.105311i
\(753\) −507.243 + 1561.13i −0.0245484 + 0.0755523i
\(754\) 2853.48 8782.10i 0.137822 0.424172i
\(755\) 12099.8 8791.01i 0.583253 0.423758i
\(756\) 11426.9 + 8302.12i 0.549725 + 0.399398i
\(757\) 11042.5 + 33985.4i 0.530182 + 1.63173i 0.753835 + 0.657064i \(0.228202\pi\)
−0.223653 + 0.974669i \(0.571798\pi\)
\(758\) −2064.19 −0.0989112
\(759\) 0 0
\(760\) 9885.59 0.471826
\(761\) −10628.5 32711.3i −0.506287 1.55819i −0.798597 0.601867i \(-0.794424\pi\)
0.292310 0.956324i \(-0.405576\pi\)
\(762\) 384.815 + 279.585i 0.0182945 + 0.0132917i
\(763\) 880.003 639.359i 0.0417539 0.0303360i
\(764\) −6743.74 + 20755.1i −0.319345 + 0.982844i
\(765\) −2678.35 + 8243.12i −0.126583 + 0.389583i
\(766\) 3753.53 2727.10i 0.177050 0.128635i
\(767\) 32948.4 + 23938.4i 1.55110 + 1.12694i
\(768\) 2966.54 + 9130.06i