Properties

Label 121.4.c.c.27.2
Level $121$
Weight $4$
Character 121.27
Analytic conductor $7.139$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.13923111069\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 27.2
Root \(-1.40126 - 1.01807i\) of defining polynomial
Character \(\chi\) \(=\) 121.27
Dual form 121.4.c.c.9.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.844250 + 2.59833i) q^{2} +(6.41405 + 4.66008i) q^{3} +(0.433551 - 0.314993i) q^{4} +(4.59088 - 14.1293i) q^{5} +(-6.69339 + 20.6001i) q^{6} +(-2.48514 + 1.80556i) q^{7} +(18.8667 + 13.7075i) q^{8} +(11.0802 + 34.1015i) q^{9} +O(q^{10})\) \(q+(0.844250 + 2.59833i) q^{2} +(6.41405 + 4.66008i) q^{3} +(0.433551 - 0.314993i) q^{4} +(4.59088 - 14.1293i) q^{5} +(-6.69339 + 20.6001i) q^{6} +(-2.48514 + 1.80556i) q^{7} +(18.8667 + 13.7075i) q^{8} +(11.0802 + 34.1015i) q^{9} +40.5885 q^{10} +4.24871 q^{12} +(1.65602 + 5.09670i) q^{13} +(-6.78952 - 4.93287i) q^{14} +(95.2898 - 69.2321i) q^{15} +(-18.3635 + 56.5171i) q^{16} +(-12.7363 + 39.1982i) q^{17} +(-79.2525 + 57.5803i) q^{18} +(-113.200 - 82.2447i) q^{19} +(-2.46025 - 7.57186i) q^{20} -24.3538 q^{21} -111.354 q^{23} +(57.1341 + 175.841i) q^{24} +(-77.4333 - 56.2586i) q^{25} +(-11.8448 + 8.60577i) q^{26} +(-21.6977 + 66.7788i) q^{27} +(-0.508695 + 1.56560i) q^{28} +(20.2213 - 14.6916i) q^{29} +(260.336 + 189.145i) q^{30} +(9.73324 + 29.9558i) q^{31} +24.2102 q^{32} -112.603 q^{34} +(14.1023 + 43.4023i) q^{35} +(15.5456 + 11.2945i) q^{36} +(-10.6334 + 7.72561i) q^{37} +(118.130 - 363.567i) q^{38} +(-13.1292 + 40.4076i) q^{39} +(280.291 - 203.643i) q^{40} +(-211.212 - 153.454i) q^{41} +(-20.5607 - 63.2794i) q^{42} -57.7128 q^{43} +532.697 q^{45} +(-94.0105 - 289.335i) q^{46} +(278.177 + 202.108i) q^{47} +(-381.159 + 276.928i) q^{48} +(-103.077 + 317.238i) q^{49} +(80.8056 - 248.694i) q^{50} +(-264.358 + 192.067i) q^{51} +(2.32339 + 1.68804i) q^{52} +(-105.991 - 326.207i) q^{53} -191.832 q^{54} -71.6359 q^{56} +(-342.804 - 1055.04i) q^{57} +(55.2455 + 40.1382i) q^{58} +(-71.4923 + 51.9422i) q^{59} +(19.5053 - 60.0312i) q^{60} +(228.270 - 702.543i) q^{61} +(-69.6180 + 50.5804i) q^{62} +(-89.1080 - 64.7408i) q^{63} +(167.348 + 515.043i) q^{64} +79.6152 q^{65} +342.359 q^{67} +(6.82534 + 21.0062i) q^{68} +(-714.229 - 518.918i) q^{69} +(-100.868 + 73.2848i) q^{70} +(-64.0790 + 197.215i) q^{71} +(-258.397 + 795.264i) q^{72} +(817.592 - 594.016i) q^{73} +(-29.0510 - 21.1068i) q^{74} +(-234.492 - 721.691i) q^{75} -74.9845 q^{76} -116.077 q^{78} +(399.938 + 1230.88i) q^{79} +(714.242 + 518.927i) q^{80} +(332.863 - 241.839i) q^{81} +(220.410 - 678.352i) q^{82} +(136.538 - 420.221i) q^{83} +(-10.5586 + 7.67129i) q^{84} +(495.371 + 359.908i) q^{85} +(-48.7240 - 149.957i) q^{86} +198.164 q^{87} -1489.11 q^{89} +(449.730 + 1384.13i) q^{90} +(-13.3178 - 9.67595i) q^{91} +(-48.2776 + 35.0757i) q^{92} +(-77.1671 + 237.496i) q^{93} +(-290.292 + 893.427i) q^{94} +(-1681.75 + 1221.86i) q^{95} +(155.286 + 112.822i) q^{96} +(416.065 + 1280.52i) q^{97} -911.314 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} + 26 q^{6} - 20 q^{7} + 12 q^{8} - 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 2 q^{2} + 2 q^{3} + 8 q^{4} - 2 q^{5} + 26 q^{6} - 20 q^{7} + 12 q^{8} - 44 q^{9} + 200 q^{10} - 160 q^{12} - 80 q^{13} + 4 q^{14} + 194 q^{15} + 8 q^{16} + 124 q^{17} - 92 q^{18} - 72 q^{19} - 88 q^{20} + 304 q^{21} - 392 q^{23} - 252 q^{24} - 136 q^{25} + 40 q^{26} + 182 q^{27} + 128 q^{28} - 144 q^{29} + 266 q^{30} + 34 q^{31} - 416 q^{32} - 208 q^{34} + 172 q^{35} + 80 q^{36} - 54 q^{37} - 432 q^{38} - 400 q^{39} + 492 q^{40} - 536 q^{41} + 140 q^{42} - 240 q^{43} + 1712 q^{45} + 314 q^{46} + 272 q^{47} - 776 q^{48} + 390 q^{49} - 232 q^{50} + 164 q^{51} + 560 q^{52} + 492 q^{53} - 440 q^{54} + 480 q^{56} + 1512 q^{57} + 192 q^{58} - 634 q^{59} - 632 q^{60} - 840 q^{61} - 134 q^{62} - 248 q^{63} - 224 q^{64} - 3520 q^{65} + 3016 q^{67} - 640 q^{68} - 962 q^{69} - 284 q^{70} + 678 q^{71} + 744 q^{72} + 400 q^{73} - 6 q^{74} + 520 q^{75} + 1728 q^{76} - 1760 q^{78} - 316 q^{79} + 1544 q^{80} + 1294 q^{81} - 512 q^{82} - 468 q^{83} + 736 q^{84} - 452 q^{85} + 156 q^{86} + 4800 q^{87} - 7368 q^{89} - 1532 q^{90} - 1280 q^{91} + 40 q^{92} + 638 q^{93} + 992 q^{94} - 2952 q^{95} + 952 q^{96} - 2194 q^{97} - 3480 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.844250 + 2.59833i 0.298487 + 0.918650i 0.982028 + 0.188737i \(0.0604394\pi\)
−0.683540 + 0.729913i \(0.739561\pi\)
\(3\) 6.41405 + 4.66008i 1.23438 + 0.896833i 0.997211 0.0746343i \(-0.0237789\pi\)
0.237174 + 0.971467i \(0.423779\pi\)
\(4\) 0.433551 0.314993i 0.0541939 0.0393741i
\(5\) 4.59088 14.1293i 0.410621 1.26376i −0.505489 0.862833i \(-0.668688\pi\)
0.916110 0.400928i \(-0.131312\pi\)
\(6\) −6.69339 + 20.6001i −0.455427 + 1.40166i
\(7\) −2.48514 + 1.80556i −0.134185 + 0.0974909i −0.652853 0.757485i \(-0.726428\pi\)
0.518668 + 0.854976i \(0.326428\pi\)
\(8\) 18.8667 + 13.7075i 0.833798 + 0.605789i
\(9\) 11.0802 + 34.1015i 0.410379 + 1.26302i
\(10\) 40.5885 1.28352
\(11\) 0 0
\(12\) 4.24871 0.102208
\(13\) 1.65602 + 5.09670i 0.0353305 + 0.108736i 0.967166 0.254144i \(-0.0817936\pi\)
−0.931836 + 0.362880i \(0.881794\pi\)
\(14\) −6.78952 4.93287i −0.129612 0.0941690i
\(15\) 95.2898 69.2321i 1.64025 1.19171i
\(16\) −18.3635 + 56.5171i −0.286930 + 0.883080i
\(17\) −12.7363 + 39.1982i −0.181706 + 0.559232i −0.999876 0.0157433i \(-0.994989\pi\)
0.818170 + 0.574976i \(0.194989\pi\)
\(18\) −79.2525 + 57.5803i −1.03778 + 0.753990i
\(19\) −113.200 82.2447i −1.36684 0.993065i −0.997977 0.0635795i \(-0.979748\pi\)
−0.368860 0.929485i \(-0.620252\pi\)
\(20\) −2.46025 7.57186i −0.0275064 0.0846560i
\(21\) −24.3538 −0.253069
\(22\) 0 0
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) 57.1341 + 175.841i 0.485935 + 1.49555i
\(25\) −77.4333 56.2586i −0.619466 0.450069i
\(26\) −11.8448 + 8.60577i −0.0893447 + 0.0649127i
\(27\) −21.6977 + 66.7788i −0.154657 + 0.475985i
\(28\) −0.508695 + 1.56560i −0.00343337 + 0.0105668i
\(29\) 20.2213 14.6916i 0.129483 0.0940745i −0.521159 0.853460i \(-0.674500\pi\)
0.650641 + 0.759385i \(0.274500\pi\)
\(30\) 260.336 + 189.145i 1.58436 + 1.15110i
\(31\) 9.73324 + 29.9558i 0.0563917 + 0.173556i 0.975285 0.220950i \(-0.0709158\pi\)
−0.918893 + 0.394506i \(0.870916\pi\)
\(32\) 24.2102 0.133744
\(33\) 0 0
\(34\) −112.603 −0.567976
\(35\) 14.1023 + 43.4023i 0.0681062 + 0.209609i
\(36\) 15.5456 + 11.2945i 0.0719703 + 0.0522895i
\(37\) −10.6334 + 7.72561i −0.0472464 + 0.0343266i −0.611158 0.791509i \(-0.709296\pi\)
0.563911 + 0.825835i \(0.309296\pi\)
\(38\) 118.130 363.567i 0.504295 1.55206i
\(39\) −13.1292 + 40.4076i −0.0539067 + 0.165908i
\(40\) 280.291 203.643i 1.10795 0.804971i
\(41\) −211.212 153.454i −0.804529 0.584525i 0.107710 0.994182i \(-0.465648\pi\)
−0.912239 + 0.409658i \(0.865648\pi\)
\(42\) −20.5607 63.2794i −0.0755378 0.232482i
\(43\) −57.7128 −0.204677 −0.102339 0.994750i \(-0.532633\pi\)
−0.102339 + 0.994750i \(0.532633\pi\)
\(44\) 0 0
\(45\) 532.697 1.76466
\(46\) −94.0105 289.335i −0.301328 0.927392i
\(47\) 278.177 + 202.108i 0.863326 + 0.627243i 0.928788 0.370612i \(-0.120852\pi\)
−0.0654616 + 0.997855i \(0.520852\pi\)
\(48\) −381.159 + 276.928i −1.14616 + 0.832732i
\(49\) −103.077 + 317.238i −0.300516 + 0.924893i
\(50\) 80.8056 248.694i 0.228553 0.703413i
\(51\) −264.358 + 192.067i −0.725833 + 0.527348i
\(52\) 2.32339 + 1.68804i 0.00619609 + 0.00450172i
\(53\) −105.991 326.207i −0.274698 0.845435i −0.989299 0.145902i \(-0.953392\pi\)
0.714601 0.699533i \(-0.246608\pi\)
\(54\) −191.832 −0.483426
\(55\) 0 0
\(56\) −71.6359 −0.170942
\(57\) −342.804 1055.04i −0.796589 2.45165i
\(58\) 55.2455 + 40.1382i 0.125070 + 0.0908690i
\(59\) −71.4923 + 51.9422i −0.157754 + 0.114615i −0.663862 0.747855i \(-0.731084\pi\)
0.506108 + 0.862470i \(0.331084\pi\)
\(60\) 19.5053 60.0312i 0.0419688 0.129167i
\(61\) 228.270 702.543i 0.479131 1.47461i −0.361174 0.932499i \(-0.617624\pi\)
0.840305 0.542115i \(-0.182376\pi\)
\(62\) −69.6180 + 50.5804i −0.142605 + 0.103608i
\(63\) −89.1080 64.7408i −0.178199 0.129469i
\(64\) 167.348 + 515.043i 0.326851 + 1.00594i
\(65\) 79.6152 0.151924
\(66\) 0 0
\(67\) 342.359 0.624266 0.312133 0.950038i \(-0.398957\pi\)
0.312133 + 0.950038i \(0.398957\pi\)
\(68\) 6.82534 + 21.0062i 0.0121720 + 0.0374615i
\(69\) −714.229 518.918i −1.24613 0.905368i
\(70\) −100.868 + 73.2848i −0.172229 + 0.125131i
\(71\) −64.0790 + 197.215i −0.107110 + 0.329650i −0.990220 0.139516i \(-0.955445\pi\)
0.883110 + 0.469166i \(0.155445\pi\)
\(72\) −258.397 + 795.264i −0.422949 + 1.30170i
\(73\) 817.592 594.016i 1.31085 0.952387i 0.310851 0.950459i \(-0.399386\pi\)
0.999998 0.00192848i \(-0.000613855\pi\)
\(74\) −29.0510 21.1068i −0.0456366 0.0331569i
\(75\) −234.492 721.691i −0.361023 1.11112i
\(76\) −74.9845 −0.113175
\(77\) 0 0
\(78\) −116.077 −0.168502
\(79\) 399.938 + 1230.88i 0.569576 + 1.75297i 0.653947 + 0.756540i \(0.273112\pi\)
−0.0843714 + 0.996434i \(0.526888\pi\)
\(80\) 714.242 + 518.927i 0.998183 + 0.725222i
\(81\) 332.863 241.839i 0.456602 0.331741i
\(82\) 220.410 678.352i 0.296832 0.913554i
\(83\) 136.538 420.221i 0.180566 0.555725i −0.819278 0.573397i \(-0.805625\pi\)
0.999844 + 0.0176715i \(0.00562532\pi\)
\(84\) −10.5586 + 7.67129i −0.0137148 + 0.00996436i
\(85\) 495.371 + 359.908i 0.632124 + 0.459265i
\(86\) −48.7240 149.957i −0.0610936 0.188027i
\(87\) 198.164 0.244200
\(88\) 0 0
\(89\) −1489.11 −1.77355 −0.886773 0.462205i \(-0.847058\pi\)
−0.886773 + 0.462205i \(0.847058\pi\)
\(90\) 449.730 + 1384.13i 0.526730 + 1.62111i
\(91\) −13.3178 9.67595i −0.0153416 0.0111463i
\(92\) −48.2776 + 35.0757i −0.0547096 + 0.0397488i
\(93\) −77.1671 + 237.496i −0.0860415 + 0.264808i
\(94\) −290.292 + 893.427i −0.318525 + 0.980319i
\(95\) −1681.75 + 1221.86i −1.81625 + 1.31958i
\(96\) 155.286 + 112.822i 0.165091 + 0.119946i
\(97\) 416.065 + 1280.52i 0.435516 + 1.34038i 0.892557 + 0.450934i \(0.148909\pi\)
−0.457042 + 0.889445i \(0.651091\pi\)
\(98\) −911.314 −0.939353
\(99\) 0 0
\(100\) −51.2923 −0.0512923
\(101\) −49.8943 153.559i −0.0491551 0.151284i 0.923466 0.383680i \(-0.125343\pi\)
−0.972621 + 0.232396i \(0.925343\pi\)
\(102\) −722.238 524.737i −0.701101 0.509379i
\(103\) 28.1208 20.4309i 0.0269012 0.0195449i −0.574253 0.818678i \(-0.694708\pi\)
0.601155 + 0.799133i \(0.294708\pi\)
\(104\) −38.6192 + 118.858i −0.0364127 + 0.112067i
\(105\) −111.806 + 344.102i −0.103915 + 0.319818i
\(106\) 758.113 550.801i 0.694665 0.504703i
\(107\) −673.247 489.143i −0.608273 0.441937i 0.240532 0.970641i \(-0.422678\pi\)
−0.848806 + 0.528705i \(0.822678\pi\)
\(108\) 11.6278 + 35.7867i 0.0103600 + 0.0318849i
\(109\) 1044.26 0.917629 0.458815 0.888532i \(-0.348274\pi\)
0.458815 + 0.888532i \(0.348274\pi\)
\(110\) 0 0
\(111\) −104.205 −0.0891055
\(112\) −56.4090 173.609i −0.0475906 0.146469i
\(113\) −238.726 173.445i −0.198739 0.144392i 0.483965 0.875087i \(-0.339196\pi\)
−0.682704 + 0.730695i \(0.739196\pi\)
\(114\) 2451.94 1781.44i 2.01443 1.46357i
\(115\) −511.212 + 1573.35i −0.414529 + 1.27579i
\(116\) 4.13919 12.7391i 0.00331305 0.0101965i
\(117\) −155.456 + 112.945i −0.122837 + 0.0892461i
\(118\) −195.320 141.909i −0.152379 0.110710i
\(119\) −39.1232 120.409i −0.0301380 0.0927551i
\(120\) 2746.80 2.08956
\(121\) 0 0
\(122\) 2018.16 1.49767
\(123\) −639.613 1968.53i −0.468878 1.44306i
\(124\) 13.6557 + 9.92147i 0.00988969 + 0.00718528i
\(125\) 352.005 255.747i 0.251874 0.182997i
\(126\) 92.9887 286.190i 0.0657468 0.202348i
\(127\) −407.162 + 1253.12i −0.284487 + 0.875560i 0.702065 + 0.712113i \(0.252261\pi\)
−0.986552 + 0.163448i \(0.947739\pi\)
\(128\) −1040.28 + 755.807i −0.718348 + 0.521911i
\(129\) −370.173 268.946i −0.252650 0.183561i
\(130\) 67.2152 + 206.867i 0.0453474 + 0.139565i
\(131\) −1600.71 −1.06759 −0.533797 0.845612i \(-0.679235\pi\)
−0.533797 + 0.845612i \(0.679235\pi\)
\(132\) 0 0
\(133\) 429.815 0.280223
\(134\) 289.037 + 889.563i 0.186336 + 0.573482i
\(135\) 843.925 + 613.147i 0.538026 + 0.390899i
\(136\) −777.598 + 564.958i −0.490283 + 0.356211i
\(137\) 498.035 1532.80i 0.310584 0.955880i −0.666950 0.745103i \(-0.732400\pi\)
0.977534 0.210777i \(-0.0675995\pi\)
\(138\) 745.334 2293.90i 0.459761 1.41500i
\(139\) 25.7768 18.7280i 0.0157292 0.0114280i −0.579893 0.814693i \(-0.696906\pi\)
0.595622 + 0.803265i \(0.296906\pi\)
\(140\) 19.7855 + 14.3750i 0.0119441 + 0.00867791i
\(141\) 842.406 + 2592.66i 0.503144 + 1.54852i
\(142\) −566.529 −0.334803
\(143\) 0 0
\(144\) −2130.79 −1.23310
\(145\) −114.748 353.159i −0.0657196 0.202264i
\(146\) 2233.70 + 1622.88i 1.26618 + 0.919935i
\(147\) −2139.50 + 1554.44i −1.20043 + 0.872161i
\(148\) −2.17660 + 6.69889i −0.00120889 + 0.00372058i
\(149\) −750.399 + 2309.49i −0.412585 + 1.26980i 0.501809 + 0.864978i \(0.332668\pi\)
−0.914394 + 0.404826i \(0.867332\pi\)
\(150\) 1677.22 1218.58i 0.912966 0.663308i
\(151\) 2084.58 + 1514.53i 1.12345 + 0.816231i 0.984728 0.174101i \(-0.0557018\pi\)
0.138718 + 0.990332i \(0.455702\pi\)
\(152\) −1008.35 3103.37i −0.538077 1.65603i
\(153\) −1477.84 −0.780889
\(154\) 0 0
\(155\) 467.939 0.242489
\(156\) 7.03594 + 21.6544i 0.00361106 + 0.0111137i
\(157\) −2003.08 1455.32i −1.01824 0.739792i −0.0523162 0.998631i \(-0.516660\pi\)
−0.965921 + 0.258838i \(0.916660\pi\)
\(158\) −2860.59 + 2078.34i −1.44036 + 1.04648i
\(159\) 840.320 2586.24i 0.419130 1.28995i
\(160\) 111.146 342.073i 0.0549181 0.169020i
\(161\) 276.729 201.056i 0.135462 0.0984187i
\(162\) 909.398 + 660.716i 0.441044 + 0.320437i
\(163\) −842.105 2591.73i −0.404655 1.24540i −0.921183 0.389129i \(-0.872776\pi\)
0.516529 0.856270i \(-0.327224\pi\)
\(164\) −139.908 −0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) 845.871 + 2603.32i 0.391949 + 1.20630i 0.931312 + 0.364222i \(0.118665\pi\)
−0.539363 + 0.842073i \(0.681335\pi\)
\(168\) −459.476 333.829i −0.211008 0.153306i
\(169\) 1754.18 1274.48i 0.798442 0.580102i
\(170\) −516.945 + 1590.99i −0.233223 + 0.717786i
\(171\) 1550.38 4771.58i 0.693337 2.13387i
\(172\) −25.0214 + 18.1791i −0.0110923 + 0.00805899i
\(173\) −1866.74 1356.26i −0.820378 0.596040i 0.0964424 0.995339i \(-0.469254\pi\)
−0.916821 + 0.399299i \(0.869254\pi\)
\(174\) 167.300 + 514.897i 0.0728908 + 0.224335i
\(175\) 294.010 0.127001
\(176\) 0 0
\(177\) −700.610 −0.297520
\(178\) −1257.18 3869.21i −0.529381 1.62927i
\(179\) 1061.56 + 771.265i 0.443265 + 0.322051i 0.786931 0.617041i \(-0.211669\pi\)
−0.343666 + 0.939092i \(0.611669\pi\)
\(180\) 230.951 167.796i 0.0956339 0.0694821i
\(181\) −248.194 + 763.864i −0.101923 + 0.313688i −0.988996 0.147942i \(-0.952735\pi\)
0.887073 + 0.461630i \(0.152735\pi\)
\(182\) 13.8978 42.7730i 0.00566029 0.0174206i
\(183\) 4738.04 3442.39i 1.91391 1.39054i
\(184\) −2100.88 1526.38i −0.841732 0.611554i
\(185\) 60.3407 + 185.710i 0.0239802 + 0.0738034i
\(186\) −682.242 −0.268949
\(187\) 0 0
\(188\) 184.267 0.0714842
\(189\) −66.6511 205.131i −0.0256516 0.0789475i
\(190\) −4594.62 3338.19i −1.75436 1.27462i
\(191\) −1390.09 + 1009.96i −0.526615 + 0.382608i −0.819090 0.573665i \(-0.805521\pi\)
0.292475 + 0.956273i \(0.405521\pi\)
\(192\) −1326.77 + 4083.37i −0.498704 + 1.53485i
\(193\) 414.140 1274.59i 0.154458 0.475373i −0.843647 0.536898i \(-0.819596\pi\)
0.998106 + 0.0615242i \(0.0195962\pi\)
\(194\) −2975.95 + 2162.15i −1.10134 + 0.800173i
\(195\) 510.656 + 371.013i 0.187533 + 0.136250i
\(196\) 55.2388 + 170.007i 0.0201308 + 0.0619561i
\(197\) −3518.33 −1.27244 −0.636220 0.771508i \(-0.719503\pi\)
−0.636220 + 0.771508i \(0.719503\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) −689.748 2122.83i −0.243863 0.750532i
\(201\) 2195.91 + 1595.42i 0.770584 + 0.559862i
\(202\) 356.874 259.284i 0.124305 0.0903127i
\(203\) −23.7260 + 73.0212i −0.00820316 + 0.0252467i
\(204\) −54.1127 + 166.542i −0.0185718 + 0.0571581i
\(205\) −3137.84 + 2279.78i −1.06906 + 0.776715i
\(206\) 76.8274 + 55.8184i 0.0259846 + 0.0188789i
\(207\) −1233.83 3797.33i −0.414285 1.27504i
\(208\) −318.461 −0.106160
\(209\) 0 0
\(210\) −988.484 −0.324819
\(211\) −33.1709 102.089i −0.0108226 0.0333086i 0.945499 0.325624i \(-0.105574\pi\)
−0.956322 + 0.292315i \(0.905574\pi\)
\(212\) −148.706 108.041i −0.0481752 0.0350014i
\(213\) −1330.04 + 966.334i −0.427855 + 0.310855i
\(214\) 702.567 2162.28i 0.224423 0.690703i
\(215\) −264.953 + 815.441i −0.0840448 + 0.258663i
\(216\) −1324.73 + 962.474i −0.417299 + 0.303185i
\(217\) −78.2754 56.8704i −0.0244870 0.0177908i
\(218\) 881.613 + 2713.33i 0.273901 + 0.842980i
\(219\) 8012.24 2.47222
\(220\) 0 0
\(221\) −220.873 −0.0672285
\(222\) −87.9752 270.760i −0.0265969 0.0818568i
\(223\) 3182.42 + 2312.16i 0.955651 + 0.694321i 0.952137 0.305672i \(-0.0988812\pi\)
0.00351474 + 0.999994i \(0.498881\pi\)
\(224\) −60.1657 + 43.7130i −0.0179464 + 0.0130388i
\(225\) 1060.52 3263.95i 0.314228 0.967096i
\(226\) 249.123 766.721i 0.0733248 0.225670i
\(227\) 1433.50 1041.50i 0.419139 0.304523i −0.358152 0.933663i \(-0.616593\pi\)
0.777291 + 0.629141i \(0.216593\pi\)
\(228\) −480.955 349.434i −0.139702 0.101499i
\(229\) 591.882 + 1821.62i 0.170798 + 0.525661i 0.999417 0.0341519i \(-0.0108730\pi\)
−0.828619 + 0.559813i \(0.810873\pi\)
\(230\) −4519.68 −1.29573
\(231\) 0 0
\(232\) 582.892 0.164952
\(233\) 1358.54 + 4181.15i 0.381977 + 1.17561i 0.938649 + 0.344873i \(0.112078\pi\)
−0.556672 + 0.830732i \(0.687922\pi\)
\(234\) −424.713 308.572i −0.118651 0.0862051i
\(235\) 4132.72 3002.59i 1.14719 0.833479i
\(236\) −14.6341 + 45.0391i −0.00403644 + 0.0124229i
\(237\) −3170.79 + 9758.68i −0.869050 + 2.67466i
\(238\) 279.833 203.310i 0.0762137 0.0553725i
\(239\) 3304.42 + 2400.80i 0.894332 + 0.649770i 0.937004 0.349319i \(-0.113587\pi\)
−0.0426719 + 0.999089i \(0.513587\pi\)
\(240\) 2162.94 + 6656.85i 0.581739 + 1.79041i
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) 0 0
\(243\) 5157.80 1.36162
\(244\) −122.330 376.492i −0.0320957 0.0987804i
\(245\) 4009.13 + 2912.81i 1.04545 + 0.759561i
\(246\) 4574.90 3323.86i 1.18571 0.861469i
\(247\) 231.715 713.145i 0.0596910 0.183710i
\(248\) −226.984 + 698.585i −0.0581190 + 0.178872i
\(249\) 2834.02 2059.04i 0.721281 0.524041i
\(250\) 961.696 + 698.713i 0.243292 + 0.176762i
\(251\) 338.340 + 1041.30i 0.0850831 + 0.261859i 0.984543 0.175145i \(-0.0560395\pi\)
−0.899460 + 0.437004i \(0.856040\pi\)
\(252\) −59.0258 −0.0147551
\(253\) 0 0
\(254\) −3599.76 −0.889249
\(255\) 1500.13 + 4616.94i 0.368400 + 1.13382i
\(256\) 662.879 + 481.610i 0.161836 + 0.117581i
\(257\) −633.605 + 460.341i −0.153787 + 0.111733i −0.662018 0.749488i \(-0.730300\pi\)
0.508231 + 0.861221i \(0.330300\pi\)
\(258\) 386.294 1188.89i 0.0932156 0.286888i
\(259\) 12.4764 38.3984i 0.00299322 0.00921220i
\(260\) 34.5173 25.0783i 0.00823334 0.00598187i
\(261\) 725.062 + 526.788i 0.171955 + 0.124932i
\(262\) −1351.40 4159.19i −0.318664 0.980746i
\(263\) 6180.06 1.44897 0.724484 0.689292i \(-0.242078\pi\)
0.724484 + 0.689292i \(0.242078\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) 362.872 + 1116.80i 0.0836432 + 0.257427i
\(267\) −9551.24 6939.39i −2.18924 1.59057i
\(268\) 148.430 107.841i 0.0338314 0.0245799i
\(269\) 304.989 938.659i 0.0691282 0.212755i −0.910524 0.413455i \(-0.864322\pi\)
0.979653 + 0.200700i \(0.0643218\pi\)
\(270\) −880.678 + 2710.45i −0.198505 + 0.610936i
\(271\) −3702.86 + 2690.29i −0.830011 + 0.603038i −0.919562 0.392944i \(-0.871457\pi\)
0.0895518 + 0.995982i \(0.471457\pi\)
\(272\) −1981.49 1439.63i −0.441710 0.320921i
\(273\) −40.3304 124.124i −0.00894104 0.0275177i
\(274\) 4403.18 0.970825
\(275\) 0 0
\(276\) −473.110 −0.103181
\(277\) 175.471 + 540.044i 0.0380615 + 0.117141i 0.968282 0.249860i \(-0.0803846\pi\)
−0.930221 + 0.367001i \(0.880385\pi\)
\(278\) 70.4236 + 51.1658i 0.0151933 + 0.0110386i
\(279\) −913.691 + 663.835i −0.196062 + 0.142447i
\(280\) −328.872 + 1012.16i −0.0701923 + 0.216030i
\(281\) 1641.19 5051.07i 0.348418 1.07232i −0.611311 0.791391i \(-0.709357\pi\)
0.959729 0.280929i \(-0.0906426\pi\)
\(282\) −6025.39 + 4377.70i −1.27236 + 0.924427i
\(283\) 3825.39 + 2779.31i 0.803519 + 0.583790i 0.911944 0.410314i \(-0.134581\pi\)
−0.108426 + 0.994105i \(0.534581\pi\)
\(284\) 34.3399 + 105.687i 0.00717498 + 0.0220823i
\(285\) −16480.8 −3.42539
\(286\) 0 0
\(287\) 801.960 0.164941
\(288\) 268.255 + 825.605i 0.0548857 + 0.168921i
\(289\) 2600.42 + 1889.31i 0.529293 + 0.384554i
\(290\) 820.750 596.309i 0.166193 0.120747i
\(291\) −3298.65 + 10152.2i −0.664503 + 2.04513i
\(292\) 167.357 515.072i 0.0335405 0.103227i
\(293\) −1884.13 + 1368.90i −0.375673 + 0.272942i −0.759559 0.650438i \(-0.774585\pi\)
0.383886 + 0.923380i \(0.374585\pi\)
\(294\) −5845.21 4246.80i −1.15952 0.842443i
\(295\) 405.693 + 1248.59i 0.0800690 + 0.246427i
\(296\) −306.515 −0.0601886
\(297\) 0 0
\(298\) −6634.36 −1.28966
\(299\) −184.404 567.537i −0.0356667 0.109771i
\(300\) −328.992 239.026i −0.0633145 0.0460007i
\(301\) 143.424 104.204i 0.0274646 0.0199542i
\(302\) −2175.36 + 6695.07i −0.414496 + 1.27569i
\(303\) 395.572 1217.45i 0.0750001 0.230827i
\(304\) 6726.99 4887.44i 1.26914 0.922086i
\(305\) −8878.47 6450.58i −1.66682 1.21101i
\(306\) −1247.66 3839.91i −0.233085 0.717363i
\(307\) −1678.07 −0.311962 −0.155981 0.987760i \(-0.549854\pi\)
−0.155981 + 0.987760i \(0.549854\pi\)
\(308\) 0 0
\(309\) 275.578 0.0507349
\(310\) 395.057 + 1215.86i 0.0723798 + 0.222762i
\(311\) −2890.38 2099.98i −0.527005 0.382891i 0.292232 0.956348i \(-0.405602\pi\)
−0.819236 + 0.573456i \(0.805602\pi\)
\(312\) −801.591 + 582.390i −0.145452 + 0.105677i
\(313\) 2220.09 6832.74i 0.400917 1.23389i −0.523340 0.852124i \(-0.675314\pi\)
0.924257 0.381771i \(-0.124686\pi\)
\(314\) 2090.32 6433.33i 0.375679 1.15622i
\(315\) −1323.83 + 961.815i −0.236791 + 0.172039i
\(316\) 561.113 + 407.672i 0.0998894 + 0.0725739i
\(317\) −4.85393 14.9389i −0.000860013 0.00264685i 0.950626 0.310340i \(-0.100443\pi\)
−0.951486 + 0.307693i \(0.900443\pi\)
\(318\) 7429.36 1.31012
\(319\) 0 0
\(320\) 8045.47 1.40549
\(321\) −2038.80 6274.77i −0.354500 1.09104i
\(322\) 756.039 + 549.294i 0.130846 + 0.0950651i
\(323\) 4665.59 3389.75i 0.803716 0.583934i
\(324\) 68.1353 209.699i 0.0116830 0.0359566i
\(325\) 158.502 487.819i 0.0270527 0.0832595i
\(326\) 6023.24 4376.14i 1.02330 0.743472i
\(327\) 6697.91 + 4866.32i 1.13271 + 0.822960i
\(328\) −1881.40 5790.34i −0.316716 0.974751i
\(329\) −1056.23 −0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) −73.1705 225.196i −0.0120956 0.0372265i
\(333\) −381.275 277.013i −0.0627440 0.0455862i
\(334\) −6050.18 + 4395.71i −0.991171 + 0.720128i
\(335\) 1571.73 4837.29i 0.256337 0.788923i
\(336\) 447.222 1376.41i 0.0726130 0.223480i
\(337\) 193.503 140.588i 0.0312783 0.0227250i −0.572036 0.820228i \(-0.693846\pi\)
0.603315 + 0.797503i \(0.293846\pi\)
\(338\) 4792.50 + 3481.95i 0.771235 + 0.560335i
\(339\) −722.935 2224.97i −0.115824 0.356471i
\(340\) 328.137 0.0523404
\(341\) 0 0
\(342\) 13707.1 2.16723
\(343\) −642.220 1976.55i −0.101098 0.311148i
\(344\) −1088.85 791.096i −0.170659 0.123991i
\(345\) −10610.9 + 7709.25i −1.65586 + 1.20305i
\(346\) 1948.04 5995.44i 0.302679 0.931551i
\(347\) −1811.70 + 5575.85i −0.280280 + 0.862614i 0.707493 + 0.706720i \(0.249826\pi\)
−0.987774 + 0.155894i \(0.950174\pi\)
\(348\) 85.9143 62.4204i 0.0132342 0.00961518i
\(349\) −2824.87 2052.39i −0.433271 0.314790i 0.349684 0.936868i \(-0.386289\pi\)
−0.782956 + 0.622078i \(0.786289\pi\)
\(350\) 248.218 + 763.937i 0.0379081 + 0.116669i
\(351\) −376.283 −0.0572208
\(352\) 0 0
\(353\) −10916.7 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(354\) −591.490 1820.42i −0.0888060 0.273317i
\(355\) 2492.33 + 1810.78i 0.372617 + 0.270722i
\(356\) −645.606 + 469.060i −0.0961153 + 0.0698319i
\(357\) 310.177 954.625i 0.0459840 0.141524i
\(358\) −1107.79 + 3409.42i −0.163543 + 0.503333i
\(359\) 9304.29 6759.96i 1.36786 0.993808i 0.369959 0.929048i \(-0.379372\pi\)
0.997901 0.0647598i \(-0.0206281\pi\)
\(360\) 10050.2 + 7301.92i 1.47137 + 1.06901i
\(361\) 3930.53 + 12096.9i 0.573047 + 1.76366i
\(362\) −2194.31 −0.318592
\(363\) 0 0
\(364\) −8.82180 −0.00127030
\(365\) −4639.54 14279.0i −0.665328 2.04767i
\(366\) 12944.6 + 9404.78i 1.84870 + 1.34316i
\(367\) −5474.62 + 3977.55i −0.778673 + 0.565739i −0.904580 0.426303i \(-0.859816\pi\)
0.125908 + 0.992042i \(0.459816\pi\)
\(368\) 2044.85 6293.40i 0.289661 0.891484i
\(369\) 2892.74 8902.93i 0.408103 1.25601i
\(370\) −431.593 + 313.571i −0.0606417 + 0.0440588i
\(371\) 852.389 + 619.297i 0.119283 + 0.0866638i
\(372\) 41.3537 + 127.274i 0.00576368 + 0.0177388i
\(373\) −5310.22 −0.737139 −0.368569 0.929600i \(-0.620152\pi\)
−0.368569 + 0.929600i \(0.620152\pi\)
\(374\) 0 0
\(375\) 3449.58 0.475028
\(376\) 2477.90 + 7626.20i 0.339862 + 1.04599i
\(377\) 108.365 + 78.7321i 0.0148040 + 0.0107557i
\(378\) 476.729 346.364i 0.0648684 0.0471297i
\(379\) −259.039 + 797.239i −0.0351080 + 0.108051i −0.967075 0.254492i \(-0.918092\pi\)
0.931967 + 0.362544i \(0.118092\pi\)
\(380\) −344.245 + 1059.48i −0.0464721 + 0.143026i
\(381\) −8451.19 + 6140.15i −1.13640 + 0.825641i
\(382\) −3797.80 2759.26i −0.508671 0.369571i
\(383\) −875.187 2693.55i −0.116762 0.359357i 0.875548 0.483131i \(-0.160500\pi\)
−0.992311 + 0.123773i \(0.960500\pi\)
\(384\) −10194.5 −1.35479
\(385\) 0 0
\(386\) 3661.45 0.482806
\(387\) −639.472 1968.09i −0.0839953 0.258511i
\(388\) 583.740 + 424.112i 0.0763786 + 0.0554923i
\(389\) −2517.06 + 1828.75i −0.328072 + 0.238358i −0.739612 0.673034i \(-0.764991\pi\)
0.411540 + 0.911392i \(0.364991\pi\)
\(390\) −532.896 + 1640.08i −0.0691903 + 0.212946i
\(391\) 1418.23 4364.87i 0.183435 0.564554i
\(392\) −6293.25 + 4572.31i −0.810860 + 0.589124i
\(393\) −10267.1 7459.45i −1.31782 0.957454i
\(394\) −2970.35 9141.79i −0.379807 1.16893i
\(395\) 19227.5 2.44922
\(396\) 0 0
\(397\) 14208.7 1.79626 0.898131 0.439728i \(-0.144925\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(398\) 695.402 + 2140.23i 0.0875813 + 0.269548i
\(399\) 2756.86 + 2002.97i 0.345903 + 0.251314i
\(400\) 4601.52 3343.20i 0.575190 0.417900i
\(401\) −1934.97 + 5955.21i −0.240967 + 0.741619i 0.755307 + 0.655371i \(0.227488\pi\)
−0.996274 + 0.0862478i \(0.972512\pi\)
\(402\) −2291.54 + 7052.64i −0.284308 + 0.875009i
\(403\) −136.557 + 99.2147i −0.0168794 + 0.0122636i
\(404\) −70.0017 50.8592i −0.00862058 0.00626322i
\(405\) −1888.88 5813.37i −0.231751 0.713256i
\(406\) −209.764 −0.0256415
\(407\) 0 0
\(408\) −7620.30 −0.924660
\(409\) −1295.55 3987.31i −0.156628 0.482053i 0.841694 0.539955i \(-0.181559\pi\)
−0.998322 + 0.0579024i \(0.981559\pi\)
\(410\) −8572.75 6228.47i −1.03263 0.750249i
\(411\) 10337.4 7510.54i 1.24065 0.901382i
\(412\) 5.75618 17.7157i 0.000688318 0.00211842i
\(413\) 83.8834 258.167i 0.00999427 0.0307592i
\(414\) 8825.07 6411.79i 1.04765 0.761165i
\(415\) −5310.59 3858.37i −0.628160 0.456385i
\(416\) 40.0926 + 123.392i 0.00472524 + 0.0145428i
\(417\) 252.608 0.0296649
\(418\) 0 0
\(419\) −9287.15 −1.08283 −0.541416 0.840755i \(-0.682112\pi\)
−0.541416 + 0.840755i \(0.682112\pi\)
\(420\) 59.9164 + 184.404i 0.00696100 + 0.0214238i
\(421\) −10635.3 7727.03i −1.23120 0.894519i −0.234220 0.972184i \(-0.575254\pi\)
−0.996980 + 0.0776651i \(0.975254\pi\)
\(422\) 237.258 172.378i 0.0273686 0.0198844i
\(423\) −3809.90 + 11725.7i −0.437928 + 1.34780i
\(424\) 2471.77 7607.32i 0.283113 0.871331i
\(425\) 3191.44 2318.72i 0.364254 0.264646i
\(426\) −3633.75 2640.07i −0.413276 0.300263i
\(427\) 701.199 + 2158.07i 0.0794693 + 0.244581i
\(428\) −445.964 −0.0503656
\(429\) 0 0
\(430\) −2342.47 −0.262707
\(431\) 1517.17 + 4669.37i 0.169558 + 0.521846i 0.999343 0.0362369i \(-0.0115371\pi\)
−0.829785 + 0.558083i \(0.811537\pi\)
\(432\) −3375.70 2452.59i −0.375957 0.273149i
\(433\) 9500.53 6902.54i 1.05443 0.766085i 0.0813771 0.996683i \(-0.474068\pi\)
0.973049 + 0.230598i \(0.0740682\pi\)
\(434\) 81.6843 251.398i 0.00903450 0.0278053i
\(435\) 909.749 2799.92i 0.100274 0.308611i
\(436\) 452.738 328.934i 0.0497299 0.0361309i
\(437\) 12605.3 + 9158.26i 1.37984 + 1.00252i
\(438\) 6764.34 + 20818.5i 0.737928 + 2.27111i
\(439\) −11824.2 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(440\) 0 0
\(441\) −11960.4 −1.29148
\(442\) −186.472 573.901i −0.0200669 0.0617595i
\(443\) −8172.78 5937.87i −0.876525 0.636833i 0.0558049 0.998442i \(-0.482228\pi\)
−0.932330 + 0.361609i \(0.882228\pi\)
\(444\) −45.1782 + 32.8239i −0.00482897 + 0.00350845i
\(445\) −6836.34 + 21040.1i −0.728255 + 2.24134i
\(446\) −3321.01 + 10221.0i −0.352588 + 1.08516i
\(447\) −15575.5 + 11316.3i −1.64809 + 1.19741i
\(448\) −1345.82 977.797i −0.141929 0.103117i
\(449\) −106.689 328.356i −0.0112138 0.0345124i 0.945293 0.326222i \(-0.105776\pi\)
−0.956507 + 0.291710i \(0.905776\pi\)
\(450\) 9376.17 0.982216
\(451\) 0 0
\(452\) −158.134 −0.0164557
\(453\) 6312.73 + 19428.6i 0.654741 + 2.01509i
\(454\) 3916.39 + 2845.42i 0.404858 + 0.294146i
\(455\) −197.855 + 143.750i −0.0203859 + 0.0148112i
\(456\) 7994.37 24604.2i 0.820989 2.52674i
\(457\) −3265.43 + 10050.0i −0.334246 + 1.02870i 0.632847 + 0.774277i \(0.281886\pi\)
−0.967092 + 0.254426i \(0.918114\pi\)
\(458\) −4233.49 + 3075.81i −0.431918 + 0.313806i
\(459\) −2341.26 1701.02i −0.238084 0.172978i
\(460\) 273.958 + 843.156i 0.0277682 + 0.0854616i
\(461\) 4733.96 0.478270 0.239135 0.970986i \(-0.423136\pi\)
0.239135 + 0.970986i \(0.423136\pi\)
\(462\) 0 0
\(463\) 3431.20 0.344409 0.172204 0.985061i \(-0.444911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(464\) 458.994 + 1412.64i 0.0459229 + 0.141336i
\(465\) 3001.38 + 2180.63i 0.299324 + 0.217472i
\(466\) −9717.07 + 7059.87i −0.965954 + 0.701807i
\(467\) 1581.23 4866.52i 0.156682 0.482218i −0.841645 0.540031i \(-0.818413\pi\)
0.998327 + 0.0578129i \(0.0184127\pi\)
\(468\) −31.8210 + 97.9350i −0.00314301 + 0.00967318i
\(469\) −850.809 + 618.149i −0.0837669 + 0.0608602i
\(470\) 11290.8 + 8203.24i 1.10810 + 0.805079i
\(471\) −6065.94 18669.0i −0.593426 1.82638i
\(472\) −2060.82 −0.200968
\(473\) 0 0
\(474\) −28033.2 −2.71648
\(475\) 4138.49 + 12737.0i 0.399762 + 1.23034i
\(476\) −54.8898 39.8798i −0.00528545 0.00384010i
\(477\) 9949.75 7228.91i 0.955068 0.693898i
\(478\) −3448.33 + 10612.9i −0.329965 + 1.01553i
\(479\) 3574.36 11000.8i 0.340954 1.04935i −0.622761 0.782412i \(-0.713989\pi\)
0.963714 0.266936i \(-0.0860111\pi\)
\(480\) 2306.99 1676.12i 0.219373 0.159384i
\(481\) −56.9842 41.4014i −0.00540178 0.00392462i
\(482\) 3299.82 + 10155.8i 0.311832 + 0.959719i
\(483\) 2711.89 0.255477
\(484\) 0 0
\(485\) 20002.9 1.87275
\(486\) 4354.48 + 13401.7i 0.406426 + 1.25085i
\(487\) 14826.5 + 10772.1i 1.37957 + 1.00232i 0.996920 + 0.0784263i \(0.0249895\pi\)
0.382653 + 0.923892i \(0.375010\pi\)
\(488\) 13936.8 10125.7i 1.29280 0.939277i
\(489\) 6676.38 20547.8i 0.617415 1.90021i
\(490\) −4183.73 + 12876.2i −0.385718 + 1.18712i
\(491\) 6162.75 4477.50i 0.566438 0.411541i −0.267371 0.963594i \(-0.586155\pi\)
0.833810 + 0.552052i \(0.186155\pi\)
\(492\) −897.377 651.982i −0.0822294 0.0597432i
\(493\) 318.341 + 979.752i 0.0290818 + 0.0895047i
\(494\) 2048.62 0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) −196.838 605.804i −0.0177654 0.0546761i
\(498\) 7742.70 + 5625.40i 0.696704 + 0.506185i
\(499\) −10443.7 + 7587.79i −0.936922 + 0.680714i −0.947678 0.319228i \(-0.896576\pi\)
0.0107555 + 0.999942i \(0.496576\pi\)
\(500\) 72.0537 221.758i 0.00644468 0.0198347i
\(501\) −6706.24 + 20639.7i −0.598029 + 1.84055i
\(502\) −2420.01 + 1758.24i −0.215160 + 0.156323i
\(503\) −8224.18 5975.22i −0.729022 0.529666i 0.160232 0.987079i \(-0.448776\pi\)
−0.889254 + 0.457414i \(0.848776\pi\)
\(504\) −793.742 2442.89i −0.0701510 0.215903i
\(505\) −2398.74 −0.211371
\(506\) 0 0
\(507\) 17190.6 1.50584
\(508\) 218.198 + 671.543i 0.0190570 + 0.0586514i
\(509\) −5218.10 3791.18i −0.454398 0.330139i 0.336932 0.941529i \(-0.390611\pi\)
−0.791330 + 0.611390i \(0.790611\pi\)
\(510\) −10729.9 + 7795.71i −0.931621 + 0.676862i
\(511\) −959.299 + 2952.42i −0.0830468 + 0.255592i
\(512\) −3870.56 + 11912.4i −0.334094 + 1.02824i
\(513\) 7948.39 5774.84i 0.684074 0.497009i
\(514\) −1731.04 1257.68i −0.148547 0.107925i
\(515\) −159.575 491.123i −0.0136539 0.0420222i
\(516\) −245.205 −0.0209197
\(517\) 0 0
\(518\) 110.305 0.00935623
\(519\) −5653.05 17398.3i −0.478114 1.47148i
\(520\) 1502.08 + 1091.32i 0.126674 + 0.0920339i
\(521\) 15636.2 11360.4i 1.31485 0.955292i 0.314866 0.949136i \(-0.398041\pi\)
0.999981 0.00615574i \(-0.00195944\pi\)
\(522\) −756.638 + 2328.69i −0.0634428 + 0.195257i
\(523\) 1934.17 5952.75i 0.161712 0.497697i −0.837067 0.547100i \(-0.815732\pi\)
0.998779 + 0.0494027i \(0.0157318\pi\)
\(524\) −693.990 + 504.213i −0.0578571 + 0.0420356i
\(525\) 1885.80 + 1370.11i 0.156767 + 0.113898i
\(526\) 5217.51 + 16057.9i 0.432499 + 1.33109i
\(527\) −1298.18 −0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) −4302.02 13240.3i −0.352581 1.08513i
\(531\) −2563.46 1862.46i −0.209500 0.152211i
\(532\) 186.347 135.389i 0.0151864 0.0110336i
\(533\) 432.339 1330.60i 0.0351345 0.108133i
\(534\) 9967.21 30675.9i 0.807721 2.48591i
\(535\) −10002.0 + 7266.90i −0.808272 + 0.587244i
\(536\) 6459.18 + 4692.87i 0.520511 + 0.378174i
\(537\) 3214.71 + 9893.87i 0.258333 + 0.795069i
\(538\) 2696.44 0.216081
\(539\) 0 0
\(540\) 559.022 0.0445490
\(541\) −4328.76 13322.6i −0.344007 1.05875i −0.962113 0.272651i \(-0.912100\pi\)
0.618106 0.786095i \(-0.287900\pi\)
\(542\) −10116.4 7350.00i −0.801729 0.582490i
\(543\) −5151.60 + 3742.85i −0.407139 + 0.295803i
\(544\) −308.348 + 948.997i −0.0243020 + 0.0747939i
\(545\) 4794.06 14754.6i 0.376798 1.15966i
\(546\) 288.467 209.584i 0.0226103 0.0164274i
\(547\) 4004.19 + 2909.21i 0.312992 + 0.227402i 0.733179 0.680035i \(-0.238036\pi\)
−0.420187 + 0.907437i \(0.638036\pi\)
\(548\) −266.896 821.423i −0.0208052 0.0640318i
\(549\) 26487.0 2.05909
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) −6362.10 19580.5i −0.490559 1.50979i
\(553\) −3216.33 2336.80i −0.247327 0.179694i
\(554\) −1255.07 + 911.864i −0.0962508 + 0.0699303i
\(555\) −478.393 + 1472.34i −0.0365886 + 0.112608i
\(556\) 5.27639 16.2391i 0.000402462 0.00123865i
\(557\) 3075.54 2234.51i 0.233958 0.169981i −0.464629 0.885505i \(-0.653812\pi\)
0.698587 + 0.715525i \(0.253812\pi\)
\(558\) −2496.25 1813.63i −0.189381 0.137594i
\(559\) −95.5734 294.145i −0.00723135 0.0222558i
\(560\) −2711.94 −0.204644
\(561\) 0 0
\(562\) 14510.0 1.08908
\(563\) −3059.30 9415.57i −0.229013 0.704829i −0.997859 0.0653958i \(-0.979169\pi\)
0.768847 0.639433i \(-0.220831\pi\)
\(564\) 1181.90 + 858.697i 0.0882389 + 0.0641093i
\(565\) −3546.61 + 2576.76i −0.264083 + 0.191868i
\(566\) −3991.99 + 12286.1i −0.296459 + 0.912407i
\(567\) −390.555 + 1202.01i −0.0289273 + 0.0890291i
\(568\) −3912.27 + 2842.43i −0.289006 + 0.209975i
\(569\) −4311.38 3132.40i −0.317649 0.230786i 0.417523 0.908667i \(-0.362898\pi\)
−0.735172 + 0.677881i \(0.762898\pi\)
\(570\) −13913.9 42822.6i −1.02244 3.14674i
\(571\) −16962.6 −1.24319 −0.621597 0.783337i \(-0.713516\pi\)
−0.621597 + 0.783337i \(0.713516\pi\)
\(572\) 0 0
\(573\) −13622.6 −0.993181
\(574\) 677.054 + 2083.76i 0.0492329 + 0.151523i
\(575\) 8622.49 + 6264.61i 0.625361 + 0.454352i
\(576\) −15709.5 + 11413.6i −1.13639 + 0.825637i
\(577\) −4785.74 + 14729.0i −0.345291 + 1.06270i 0.616137 + 0.787639i \(0.288697\pi\)
−0.961428 + 0.275057i \(0.911303\pi\)
\(578\) −2713.67 + 8351.81i −0.195283 + 0.601020i
\(579\) 8596.01 6245.37i 0.616991 0.448270i
\(580\) −160.992 116.968i −0.0115256 0.00837382i
\(581\) 419.417 + 1290.83i 0.0299490 + 0.0921734i
\(582\) −29163.7 −2.07710
\(583\) 0 0
\(584\) 23567.7 1.66993
\(585\) 882.156 + 2715.00i 0.0623464 + 0.191883i
\(586\) −5147.55 3739.91i −0.362872 0.263642i
\(587\) −8967.27 + 6515.10i −0.630526 + 0.458104i −0.856582 0.516010i \(-0.827417\pi\)
0.226056 + 0.974114i \(0.427417\pi\)
\(588\) −437.944 + 1347.85i −0.0307152 + 0.0945316i
\(589\) 1361.90 4191.51i 0.0952738 0.293223i
\(590\) −2901.76 + 2108.25i −0.202481 + 0.147111i
\(591\) −22566.7 16395.7i −1.57068 1.14117i
\(592\) −241.363 742.838i −0.0167567 0.0515717i
\(593\) 4349.68 0.301214 0.150607 0.988594i \(-0.451877\pi\)
0.150607 + 0.988594i \(0.451877\pi\)
\(594\) 0 0
\(595\) −1880.90 −0.129596
\(596\) 402.138 + 1237.65i 0.0276379 + 0.0850608i
\(597\) 5283.20 + 3838.47i 0.362190 + 0.263146i
\(598\) 1318.97 958.286i 0.0901950 0.0655305i
\(599\) 4074.05 12538.7i 0.277899 0.855284i −0.710539 0.703658i \(-0.751549\pi\)
0.988438 0.151627i \(-0.0484512\pi\)
\(600\) 5468.46 16830.2i 0.372082 1.14515i
\(601\) 15181.2 11029.8i 1.03037 0.748611i 0.0619905 0.998077i \(-0.480255\pi\)
0.968384 + 0.249466i \(0.0802551\pi\)
\(602\) 391.842 + 284.690i 0.0265287 + 0.0192742i
\(603\) 3793.42 + 11674.9i 0.256186 + 0.788459i
\(604\) 1380.84 0.0930223
\(605\) 0 0
\(606\) 3497.29 0.234435
\(607\) 6758.62 + 20800.9i 0.451934 + 1.39091i 0.874697 + 0.484669i \(0.161060\pi\)
−0.422763 + 0.906240i \(0.638940\pi\)
\(608\) −2740.60 1991.16i −0.182806 0.132816i
\(609\) −492.465 + 357.797i −0.0327680 + 0.0238073i
\(610\) 9265.13 28515.1i 0.614974 1.89270i
\(611\) −569.415 + 1752.48i −0.0377022 + 0.116036i
\(612\) −640.717 + 465.508i −0.0423194 + 0.0307468i
\(613\) 2854.09 + 2073.62i 0.188052 + 0.136628i 0.677828 0.735221i \(-0.262921\pi\)
−0.489776 + 0.871848i \(0.662921\pi\)
\(614\) −1416.71 4360.18i −0.0931167 0.286584i
\(615\) −30750.2 −2.01621
\(616\) 0 0
\(617\) −22728.1 −1.48298 −0.741490 0.670963i \(-0.765881\pi\)
−0.741490 + 0.670963i \(0.765881\pi\)
\(618\) 232.657 + 716.044i 0.0151437 + 0.0466076i
\(619\) 17348.0 + 12604.1i 1.12645 + 0.818417i 0.985175 0.171553i \(-0.0548785\pi\)
0.141279 + 0.989970i \(0.454879\pi\)
\(620\) 202.875 147.397i 0.0131414 0.00954778i
\(621\) 2416.13 7436.08i 0.156129 0.480514i
\(622\) 3016.26 9283.09i 0.194439 0.598421i
\(623\) 3700.65 2688.68i 0.237983 0.172905i
\(624\) −2042.62 1484.05i −0.131042 0.0952079i
\(625\) −5694.61 17526.2i −0.364455 1.12168i
\(626\) 19628.0 1.25319
\(627\) 0 0
\(628\) −1326.85 −0.0843109
\(629\) −167.400 515.205i −0.0106116 0.0326591i
\(630\) −3616.76 2627.73i −0.228722 0.166177i
\(631\) −17419.7 + 12656.2i −1.09900 + 0.798469i −0.980896 0.194532i \(-0.937681\pi\)
−0.118103 + 0.993001i \(0.537681\pi\)
\(632\) −9326.75 + 28704.8i −0.587022 + 1.80667i
\(633\) 262.985 809.386i 0.0165130 0.0508218i
\(634\) 34.7183 25.2243i 0.00217482 0.00158010i
\(635\) 15836.4 + 11505.8i 0.989683 + 0.719047i
\(636\) −450.326 1385.96i −0.0280764 0.0864103i
\(637\) −1787.56 −0.111187
\(638\) 0 0
\(639\) −7435.33 −0.460309
\(640\) 5903.22 + 18168.2i 0.364602 + 1.12213i
\(641\) −16300.3 11842.9i −1.00440 0.729742i −0.0413758 0.999144i \(-0.513174\pi\)
−0.963028 + 0.269402i \(0.913174\pi\)
\(642\) 14582.7 10595.0i 0.896470 0.651323i
\(643\) 8921.22 27456.7i 0.547152 1.68396i −0.168666 0.985673i \(-0.553946\pi\)
0.715818 0.698287i \(-0.246054\pi\)
\(644\) 56.6451 174.336i 0.00346604 0.0106674i
\(645\) −5499.44 + 3995.58i −0.335721 + 0.243916i
\(646\) 12746.6 + 9260.96i 0.776330 + 0.564037i
\(647\) −491.344 1512.20i −0.0298558 0.0918868i 0.935018 0.354600i \(-0.115383\pi\)
−0.964874 + 0.262713i \(0.915383\pi\)
\(648\) 9595.02 0.581679
\(649\) 0 0
\(650\) 1401.33 0.0845612
\(651\) −237.042 729.539i −0.0142710 0.0439215i
\(652\) −1181.47 858.390i −0.0709663 0.0515601i
\(653\) −16203.0 + 11772.2i −0.971017 + 0.705485i −0.955683 0.294397i \(-0.904881\pi\)
−0.0153339 + 0.999882i \(0.504881\pi\)
\(654\) −6989.61 + 21511.8i −0.417913 + 1.28621i
\(655\) −7348.68 + 22616.9i −0.438377 + 1.34918i
\(656\) 12551.4 9119.11i 0.747026 0.542746i
\(657\) 29315.9 + 21299.3i 1.74083 + 1.26478i
\(658\) −891.718 2744.43i −0.0528310 0.162597i
\(659\) −10520.7 −0.621897 −0.310948 0.950427i \(-0.600647\pi\)
−0.310948 + 0.950427i \(0.600647\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) −1113.53 3427.08i −0.0653752 0.201204i
\(663\) −1416.69 1029.28i −0.0829858 0.0602927i
\(664\) 8336.17 6056.58i 0.487208 0.353977i
\(665\) 1973.23 6072.98i 0.115066 0.354135i
\(666\) 397.880 1224.55i 0.0231494 0.0712467i
\(667\) −2251.71 + 1635.97i −0.130715 + 0.0949698i
\(668\) 1186.76 + 862.230i 0.0687381 + 0.0499411i
\(669\) 9637.32 + 29660.6i 0.556951 + 1.71412i
\(670\) 13895.8 0.801257
\(671\) 0 0
\(672\) −589.612 −0.0338464
\(673\) −367.000 1129.51i −0.0210205 0.0646946i 0.939996 0.341185i \(-0.110828\pi\)
−0.961017 + 0.276491i \(0.910828\pi\)
\(674\) 528.660 + 384.094i 0.0302125 + 0.0219507i
\(675\) 5437.01 3950.22i 0.310030 0.225250i
\(676\) 359.071 1105.11i 0.0204296 0.0628759i
\(677\) 4085.63 12574.3i 0.231940 0.713839i −0.765572 0.643350i \(-0.777544\pi\)
0.997513 0.0704888i \(-0.0224559\pi\)
\(678\) 5170.87 3756.86i 0.292900 0.212804i
\(679\) −3346.02 2431.03i −0.189114 0.137400i
\(680\) 4412.59 + 13580.6i 0.248846 + 0.765868i
\(681\) 14048.0 0.790485
\(682\) 0 0
\(683\) −13831.4 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(684\) −830.847 2557.08i −0.0464448 0.142942i
\(685\) −19370.9 14073.8i −1.08047 0.785009i
\(686\) 4593.54 3337.40i 0.255659 0.185747i
\(687\) −4692.56 + 14442.2i −0.260600 + 0.802045i
\(688\) 1059.81 3261.76i 0.0587281 0.180746i
\(689\) 1487.06 1080.41i 0.0822240 0.0597393i
\(690\) −28989.5 21062.1i −1.59943 1.16206i
\(691\) −3033.64 9336.59i −0.167012 0.514010i 0.832167 0.554525i \(-0.187100\pi\)
−0.999179 + 0.0405154i \(0.987100\pi\)
\(692\) −1236.54 −0.0679280
\(693\) 0 0
\(694\) −16017.4 −0.876101
\(695\) −146.274 450.186i −0.00798346 0.0245706i
\(696\) 3738.70 + 2716.33i 0.203614 + 0.147934i
\(697\) 8705.17 6324.67i 0.473073 0.343707i
\(698\) 2947.89 9072.68i 0.159856 0.491986i
\(699\) −10770.8 + 33149.0i −0.582815 + 1.79372i
\(700\) 127.468 92.6112i 0.00688265 0.00500054i
\(701\) −24229.9 17604.0i −1.30549 0.948495i −0.305498 0.952193i \(-0.598823\pi\)
−0.999993 + 0.00369814i \(0.998823\pi\)
\(702\) −317.677 977.710i −0.0170797 0.0525659i
\(703\) 1839.09 0.0986667
\(704\) 0 0
\(705\) 40499.8 2.16356
\(706\) −9216.43 28365.2i −0.491310 1.51210i
\(707\) 401.253 + 291.528i 0.0213447 + 0.0155078i
\(708\) −303.750 + 220.687i −0.0161238 + 0.0117146i
\(709\) 3494.21 10754.1i 0.185088 0.569644i −0.814861 0.579656i \(-0.803187\pi\)
0.999950 + 0.0100121i \(0.00318701\pi\)
\(710\) −2600.87 + 8004.65i −0.137477 + 0.423112i
\(711\) −37543.5 + 27276.9i −1.98030 + 1.43877i
\(712\) −28094.6 20411.9i −1.47878 1.07440i
\(713\) −1083.83 3335.70i −0.0569283 0.175207i
\(714\) 2742.30 0.143737
\(715\) 0 0
\(716\) 703.181 0.0367027
\(717\) 10006.8 + 30797.8i 0.521214 + 1.60413i
\(718\) 25419.8 + 18468.6i 1.32125 + 0.959945i
\(719\) 26392.9 19175.6i 1.36897 0.994615i 0.371154 0.928571i \(-0.378962\pi\)
0.997817 0.0660438i \(-0.0210377\pi\)
\(720\) −9782.20 + 30106.5i −0.506335 + 1.55834i
\(721\) −32.9947 + 101.547i −0.00170428 + 0.00524524i
\(722\) −28113.5 + 20425.7i −1.44914 + 1.05286i
\(723\) 25069.9 + 18214.3i 1.28957 + 0.936926i
\(724\) 133.007 + 409.353i 0.00682758 + 0.0210131i
\(725\) −2392.33 −0.122550
\(726\) 0 0
\(727\) −502.545 −0.0256373 −0.0128187 0.999918i \(-0.504080\pi\)
−0.0128187 + 0.999918i \(0.504080\pi\)
\(728\) −118.630 365.106i −0.00603946 0.0185876i
\(729\) 24095.1 + 17506.1i 1.22416 + 0.889404i
\(730\) 33184.8 24110.2i 1.68250 1.22241i
\(731\) 735.045 2262.24i 0.0371910 0.114462i
\(732\) 969.853 2984.90i 0.0489711 0.150717i
\(733\) −6982.93 + 5073.39i −0.351870 + 0.255648i −0.749653 0.661831i \(-0.769780\pi\)
0.397783 + 0.917479i \(0.369780\pi\)
\(734\) −14956.9 10866.9i −0.752140 0.546462i
\(735\) 12140.9 + 37365.8i 0.609283 + 1.87518i
\(736\) −2695.90 −0.135017
\(737\) 0 0
\(738\) 25575.0 1.27565
\(739\) −5672.79 17459.0i −0.282377 0.869068i −0.987173 0.159657i \(-0.948961\pi\)
0.704795 0.709411i \(-0.251039\pi\)
\(740\) 84.6580 + 61.5076i 0.00420553 + 0.00305549i
\(741\) 4809.55 3494.34i 0.238439 0.173236i
\(742\) −889.511 + 2737.63i −0.0440094 + 0.135447i
\(743\) 3455.63 10635.3i 0.170625 0.525131i −0.828781 0.559573i \(-0.810965\pi\)
0.999407 + 0.0344418i \(0.0109653\pi\)
\(744\) −4711.35 + 3423.00i −0.232159 + 0.168674i
\(745\) 29186.5 + 21205.2i 1.43531 + 1.04282i
\(746\) −4483.15 13797.7i −0.220027 0.677173i
\(747\) 15843.0 0.775991
\(748\) 0 0
\(749\) 2556.29 0.124706
\(750\) 2912.31 + 8963.16i 0.141790 + 0.436385i
\(751\) −13537.6 9835.64i −0.657782 0.477906i 0.208131 0.978101i \(-0.433262\pi\)
−0.865913 + 0.500195i \(0.833262\pi\)
\(752\) −16530.9 + 12010.4i −0.801620 + 0.582411i
\(753\) −2682.43 + 8255.67i −0.129818 + 0.399540i
\(754\) −113.085 + 348.039i −0.00546194 + 0.0168101i
\(755\) 30969.3 22500.5i 1.49283 1.08461i
\(756\) −93.5115 67.9401i −0.00449865 0.00326846i
\(757\) −7540.76 23208.1i −0.362052 1.11428i −0.951806 0.306699i \(-0.900775\pi\)
0.589754 0.807583i \(-0.299225\pi\)
\(758\) −2290.19 −0.109741
\(759\) 0 0
\(760\) −48477.6 −2.31377
\(761\) 2617.17 + 8054.81i 0.124668 + 0.383688i 0.993840 0.110821i \(-0.0353479\pi\)
−0.869173 + 0.494509i \(0.835348\pi\)
\(762\) −23089.1 16775.2i −1.09768 0.797508i
\(763\) −2595.12 + 1885.46i −0.123132 + 0.0894605i
\(764\) −284.545 + 875.738i −0.0134744 + 0.0414700i
\(765\) −6784.57 + 20880.8i −0.320649 + 0.986857i
\(766\) 6259.86 4548.06i 0.295272 0.214527i
\(767\) −383.126 278.357i −0.0180363 0.0131042i