Properties

Label 121.4.a.e.1.1
Level $121$
Weight $4$
Character 121.1
Self dual yes
Analytic conductor $7.139$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(1,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.13923111069\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.46410 q^{2} -0.535898 q^{3} -1.92820 q^{4} -1.53590 q^{5} +1.32051 q^{6} +28.2487 q^{7} +24.4641 q^{8} -26.7128 q^{9} +3.78461 q^{10} +1.03332 q^{12} -68.4641 q^{13} -69.6077 q^{14} +0.823085 q^{15} -44.8564 q^{16} -55.3538 q^{17} +65.8231 q^{18} +55.1769 q^{19} +2.96152 q^{20} -15.1384 q^{21} -178.315 q^{23} -13.1103 q^{24} -122.641 q^{25} +168.703 q^{26} +28.7846 q^{27} -54.4693 q^{28} -113.172 q^{29} -2.02817 q^{30} +70.8128 q^{31} -85.1821 q^{32} +136.397 q^{34} -43.3872 q^{35} +51.5077 q^{36} -210.664 q^{37} -135.962 q^{38} +36.6898 q^{39} -37.5744 q^{40} -191.928 q^{41} +37.3027 q^{42} +208.210 q^{43} +41.0282 q^{45} +439.387 q^{46} +512.515 q^{47} +24.0385 q^{48} +454.990 q^{49} +302.200 q^{50} +29.6640 q^{51} +132.013 q^{52} -375.449 q^{53} -70.9282 q^{54} +691.079 q^{56} -29.5692 q^{57} +278.867 q^{58} -506.508 q^{59} -1.58708 q^{60} +468.697 q^{61} -174.490 q^{62} -754.603 q^{63} +568.749 q^{64} +105.154 q^{65} -289.895 q^{67} +106.733 q^{68} +95.5589 q^{69} +106.910 q^{70} -394.010 q^{71} -653.505 q^{72} -289.538 q^{73} +519.098 q^{74} +65.7231 q^{75} -106.392 q^{76} -90.4074 q^{78} +169.587 q^{79} +68.8949 q^{80} +705.820 q^{81} +472.931 q^{82} +303.331 q^{83} +29.1900 q^{84} +85.0179 q^{85} -513.051 q^{86} +60.6486 q^{87} -1146.68 q^{89} -101.098 q^{90} -1934.02 q^{91} +343.828 q^{92} -37.9485 q^{93} -1262.89 q^{94} -84.7461 q^{95} +45.6489 q^{96} +641.600 q^{97} -1121.14 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 8 q^{3} + 10 q^{4} - 10 q^{5} - 32 q^{6} + 8 q^{7} + 42 q^{8} + 2 q^{9} - 34 q^{10} - 88 q^{12} - 130 q^{13} - 160 q^{14} + 64 q^{15} - 62 q^{16} + 14 q^{17} + 194 q^{18} + 48 q^{19} - 98 q^{20}+ \cdots - 822 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.46410 −0.871191 −0.435596 0.900142i \(-0.643462\pi\)
−0.435596 + 0.900142i \(0.643462\pi\)
\(3\) −0.535898 −0.103134 −0.0515668 0.998670i \(-0.516422\pi\)
−0.0515668 + 0.998670i \(0.516422\pi\)
\(4\) −1.92820 −0.241025
\(5\) −1.53590 −0.137375 −0.0686875 0.997638i \(-0.521881\pi\)
−0.0686875 + 0.997638i \(0.521881\pi\)
\(6\) 1.32051 0.0898492
\(7\) 28.2487 1.52529 0.762644 0.646819i \(-0.223901\pi\)
0.762644 + 0.646819i \(0.223901\pi\)
\(8\) 24.4641 1.08117
\(9\) −26.7128 −0.989363
\(10\) 3.78461 0.119680
\(11\) 0 0
\(12\) 1.03332 0.0248578
\(13\) −68.4641 −1.46066 −0.730328 0.683097i \(-0.760633\pi\)
−0.730328 + 0.683097i \(0.760633\pi\)
\(14\) −69.6077 −1.32882
\(15\) 0.823085 0.0141680
\(16\) −44.8564 −0.700881
\(17\) −55.3538 −0.789722 −0.394861 0.918741i \(-0.629207\pi\)
−0.394861 + 0.918741i \(0.629207\pi\)
\(18\) 65.8231 0.861925
\(19\) 55.1769 0.666234 0.333117 0.942885i \(-0.391900\pi\)
0.333117 + 0.942885i \(0.391900\pi\)
\(20\) 2.96152 0.0331108
\(21\) −15.1384 −0.157308
\(22\) 0 0
\(23\) −178.315 −1.61658 −0.808290 0.588785i \(-0.799606\pi\)
−0.808290 + 0.588785i \(0.799606\pi\)
\(24\) −13.1103 −0.111505
\(25\) −122.641 −0.981128
\(26\) 168.703 1.27251
\(27\) 28.7846 0.205170
\(28\) −54.4693 −0.367633
\(29\) −113.172 −0.724671 −0.362336 0.932048i \(-0.618021\pi\)
−0.362336 + 0.932048i \(0.618021\pi\)
\(30\) −2.02817 −0.0123430
\(31\) 70.8128 0.410269 0.205135 0.978734i \(-0.434237\pi\)
0.205135 + 0.978734i \(0.434237\pi\)
\(32\) −85.1821 −0.470569
\(33\) 0 0
\(34\) 136.397 0.687999
\(35\) −43.3872 −0.209536
\(36\) 51.5077 0.238462
\(37\) −210.664 −0.936026 −0.468013 0.883722i \(-0.655030\pi\)
−0.468013 + 0.883722i \(0.655030\pi\)
\(38\) −135.962 −0.580418
\(39\) 36.6898 0.150643
\(40\) −37.5744 −0.148526
\(41\) −191.928 −0.731077 −0.365538 0.930796i \(-0.619115\pi\)
−0.365538 + 0.930796i \(0.619115\pi\)
\(42\) 37.3027 0.137046
\(43\) 208.210 0.738413 0.369207 0.929347i \(-0.379629\pi\)
0.369207 + 0.929347i \(0.379629\pi\)
\(44\) 0 0
\(45\) 41.0282 0.135914
\(46\) 439.387 1.40835
\(47\) 512.515 1.59060 0.795298 0.606218i \(-0.207314\pi\)
0.795298 + 0.606218i \(0.207314\pi\)
\(48\) 24.0385 0.0722845
\(49\) 454.990 1.32650
\(50\) 302.200 0.854750
\(51\) 29.6640 0.0814470
\(52\) 132.013 0.352055
\(53\) −375.449 −0.973054 −0.486527 0.873666i \(-0.661736\pi\)
−0.486527 + 0.873666i \(0.661736\pi\)
\(54\) −70.9282 −0.178743
\(55\) 0 0
\(56\) 691.079 1.64910
\(57\) −29.5692 −0.0687112
\(58\) 278.867 0.631327
\(59\) −506.508 −1.11766 −0.558828 0.829284i \(-0.688749\pi\)
−0.558828 + 0.829284i \(0.688749\pi\)
\(60\) −1.58708 −0.00341484
\(61\) 468.697 0.983779 0.491890 0.870658i \(-0.336306\pi\)
0.491890 + 0.870658i \(0.336306\pi\)
\(62\) −174.490 −0.357423
\(63\) −754.603 −1.50906
\(64\) 568.749 1.11084
\(65\) 105.154 0.200657
\(66\) 0 0
\(67\) −289.895 −0.528601 −0.264301 0.964440i \(-0.585141\pi\)
−0.264301 + 0.964440i \(0.585141\pi\)
\(68\) 106.733 0.190343
\(69\) 95.5589 0.166724
\(70\) 106.910 0.182546
\(71\) −394.010 −0.658597 −0.329299 0.944226i \(-0.606812\pi\)
−0.329299 + 0.944226i \(0.606812\pi\)
\(72\) −653.505 −1.06967
\(73\) −289.538 −0.464218 −0.232109 0.972690i \(-0.574563\pi\)
−0.232109 + 0.972690i \(0.574563\pi\)
\(74\) 519.098 0.815458
\(75\) 65.7231 0.101187
\(76\) −106.392 −0.160579
\(77\) 0 0
\(78\) −90.4074 −0.131239
\(79\) 169.587 0.241519 0.120760 0.992682i \(-0.461467\pi\)
0.120760 + 0.992682i \(0.461467\pi\)
\(80\) 68.8949 0.0962835
\(81\) 705.820 0.968203
\(82\) 472.931 0.636908
\(83\) 303.331 0.401143 0.200572 0.979679i \(-0.435720\pi\)
0.200572 + 0.979679i \(0.435720\pi\)
\(84\) 29.1900 0.0379153
\(85\) 85.0179 0.108488
\(86\) −513.051 −0.643299
\(87\) 60.6486 0.0747380
\(88\) 0 0
\(89\) −1146.68 −1.36571 −0.682854 0.730555i \(-0.739262\pi\)
−0.682854 + 0.730555i \(0.739262\pi\)
\(90\) −101.098 −0.118407
\(91\) −1934.02 −2.22792
\(92\) 343.828 0.389637
\(93\) −37.9485 −0.0423126
\(94\) −1262.89 −1.38571
\(95\) −84.7461 −0.0915239
\(96\) 45.6489 0.0485315
\(97\) 641.600 0.671594 0.335797 0.941934i \(-0.390994\pi\)
0.335797 + 0.941934i \(0.390994\pi\)
\(98\) −1121.14 −1.15564
\(99\) 0 0
\(100\) 236.477 0.236477
\(101\) −1107.57 −1.09116 −0.545580 0.838058i \(-0.683691\pi\)
−0.545580 + 0.838058i \(0.683691\pi\)
\(102\) −73.0952 −0.0709559
\(103\) −298.297 −0.285360 −0.142680 0.989769i \(-0.545572\pi\)
−0.142680 + 0.989769i \(0.545572\pi\)
\(104\) −1674.91 −1.57922
\(105\) 23.2511 0.0216102
\(106\) 925.144 0.847716
\(107\) 598.126 0.540402 0.270201 0.962804i \(-0.412910\pi\)
0.270201 + 0.962804i \(0.412910\pi\)
\(108\) −55.5026 −0.0494513
\(109\) 1530.16 1.34461 0.672305 0.740275i \(-0.265305\pi\)
0.672305 + 0.740275i \(0.265305\pi\)
\(110\) 0 0
\(111\) 112.895 0.0965358
\(112\) −1267.14 −1.06905
\(113\) −151.010 −0.125716 −0.0628578 0.998022i \(-0.520021\pi\)
−0.0628578 + 0.998022i \(0.520021\pi\)
\(114\) 72.8616 0.0598606
\(115\) 273.874 0.222077
\(116\) 218.218 0.174664
\(117\) 1828.87 1.44512
\(118\) 1248.09 0.973692
\(119\) −1563.67 −1.20455
\(120\) 20.1360 0.0153180
\(121\) 0 0
\(122\) −1154.92 −0.857060
\(123\) 102.854 0.0753987
\(124\) −136.541 −0.0988853
\(125\) 380.351 0.272157
\(126\) 1859.42 1.31468
\(127\) 695.749 0.486124 0.243062 0.970011i \(-0.421848\pi\)
0.243062 + 0.970011i \(0.421848\pi\)
\(128\) −719.998 −0.497183
\(129\) −111.580 −0.0761553
\(130\) −259.110 −0.174811
\(131\) −1665.68 −1.11093 −0.555463 0.831541i \(-0.687459\pi\)
−0.555463 + 0.831541i \(0.687459\pi\)
\(132\) 0 0
\(133\) 1558.68 1.01620
\(134\) 714.330 0.460513
\(135\) −44.2102 −0.0281853
\(136\) −1354.18 −0.853824
\(137\) −1605.48 −1.00121 −0.500603 0.865677i \(-0.666888\pi\)
−0.500603 + 0.865677i \(0.666888\pi\)
\(138\) −235.467 −0.145248
\(139\) 1069.30 0.652495 0.326248 0.945284i \(-0.394216\pi\)
0.326248 + 0.945284i \(0.394216\pi\)
\(140\) 83.6592 0.0505035
\(141\) −274.656 −0.164044
\(142\) 970.881 0.573765
\(143\) 0 0
\(144\) 1198.24 0.693426
\(145\) 173.820 0.0995517
\(146\) 713.452 0.404423
\(147\) −243.828 −0.136807
\(148\) 406.203 0.225606
\(149\) 355.172 0.195281 0.0976403 0.995222i \(-0.468871\pi\)
0.0976403 + 0.995222i \(0.468871\pi\)
\(150\) −161.948 −0.0881536
\(151\) −1879.55 −1.01295 −0.506476 0.862254i \(-0.669052\pi\)
−0.506476 + 0.862254i \(0.669052\pi\)
\(152\) 1349.85 0.720313
\(153\) 1478.66 0.781322
\(154\) 0 0
\(155\) −108.761 −0.0563607
\(156\) −70.7454 −0.0363087
\(157\) 2499.99 1.27083 0.635417 0.772169i \(-0.280828\pi\)
0.635417 + 0.772169i \(0.280828\pi\)
\(158\) −417.880 −0.210410
\(159\) 201.202 0.100355
\(160\) 130.831 0.0646444
\(161\) −5037.18 −2.46575
\(162\) −1739.21 −0.843491
\(163\) 1863.02 0.895235 0.447617 0.894225i \(-0.352273\pi\)
0.447617 + 0.894225i \(0.352273\pi\)
\(164\) 370.077 0.176208
\(165\) 0 0
\(166\) −747.438 −0.349473
\(167\) 2647.27 1.22666 0.613328 0.789828i \(-0.289830\pi\)
0.613328 + 0.789828i \(0.289830\pi\)
\(168\) −370.348 −0.170077
\(169\) 2490.33 1.13352
\(170\) −209.493 −0.0945138
\(171\) −1473.93 −0.659148
\(172\) −401.472 −0.177976
\(173\) 2109.38 0.927015 0.463507 0.886093i \(-0.346591\pi\)
0.463507 + 0.886093i \(0.346591\pi\)
\(174\) −149.444 −0.0651111
\(175\) −3464.45 −1.49650
\(176\) 0 0
\(177\) 271.437 0.115268
\(178\) 2825.54 1.18979
\(179\) 1391.25 0.580931 0.290465 0.956886i \(-0.406190\pi\)
0.290465 + 0.956886i \(0.406190\pi\)
\(180\) −79.1106 −0.0327587
\(181\) 3701.40 1.52002 0.760008 0.649913i \(-0.225195\pi\)
0.760008 + 0.649913i \(0.225195\pi\)
\(182\) 4765.63 1.94094
\(183\) −251.174 −0.101461
\(184\) −4362.32 −1.74780
\(185\) 323.559 0.128586
\(186\) 93.5088 0.0368624
\(187\) 0 0
\(188\) −988.234 −0.383374
\(189\) 813.128 0.312944
\(190\) 208.823 0.0797348
\(191\) −3533.03 −1.33844 −0.669218 0.743066i \(-0.733371\pi\)
−0.669218 + 0.743066i \(0.733371\pi\)
\(192\) −304.791 −0.114565
\(193\) −2605.66 −0.971811 −0.485906 0.874011i \(-0.661510\pi\)
−0.485906 + 0.874011i \(0.661510\pi\)
\(194\) −1580.97 −0.585087
\(195\) −56.3518 −0.0206945
\(196\) −877.313 −0.319720
\(197\) 719.202 0.260107 0.130053 0.991507i \(-0.458485\pi\)
0.130053 + 0.991507i \(0.458485\pi\)
\(198\) 0 0
\(199\) 1035.15 0.368744 0.184372 0.982857i \(-0.440975\pi\)
0.184372 + 0.982857i \(0.440975\pi\)
\(200\) −3000.30 −1.06077
\(201\) 155.354 0.0545166
\(202\) 2729.16 0.950610
\(203\) −3196.96 −1.10533
\(204\) −57.1983 −0.0196308
\(205\) 294.782 0.100432
\(206\) 735.035 0.248604
\(207\) 4763.30 1.59938
\(208\) 3071.05 1.02375
\(209\) 0 0
\(210\) −57.2931 −0.0188267
\(211\) −356.297 −0.116249 −0.0581244 0.998309i \(-0.518512\pi\)
−0.0581244 + 0.998309i \(0.518512\pi\)
\(212\) 723.941 0.234531
\(213\) 211.149 0.0679236
\(214\) −1473.84 −0.470793
\(215\) −319.790 −0.101439
\(216\) 704.190 0.221824
\(217\) 2000.37 0.625779
\(218\) −3770.46 −1.17141
\(219\) 155.163 0.0478765
\(220\) 0 0
\(221\) 3789.75 1.15351
\(222\) −278.184 −0.0841012
\(223\) −292.544 −0.0878485 −0.0439242 0.999035i \(-0.513986\pi\)
−0.0439242 + 0.999035i \(0.513986\pi\)
\(224\) −2406.28 −0.717753
\(225\) 3276.09 0.970692
\(226\) 372.105 0.109522
\(227\) 5604.04 1.63856 0.819280 0.573394i \(-0.194374\pi\)
0.819280 + 0.573394i \(0.194374\pi\)
\(228\) 57.0155 0.0165611
\(229\) −5654.38 −1.63167 −0.815833 0.578287i \(-0.803721\pi\)
−0.815833 + 0.578287i \(0.803721\pi\)
\(230\) −674.854 −0.193472
\(231\) 0 0
\(232\) −2768.65 −0.783493
\(233\) −2553.08 −0.717845 −0.358923 0.933367i \(-0.616856\pi\)
−0.358923 + 0.933367i \(0.616856\pi\)
\(234\) −4506.52 −1.25898
\(235\) −787.171 −0.218508
\(236\) 976.650 0.269383
\(237\) −90.8814 −0.0249088
\(238\) 3853.05 1.04940
\(239\) 5297.27 1.43369 0.716845 0.697233i \(-0.245586\pi\)
0.716845 + 0.697233i \(0.245586\pi\)
\(240\) −36.9207 −0.00993008
\(241\) −4145.14 −1.10793 −0.553966 0.832539i \(-0.686886\pi\)
−0.553966 + 0.832539i \(0.686886\pi\)
\(242\) 0 0
\(243\) −1155.43 −0.305025
\(244\) −903.744 −0.237116
\(245\) −698.818 −0.182228
\(246\) −253.443 −0.0656867
\(247\) −3777.64 −0.973139
\(248\) 1732.37 0.443571
\(249\) −162.554 −0.0413714
\(250\) −937.225 −0.237101
\(251\) −1788.13 −0.449665 −0.224832 0.974397i \(-0.572183\pi\)
−0.224832 + 0.974397i \(0.572183\pi\)
\(252\) 1455.03 0.363723
\(253\) 0 0
\(254\) −1714.40 −0.423507
\(255\) −45.5609 −0.0111888
\(256\) −2775.84 −0.677696
\(257\) 5167.01 1.25412 0.627061 0.778970i \(-0.284258\pi\)
0.627061 + 0.778970i \(0.284258\pi\)
\(258\) 274.943 0.0663458
\(259\) −5950.99 −1.42771
\(260\) −202.758 −0.0483636
\(261\) 3023.14 0.716963
\(262\) 4104.41 0.967829
\(263\) 57.6791 0.0135234 0.00676169 0.999977i \(-0.497848\pi\)
0.00676169 + 0.999977i \(0.497848\pi\)
\(264\) 0 0
\(265\) 576.651 0.133673
\(266\) −3840.74 −0.885304
\(267\) 614.505 0.140851
\(268\) 558.976 0.127406
\(269\) −3028.06 −0.686335 −0.343167 0.939274i \(-0.611500\pi\)
−0.343167 + 0.939274i \(0.611500\pi\)
\(270\) 108.939 0.0245548
\(271\) 1487.84 0.333504 0.166752 0.985999i \(-0.446672\pi\)
0.166752 + 0.985999i \(0.446672\pi\)
\(272\) 2482.97 0.553501
\(273\) 1036.44 0.229774
\(274\) 3956.06 0.872241
\(275\) 0 0
\(276\) −184.257 −0.0401847
\(277\) −7460.46 −1.61825 −0.809126 0.587635i \(-0.800059\pi\)
−0.809126 + 0.587635i \(0.800059\pi\)
\(278\) −2634.86 −0.568448
\(279\) −1891.61 −0.405906
\(280\) −1061.43 −0.226544
\(281\) −900.155 −0.191099 −0.0955493 0.995425i \(-0.530461\pi\)
−0.0955493 + 0.995425i \(0.530461\pi\)
\(282\) 676.781 0.142914
\(283\) −6486.92 −1.36257 −0.681285 0.732018i \(-0.738578\pi\)
−0.681285 + 0.732018i \(0.738578\pi\)
\(284\) 759.732 0.158739
\(285\) 45.4153 0.00943920
\(286\) 0 0
\(287\) −5421.72 −1.11510
\(288\) 2275.45 0.465564
\(289\) −1848.95 −0.376339
\(290\) −428.311 −0.0867286
\(291\) −343.832 −0.0692639
\(292\) 558.289 0.111888
\(293\) −6129.38 −1.22212 −0.611062 0.791583i \(-0.709257\pi\)
−0.611062 + 0.791583i \(0.709257\pi\)
\(294\) 600.818 0.119185
\(295\) 777.944 0.153538
\(296\) −5153.71 −1.01200
\(297\) 0 0
\(298\) −875.179 −0.170127
\(299\) 12208.2 2.36127
\(300\) −126.728 −0.0243887
\(301\) 5881.67 1.12629
\(302\) 4631.41 0.882476
\(303\) 593.545 0.112535
\(304\) −2475.04 −0.466951
\(305\) −719.872 −0.135147
\(306\) −3643.56 −0.680681
\(307\) −5377.67 −0.999740 −0.499870 0.866101i \(-0.666619\pi\)
−0.499870 + 0.866101i \(0.666619\pi\)
\(308\) 0 0
\(309\) 159.857 0.0294303
\(310\) 267.999 0.0491010
\(311\) −6066.41 −1.10609 −0.553046 0.833151i \(-0.686535\pi\)
−0.553046 + 0.833151i \(0.686535\pi\)
\(312\) 897.583 0.162871
\(313\) 3241.18 0.585311 0.292655 0.956218i \(-0.405461\pi\)
0.292655 + 0.956218i \(0.405461\pi\)
\(314\) −6160.23 −1.10714
\(315\) 1158.99 0.207307
\(316\) −326.998 −0.0582123
\(317\) 6519.32 1.15508 0.577542 0.816361i \(-0.304012\pi\)
0.577542 + 0.816361i \(0.304012\pi\)
\(318\) −495.783 −0.0874281
\(319\) 0 0
\(320\) −873.540 −0.152601
\(321\) −320.535 −0.0557336
\(322\) 12412.1 2.14814
\(323\) −3054.25 −0.526140
\(324\) −1360.97 −0.233362
\(325\) 8396.51 1.43309
\(326\) −4590.68 −0.779921
\(327\) −820.008 −0.138675
\(328\) −4695.35 −0.790419
\(329\) 14477.9 2.42612
\(330\) 0 0
\(331\) 5879.55 0.976343 0.488171 0.872748i \(-0.337664\pi\)
0.488171 + 0.872748i \(0.337664\pi\)
\(332\) −584.883 −0.0966857
\(333\) 5627.43 0.926070
\(334\) −6523.13 −1.06865
\(335\) 445.249 0.0726166
\(336\) 679.056 0.110255
\(337\) −1342.66 −0.217031 −0.108516 0.994095i \(-0.534610\pi\)
−0.108516 + 0.994095i \(0.534610\pi\)
\(338\) −6136.43 −0.987509
\(339\) 80.9262 0.0129655
\(340\) −163.932 −0.0261484
\(341\) 0 0
\(342\) 3631.91 0.574244
\(343\) 3163.56 0.498007
\(344\) 5093.68 0.798351
\(345\) −146.769 −0.0229037
\(346\) −5197.74 −0.807607
\(347\) 5650.03 0.874091 0.437046 0.899439i \(-0.356025\pi\)
0.437046 + 0.899439i \(0.356025\pi\)
\(348\) −116.943 −0.0180138
\(349\) 1249.55 0.191653 0.0958266 0.995398i \(-0.469451\pi\)
0.0958266 + 0.995398i \(0.469451\pi\)
\(350\) 8536.76 1.30374
\(351\) −1970.71 −0.299683
\(352\) 0 0
\(353\) 5984.25 0.902293 0.451147 0.892450i \(-0.351015\pi\)
0.451147 + 0.892450i \(0.351015\pi\)
\(354\) −668.848 −0.100420
\(355\) 605.160 0.0904748
\(356\) 2211.04 0.329170
\(357\) 837.971 0.124230
\(358\) −3428.17 −0.506102
\(359\) 2176.01 0.319904 0.159952 0.987125i \(-0.448866\pi\)
0.159952 + 0.987125i \(0.448866\pi\)
\(360\) 1003.72 0.146946
\(361\) −3814.51 −0.556132
\(362\) −9120.63 −1.32423
\(363\) 0 0
\(364\) 3729.19 0.536985
\(365\) 444.701 0.0637719
\(366\) 618.919 0.0883918
\(367\) −8464.39 −1.20392 −0.601958 0.798528i \(-0.705613\pi\)
−0.601958 + 0.798528i \(0.705613\pi\)
\(368\) 7998.59 1.13303
\(369\) 5126.94 0.723301
\(370\) −797.281 −0.112023
\(371\) −10605.9 −1.48419
\(372\) 73.1723 0.0101984
\(373\) 4248.93 0.589816 0.294908 0.955526i \(-0.404711\pi\)
0.294908 + 0.955526i \(0.404711\pi\)
\(374\) 0 0
\(375\) −203.830 −0.0280686
\(376\) 12538.2 1.71971
\(377\) 7748.20 1.05850
\(378\) −2003.63 −0.272634
\(379\) 4852.93 0.657727 0.328863 0.944378i \(-0.393334\pi\)
0.328863 + 0.944378i \(0.393334\pi\)
\(380\) 163.408 0.0220596
\(381\) −372.851 −0.0501357
\(382\) 8705.75 1.16603
\(383\) −8181.81 −1.09157 −0.545785 0.837926i \(-0.683768\pi\)
−0.545785 + 0.837926i \(0.683768\pi\)
\(384\) 385.846 0.0512763
\(385\) 0 0
\(386\) 6420.61 0.846634
\(387\) −5561.88 −0.730559
\(388\) −1237.13 −0.161871
\(389\) 1254.82 0.163552 0.0817761 0.996651i \(-0.473941\pi\)
0.0817761 + 0.996651i \(0.473941\pi\)
\(390\) 138.857 0.0180289
\(391\) 9870.44 1.27665
\(392\) 11130.9 1.43417
\(393\) 892.636 0.114574
\(394\) −1772.19 −0.226603
\(395\) −260.469 −0.0331787
\(396\) 0 0
\(397\) −11519.3 −1.45627 −0.728133 0.685436i \(-0.759612\pi\)
−0.728133 + 0.685436i \(0.759612\pi\)
\(398\) −2550.72 −0.321247
\(399\) −835.292 −0.104804
\(400\) 5501.24 0.687654
\(401\) −1500.66 −0.186882 −0.0934409 0.995625i \(-0.529787\pi\)
−0.0934409 + 0.995625i \(0.529787\pi\)
\(402\) −382.809 −0.0474944
\(403\) −4848.13 −0.599262
\(404\) 2135.62 0.262998
\(405\) −1084.07 −0.133007
\(406\) 7877.63 0.962956
\(407\) 0 0
\(408\) 725.704 0.0880581
\(409\) −91.3936 −0.0110492 −0.00552460 0.999985i \(-0.501759\pi\)
−0.00552460 + 0.999985i \(0.501759\pi\)
\(410\) −726.373 −0.0874952
\(411\) 860.372 0.103258
\(412\) 575.178 0.0687791
\(413\) −14308.2 −1.70475
\(414\) −11737.3 −1.39337
\(415\) −465.885 −0.0551070
\(416\) 5831.91 0.687339
\(417\) −573.036 −0.0672942
\(418\) 0 0
\(419\) −1880.83 −0.219295 −0.109648 0.993971i \(-0.534972\pi\)
−0.109648 + 0.993971i \(0.534972\pi\)
\(420\) −44.8329 −0.00520862
\(421\) −7279.83 −0.842748 −0.421374 0.906887i \(-0.638452\pi\)
−0.421374 + 0.906887i \(0.638452\pi\)
\(422\) 877.951 0.101275
\(423\) −13690.7 −1.57368
\(424\) −9185.01 −1.05204
\(425\) 6788.65 0.774819
\(426\) −520.294 −0.0591745
\(427\) 13240.1 1.50055
\(428\) −1153.31 −0.130251
\(429\) 0 0
\(430\) 787.994 0.0883732
\(431\) −6870.61 −0.767855 −0.383928 0.923363i \(-0.625429\pi\)
−0.383928 + 0.923363i \(0.625429\pi\)
\(432\) −1291.17 −0.143800
\(433\) 1121.32 0.124451 0.0622255 0.998062i \(-0.480180\pi\)
0.0622255 + 0.998062i \(0.480180\pi\)
\(434\) −4929.11 −0.545173
\(435\) −93.1500 −0.0102671
\(436\) −2950.45 −0.324085
\(437\) −9838.89 −1.07702
\(438\) −382.338 −0.0417096
\(439\) −7114.94 −0.773525 −0.386763 0.922179i \(-0.626407\pi\)
−0.386763 + 0.922179i \(0.626407\pi\)
\(440\) 0 0
\(441\) −12154.1 −1.31239
\(442\) −9338.33 −1.00493
\(443\) −14057.4 −1.50764 −0.753822 0.657079i \(-0.771792\pi\)
−0.753822 + 0.657079i \(0.771792\pi\)
\(444\) −217.684 −0.0232676
\(445\) 1761.19 0.187614
\(446\) 720.859 0.0765328
\(447\) −190.336 −0.0201400
\(448\) 16066.4 1.69435
\(449\) −15323.9 −1.61064 −0.805320 0.592840i \(-0.798007\pi\)
−0.805320 + 0.592840i \(0.798007\pi\)
\(450\) −8072.61 −0.845659
\(451\) 0 0
\(452\) 291.179 0.0303006
\(453\) 1007.25 0.104470
\(454\) −13808.9 −1.42750
\(455\) 2970.46 0.306060
\(456\) −723.384 −0.0742885
\(457\) 7212.20 0.738233 0.369117 0.929383i \(-0.379660\pi\)
0.369117 + 0.929383i \(0.379660\pi\)
\(458\) 13933.0 1.42149
\(459\) −1593.34 −0.162028
\(460\) −528.085 −0.0535263
\(461\) 10159.6 1.02642 0.513212 0.858262i \(-0.328456\pi\)
0.513212 + 0.858262i \(0.328456\pi\)
\(462\) 0 0
\(463\) −10292.0 −1.03306 −0.516532 0.856268i \(-0.672777\pi\)
−0.516532 + 0.856268i \(0.672777\pi\)
\(464\) 5076.48 0.507909
\(465\) 58.2850 0.00581269
\(466\) 6291.05 0.625380
\(467\) 18023.0 1.78588 0.892938 0.450180i \(-0.148640\pi\)
0.892938 + 0.450180i \(0.148640\pi\)
\(468\) −3526.43 −0.348310
\(469\) −8189.16 −0.806269
\(470\) 1939.67 0.190362
\(471\) −1339.74 −0.131066
\(472\) −12391.3 −1.20838
\(473\) 0 0
\(474\) 223.941 0.0217003
\(475\) −6766.95 −0.653661
\(476\) 3015.08 0.290328
\(477\) 10029.3 0.962704
\(478\) −13053.0 −1.24902
\(479\) −17083.8 −1.62960 −0.814801 0.579741i \(-0.803154\pi\)
−0.814801 + 0.579741i \(0.803154\pi\)
\(480\) −70.1121 −0.00666701
\(481\) 14422.9 1.36721
\(482\) 10214.0 0.965221
\(483\) 2699.42 0.254302
\(484\) 0 0
\(485\) −985.432 −0.0922601
\(486\) 2847.10 0.265735
\(487\) 461.804 0.0429699 0.0214850 0.999769i \(-0.493161\pi\)
0.0214850 + 0.999769i \(0.493161\pi\)
\(488\) 11466.3 1.06363
\(489\) −998.391 −0.0923288
\(490\) 1721.96 0.158755
\(491\) 12542.7 1.15284 0.576422 0.817152i \(-0.304448\pi\)
0.576422 + 0.817152i \(0.304448\pi\)
\(492\) −198.323 −0.0181730
\(493\) 6264.49 0.572289
\(494\) 9308.48 0.847790
\(495\) 0 0
\(496\) −3176.41 −0.287550
\(497\) −11130.3 −1.00455
\(498\) 400.551 0.0360424
\(499\) −18277.0 −1.63966 −0.819829 0.572608i \(-0.805932\pi\)
−0.819829 + 0.572608i \(0.805932\pi\)
\(500\) −733.395 −0.0655968
\(501\) −1418.67 −0.126510
\(502\) 4406.14 0.391744
\(503\) 2655.18 0.235365 0.117683 0.993051i \(-0.462453\pi\)
0.117683 + 0.993051i \(0.462453\pi\)
\(504\) −18460.7 −1.63156
\(505\) 1701.11 0.149898
\(506\) 0 0
\(507\) −1334.57 −0.116904
\(508\) −1341.54 −0.117168
\(509\) −4887.16 −0.425579 −0.212789 0.977098i \(-0.568255\pi\)
−0.212789 + 0.977098i \(0.568255\pi\)
\(510\) 112.267 0.00974756
\(511\) −8179.08 −0.708065
\(512\) 12599.9 1.08759
\(513\) 1588.25 0.136692
\(514\) −12732.0 −1.09258
\(515\) 458.155 0.0392014
\(516\) 215.148 0.0183554
\(517\) 0 0
\(518\) 14663.8 1.24381
\(519\) −1130.42 −0.0956064
\(520\) 2572.50 0.216945
\(521\) −21941.1 −1.84502 −0.922512 0.385969i \(-0.873867\pi\)
−0.922512 + 0.385969i \(0.873867\pi\)
\(522\) −7449.31 −0.624612
\(523\) 6102.28 0.510199 0.255099 0.966915i \(-0.417892\pi\)
0.255099 + 0.966915i \(0.417892\pi\)
\(524\) 3211.77 0.267761
\(525\) 1856.59 0.154340
\(526\) −142.127 −0.0117814
\(527\) −3919.76 −0.323999
\(528\) 0 0
\(529\) 19629.4 1.61333
\(530\) −1420.93 −0.116455
\(531\) 13530.2 1.10577
\(532\) −3005.45 −0.244930
\(533\) 13140.2 1.06785
\(534\) −1514.20 −0.122708
\(535\) −918.660 −0.0742377
\(536\) −7092.02 −0.571508
\(537\) −745.566 −0.0599135
\(538\) 7461.44 0.597929
\(539\) 0 0
\(540\) 85.2463 0.00679337
\(541\) 2099.35 0.166836 0.0834179 0.996515i \(-0.473416\pi\)
0.0834179 + 0.996515i \(0.473416\pi\)
\(542\) −3666.18 −0.290546
\(543\) −1983.58 −0.156765
\(544\) 4715.15 0.371619
\(545\) −2350.16 −0.184716
\(546\) −2553.89 −0.200177
\(547\) 9029.06 0.705767 0.352884 0.935667i \(-0.385201\pi\)
0.352884 + 0.935667i \(0.385201\pi\)
\(548\) 3095.68 0.241316
\(549\) −12520.2 −0.973315
\(550\) 0 0
\(551\) −6244.47 −0.482801
\(552\) 2337.76 0.180257
\(553\) 4790.62 0.368386
\(554\) 18383.3 1.40981
\(555\) −173.394 −0.0132616
\(556\) −2061.83 −0.157268
\(557\) −7894.54 −0.600543 −0.300271 0.953854i \(-0.597077\pi\)
−0.300271 + 0.953854i \(0.597077\pi\)
\(558\) 4661.12 0.353621
\(559\) −14254.9 −1.07857
\(560\) 1946.19 0.146860
\(561\) 0 0
\(562\) 2218.07 0.166484
\(563\) 22377.6 1.67514 0.837569 0.546332i \(-0.183976\pi\)
0.837569 + 0.546332i \(0.183976\pi\)
\(564\) 529.593 0.0395388
\(565\) 231.936 0.0172702
\(566\) 15984.4 1.18706
\(567\) 19938.5 1.47679
\(568\) −9639.11 −0.712056
\(569\) −16920.5 −1.24665 −0.623325 0.781963i \(-0.714219\pi\)
−0.623325 + 0.781963i \(0.714219\pi\)
\(570\) −111.908 −0.00822335
\(571\) 16320.0 1.19609 0.598047 0.801461i \(-0.295944\pi\)
0.598047 + 0.801461i \(0.295944\pi\)
\(572\) 0 0
\(573\) 1893.35 0.138038
\(574\) 13359.7 0.971467
\(575\) 21868.8 1.58607
\(576\) −15192.9 −1.09902
\(577\) 830.262 0.0599034 0.0299517 0.999551i \(-0.490465\pi\)
0.0299517 + 0.999551i \(0.490465\pi\)
\(578\) 4556.01 0.327863
\(579\) 1396.37 0.100226
\(580\) −335.161 −0.0239945
\(581\) 8568.70 0.611858
\(582\) 847.238 0.0603422
\(583\) 0 0
\(584\) −7083.29 −0.501899
\(585\) −2808.96 −0.198523
\(586\) 15103.4 1.06470
\(587\) 21919.4 1.54124 0.770621 0.637294i \(-0.219946\pi\)
0.770621 + 0.637294i \(0.219946\pi\)
\(588\) 470.150 0.0329739
\(589\) 3907.23 0.273336
\(590\) −1916.93 −0.133761
\(591\) −385.419 −0.0268258
\(592\) 9449.63 0.656043
\(593\) −8236.51 −0.570376 −0.285188 0.958472i \(-0.592056\pi\)
−0.285188 + 0.958472i \(0.592056\pi\)
\(594\) 0 0
\(595\) 2401.64 0.165475
\(596\) −684.843 −0.0470676
\(597\) −554.737 −0.0380299
\(598\) −30082.2 −2.05711
\(599\) −10922.0 −0.745009 −0.372505 0.928030i \(-0.621501\pi\)
−0.372505 + 0.928030i \(0.621501\pi\)
\(600\) 1607.86 0.109401
\(601\) −1386.44 −0.0940997 −0.0470498 0.998893i \(-0.514982\pi\)
−0.0470498 + 0.998893i \(0.514982\pi\)
\(602\) −14493.0 −0.981216
\(603\) 7743.91 0.522979
\(604\) 3624.16 0.244147
\(605\) 0 0
\(606\) −1462.55 −0.0980399
\(607\) 1417.78 0.0948035 0.0474017 0.998876i \(-0.484906\pi\)
0.0474017 + 0.998876i \(0.484906\pi\)
\(608\) −4700.08 −0.313509
\(609\) 1713.24 0.113997
\(610\) 1773.84 0.117739
\(611\) −35088.9 −2.32331
\(612\) −2851.15 −0.188318
\(613\) −15424.9 −1.01632 −0.508162 0.861261i \(-0.669675\pi\)
−0.508162 + 0.861261i \(0.669675\pi\)
\(614\) 13251.1 0.870965
\(615\) −157.973 −0.0103579
\(616\) 0 0
\(617\) 15169.5 0.989793 0.494897 0.868952i \(-0.335206\pi\)
0.494897 + 0.868952i \(0.335206\pi\)
\(618\) −393.904 −0.0256394
\(619\) −2081.56 −0.135162 −0.0675809 0.997714i \(-0.521528\pi\)
−0.0675809 + 0.997714i \(0.521528\pi\)
\(620\) 209.714 0.0135844
\(621\) −5132.74 −0.331674
\(622\) 14948.3 0.963618
\(623\) −32392.3 −2.08310
\(624\) −1645.77 −0.105583
\(625\) 14745.9 0.943741
\(626\) −7986.59 −0.509918
\(627\) 0 0
\(628\) −4820.49 −0.306303
\(629\) 11661.1 0.739200
\(630\) −2855.88 −0.180604
\(631\) 25249.7 1.59298 0.796492 0.604649i \(-0.206687\pi\)
0.796492 + 0.604649i \(0.206687\pi\)
\(632\) 4148.80 0.261124
\(633\) 190.939 0.0119892
\(634\) −16064.3 −1.00630
\(635\) −1068.60 −0.0667812
\(636\) −387.959 −0.0241880
\(637\) −31150.5 −1.93756
\(638\) 0 0
\(639\) 10525.1 0.651592
\(640\) 1105.84 0.0683005
\(641\) −2626.57 −0.161846 −0.0809231 0.996720i \(-0.525787\pi\)
−0.0809231 + 0.996720i \(0.525787\pi\)
\(642\) 789.830 0.0485547
\(643\) 9229.61 0.566066 0.283033 0.959110i \(-0.408659\pi\)
0.283033 + 0.959110i \(0.408659\pi\)
\(644\) 9712.70 0.594308
\(645\) 171.375 0.0104618
\(646\) 7525.99 0.458369
\(647\) 316.901 0.0192561 0.00962803 0.999954i \(-0.496935\pi\)
0.00962803 + 0.999954i \(0.496935\pi\)
\(648\) 17267.3 1.04679
\(649\) 0 0
\(650\) −20689.8 −1.24850
\(651\) −1071.99 −0.0645389
\(652\) −3592.29 −0.215774
\(653\) −5022.66 −0.300998 −0.150499 0.988610i \(-0.548088\pi\)
−0.150499 + 0.988610i \(0.548088\pi\)
\(654\) 2020.58 0.120812
\(655\) 2558.32 0.152613
\(656\) 8609.21 0.512398
\(657\) 7734.38 0.459280
\(658\) −35675.0 −2.11361
\(659\) 24927.5 1.47350 0.736752 0.676163i \(-0.236358\pi\)
0.736752 + 0.676163i \(0.236358\pi\)
\(660\) 0 0
\(661\) −16440.5 −0.967418 −0.483709 0.875229i \(-0.660711\pi\)
−0.483709 + 0.875229i \(0.660711\pi\)
\(662\) −14487.8 −0.850581
\(663\) −2030.92 −0.118966
\(664\) 7420.72 0.433704
\(665\) −2393.97 −0.139600
\(666\) −13866.6 −0.806784
\(667\) 20180.3 1.17149
\(668\) −5104.47 −0.295655
\(669\) 156.774 0.00906014
\(670\) −1097.14 −0.0632630
\(671\) 0 0
\(672\) 1289.52 0.0740245
\(673\) 11777.4 0.674572 0.337286 0.941402i \(-0.390491\pi\)
0.337286 + 0.941402i \(0.390491\pi\)
\(674\) 3308.46 0.189076
\(675\) −3530.17 −0.201298
\(676\) −4801.87 −0.273206
\(677\) 2818.49 0.160005 0.0800025 0.996795i \(-0.474507\pi\)
0.0800025 + 0.996795i \(0.474507\pi\)
\(678\) −199.410 −0.0112954
\(679\) 18124.4 1.02437
\(680\) 2079.89 0.117294
\(681\) −3003.19 −0.168991
\(682\) 0 0
\(683\) 15803.2 0.885346 0.442673 0.896683i \(-0.354030\pi\)
0.442673 + 0.896683i \(0.354030\pi\)
\(684\) 2842.04 0.158871
\(685\) 2465.85 0.137540
\(686\) −7795.34 −0.433860
\(687\) 3030.17 0.168280
\(688\) −9339.56 −0.517540
\(689\) 25704.8 1.42130
\(690\) 361.653 0.0199535
\(691\) 3300.72 0.181716 0.0908578 0.995864i \(-0.471039\pi\)
0.0908578 + 0.995864i \(0.471039\pi\)
\(692\) −4067.32 −0.223434
\(693\) 0 0
\(694\) −13922.3 −0.761501
\(695\) −1642.34 −0.0896365
\(696\) 1483.71 0.0808046
\(697\) 10624.0 0.577348
\(698\) −3079.02 −0.166967
\(699\) 1368.19 0.0740340
\(700\) 6680.16 0.360695
\(701\) 29773.2 1.60416 0.802082 0.597214i \(-0.203726\pi\)
0.802082 + 0.597214i \(0.203726\pi\)
\(702\) 4856.04 0.261082
\(703\) −11623.8 −0.623612
\(704\) 0 0
\(705\) 421.844 0.0225355
\(706\) −14745.8 −0.786070
\(707\) −31287.4 −1.66433
\(708\) −523.385 −0.0277825
\(709\) −24002.5 −1.27141 −0.635707 0.771931i \(-0.719291\pi\)
−0.635707 + 0.771931i \(0.719291\pi\)
\(710\) −1491.18 −0.0788209
\(711\) −4530.15 −0.238951
\(712\) −28052.5 −1.47656
\(713\) −12627.0 −0.663233
\(714\) −2064.84 −0.108228
\(715\) 0 0
\(716\) −2682.60 −0.140019
\(717\) −2838.80 −0.147862
\(718\) −5361.91 −0.278697
\(719\) −20668.7 −1.07206 −0.536032 0.844198i \(-0.680077\pi\)
−0.536032 + 0.844198i \(0.680077\pi\)
\(720\) −1840.38 −0.0952594
\(721\) −8426.52 −0.435257
\(722\) 9399.34 0.484497
\(723\) 2221.37 0.114265
\(724\) −7137.06 −0.366363
\(725\) 13879.5 0.710995
\(726\) 0 0
\(727\) 21928.9 1.11870 0.559351 0.828931i \(-0.311050\pi\)
0.559351 + 0.828931i \(0.311050\pi\)
\(728\) −47314.1 −2.40876
\(729\) −18438.0 −0.936745
\(730\) −1095.79 −0.0555575
\(731\) −11525.2 −0.583141
\(732\) 484.315 0.0244546
\(733\) 25124.0 1.26600 0.633000 0.774152i \(-0.281823\pi\)
0.633000 + 0.774152i \(0.281823\pi\)
\(734\) 20857.1 1.04884
\(735\) 374.495 0.0187938
\(736\) 15189.3 0.760712
\(737\) 0 0
\(738\) −12633.3 −0.630133
\(739\) −37038.1 −1.84367 −0.921833 0.387588i \(-0.873308\pi\)
−0.921833 + 0.387588i \(0.873308\pi\)
\(740\) −623.887 −0.0309926
\(741\) 2024.43 0.100363
\(742\) 26134.1 1.29301
\(743\) 24798.0 1.22443 0.612213 0.790693i \(-0.290279\pi\)
0.612213 + 0.790693i \(0.290279\pi\)
\(744\) −928.375 −0.0457471
\(745\) −545.508 −0.0268267
\(746\) −10469.8 −0.513843
\(747\) −8102.82 −0.396876
\(748\) 0 0
\(749\) 16896.3 0.824268
\(750\) 502.257 0.0244531
\(751\) 13967.2 0.678654 0.339327 0.940668i \(-0.389801\pi\)
0.339327 + 0.940668i \(0.389801\pi\)
\(752\) −22989.6 −1.11482
\(753\) 958.256 0.0463756
\(754\) −19092.4 −0.922152
\(755\) 2886.80 0.139154
\(756\) −1567.88 −0.0754274
\(757\) −8515.45 −0.408850 −0.204425 0.978882i \(-0.565532\pi\)
−0.204425 + 0.978882i \(0.565532\pi\)
\(758\) −11958.1 −0.573006
\(759\) 0 0
\(760\) −2073.24 −0.0989530
\(761\) 31658.0 1.50802 0.754009 0.656865i \(-0.228118\pi\)
0.754009 + 0.656865i \(0.228118\pi\)
\(762\) 918.742 0.0436778
\(763\) 43224.9 2.05091
\(764\) 6812.40 0.322597
\(765\) −2271.07 −0.107334
\(766\) 20160.8 0.950966
\(767\) 34677.6 1.63251
\(768\) 1487.57 0.0698932
\(769\) 606.519 0.0284416 0.0142208 0.999899i \(-0.495473\pi\)
0.0142208 + 0.999899i \(0.495473\pi\)
\(770\) 0 0
\(771\) −2768.99 −0.129342
\(772\) 5024.24 0.234231
\(773\) −4699.76 −0.218679 −0.109339 0.994004i \(-0.534874\pi\)
−0.109339 + 0.994004i \(0.534874\pi\)
\(774\) 13705.0 0.636457
\(775\) −8684.55 −0.402527
\(776\) 15696.2 0.726107
\(777\) 3189.12 0.147245
\(778\) −3092.00 −0.142485
\(779\) −10590.0 −0.487068
\(780\) 108.658 0.00498791
\(781\) 0 0
\(782\) −24321.8 −1.11221
\(783\) −3257.60 −0.148681
\(784\) −20409.2 −0.929720
\(785\) −3839.73 −0.174581
\(786\) −2199.55 −0.0998158
\(787\) −24078.1 −1.09059 −0.545293 0.838245i \(-0.683582\pi\)
−0.545293 + 0.838245i \(0.683582\pi\)
\(788\) −1386.77 −0.0626923
\(789\) −30.9101 −0.00139472
\(790\) 641.821 0.0289050
\(791\) −4265.85 −0.191752
\(792\) 0 0
\(793\) −32088.9 −1.43696
\(794\) 28384.8 1.26869
\(795\) −309.026 −0.0137862
\(796\) −1995.99 −0.0888767
\(797\) −18977.7 −0.843443 −0.421722 0.906725i \(-0.638574\pi\)
−0.421722 + 0.906725i \(0.638574\pi\)
\(798\) 2058.25 0.0913046
\(799\) −28369.7 −1.25613
\(800\) 10446.8 0.461688
\(801\) 30631.1 1.35118
\(802\) 3697.79 0.162810
\(803\) 0 0
\(804\) −299.554 −0.0131399
\(805\) 7736.59 0.338732
\(806\) 11946.3 0.522072
\(807\) 1622.73 0.0707842
\(808\) −27095.7 −1.17973
\(809\) −9120.70 −0.396374 −0.198187 0.980164i \(-0.563505\pi\)
−0.198187 + 0.980164i \(0.563505\pi\)
\(810\) 2671.25 0.115874
\(811\) −39874.2 −1.72648 −0.863239 0.504796i \(-0.831568\pi\)
−0.863239 + 0.504796i \(0.831568\pi\)
\(812\) 6164.38 0.266413
\(813\) −797.329 −0.0343955
\(814\) 0 0
\(815\) −2861.41 −0.122983
\(816\) −1330.62 −0.0570847
\(817\) 11488.4 0.491956
\(818\) 225.203 0.00962597
\(819\) 51663.2 2.20422
\(820\) −568.400 −0.0242066
\(821\) −4913.94 −0.208889 −0.104444 0.994531i \(-0.533306\pi\)
−0.104444 + 0.994531i \(0.533306\pi\)
\(822\) −2120.04 −0.0899575
\(823\) 2777.58 0.117643 0.0588215 0.998269i \(-0.481266\pi\)
0.0588215 + 0.998269i \(0.481266\pi\)
\(824\) −7297.58 −0.308523
\(825\) 0 0
\(826\) 35256.8 1.48516
\(827\) −20306.5 −0.853842 −0.426921 0.904289i \(-0.640402\pi\)
−0.426921 + 0.904289i \(0.640402\pi\)
\(828\) −9184.62 −0.385492
\(829\) −35572.7 −1.49034 −0.745170 0.666875i \(-0.767632\pi\)
−0.745170 + 0.666875i \(0.767632\pi\)
\(830\) 1147.99 0.0480088
\(831\) 3998.05 0.166896
\(832\) −38938.9 −1.62255
\(833\) −25185.4 −1.04757
\(834\) 1412.02 0.0586262
\(835\) −4065.93 −0.168512
\(836\) 0 0
\(837\) 2038.32 0.0841751
\(838\) 4634.56 0.191048
\(839\) 7096.72 0.292021 0.146011 0.989283i \(-0.453357\pi\)
0.146011 + 0.989283i \(0.453357\pi\)
\(840\) 568.817 0.0233644
\(841\) −11581.2 −0.474851
\(842\) 17938.2 0.734195
\(843\) 482.391 0.0197087
\(844\) 687.013 0.0280189
\(845\) −3824.90 −0.155717
\(846\) 33735.3 1.37097
\(847\) 0 0
\(848\) 16841.3 0.681995
\(849\) 3476.33 0.140527
\(850\) −16727.9 −0.675015
\(851\) 37564.6 1.51316
\(852\) −407.139 −0.0163713
\(853\) −24157.6 −0.969682 −0.484841 0.874602i \(-0.661123\pi\)
−0.484841 + 0.874602i \(0.661123\pi\)
\(854\) −32624.9 −1.30726
\(855\) 2263.81 0.0905504
\(856\) 14632.6 0.584267
\(857\) −28806.8 −1.14822 −0.574108 0.818779i \(-0.694651\pi\)
−0.574108 + 0.818779i \(0.694651\pi\)
\(858\) 0 0
\(859\) 11244.4 0.446628 0.223314 0.974747i \(-0.428312\pi\)
0.223314 + 0.974747i \(0.428312\pi\)
\(860\) 616.620 0.0244495
\(861\) 2905.49 0.115005
\(862\) 16929.9 0.668949
\(863\) −1291.92 −0.0509589 −0.0254794 0.999675i \(-0.508111\pi\)
−0.0254794 + 0.999675i \(0.508111\pi\)
\(864\) −2451.93 −0.0965468
\(865\) −3239.80 −0.127349
\(866\) −2763.05 −0.108421
\(867\) 990.851 0.0388132
\(868\) −3857.12 −0.150829
\(869\) 0 0
\(870\) 229.531 0.00894464
\(871\) 19847.4 0.772105
\(872\) 37433.9 1.45375
\(873\) −17138.9 −0.664450
\(874\) 24244.0 0.938291
\(875\) 10744.4 0.415118
\(876\) −299.186 −0.0115394
\(877\) −26823.1 −1.03278 −0.516391 0.856353i \(-0.672725\pi\)
−0.516391 + 0.856353i \(0.672725\pi\)
\(878\) 17531.9 0.673889
\(879\) 3284.73 0.126042
\(880\) 0 0
\(881\) −28515.7 −1.09049 −0.545243 0.838278i \(-0.683563\pi\)
−0.545243 + 0.838278i \(0.683563\pi\)
\(882\) 29948.8 1.14334
\(883\) 41686.4 1.58874 0.794371 0.607433i \(-0.207801\pi\)
0.794371 + 0.607433i \(0.207801\pi\)
\(884\) −7307.41 −0.278026
\(885\) −416.899 −0.0158349
\(886\) 34638.8 1.31345
\(887\) −49179.3 −1.86164 −0.930822 0.365473i \(-0.880907\pi\)
−0.930822 + 0.365473i \(0.880907\pi\)
\(888\) 2761.86 0.104372
\(889\) 19654.0 0.741478
\(890\) −4339.74 −0.163448
\(891\) 0 0
\(892\) 564.085 0.0211737
\(893\) 28279.0 1.05971
\(894\) 469.007 0.0175458
\(895\) −2136.81 −0.0798053
\(896\) −20339.0 −0.758346
\(897\) −6542.35 −0.243526
\(898\) 37759.5 1.40318
\(899\) −8014.01 −0.297310
\(900\) −6316.96 −0.233962
\(901\) 20782.5 0.768442
\(902\) 0 0
\(903\) −3151.98 −0.116159
\(904\) −3694.33 −0.135920
\(905\) −5684.98 −0.208812
\(906\) −2481.97 −0.0910130
\(907\) 52977.8 1.93947 0.969734 0.244163i \(-0.0785133\pi\)
0.969734 + 0.244163i \(0.0785133\pi\)
\(908\) −10805.7 −0.394934
\(909\) 29586.3 1.07955
\(910\) −7319.52 −0.266637
\(911\) −31469.8 −1.14450 −0.572251 0.820078i \(-0.693930\pi\)
−0.572251 + 0.820078i \(0.693930\pi\)
\(912\) 1326.37 0.0481584
\(913\) 0 0
\(914\) −17771.6 −0.643143
\(915\) 385.778 0.0139382
\(916\) 10902.8 0.393273
\(917\) −47053.4 −1.69448
\(918\) 3926.15 0.141157
\(919\) 42860.9 1.53847 0.769234 0.638967i \(-0.220638\pi\)
0.769234 + 0.638967i \(0.220638\pi\)
\(920\) 6700.09 0.240104
\(921\) 2881.89 0.103107
\(922\) −25034.4 −0.894211
\(923\) 26975.6 0.961984
\(924\) 0 0
\(925\) 25836.1 0.918361
\(926\) 25360.5 0.899996
\(927\) 7968.37 0.282325
\(928\) 9640.20 0.341008
\(929\) −20968.3 −0.740525 −0.370262 0.928927i \(-0.620732\pi\)
−0.370262 + 0.928927i \(0.620732\pi\)
\(930\) −143.620 −0.00506397
\(931\) 25104.9 0.883760
\(932\) 4922.86 0.173019
\(933\) 3250.98 0.114075
\(934\) −44410.4 −1.55584
\(935\) 0 0
\(936\) 44741.6 1.56242
\(937\) −17126.8 −0.597127 −0.298563 0.954390i \(-0.596507\pi\)
−0.298563 + 0.954390i \(0.596507\pi\)
\(938\) 20178.9 0.702415
\(939\) −1736.94 −0.0603652
\(940\) 1517.83 0.0526660
\(941\) 44021.2 1.52503 0.762513 0.646973i \(-0.223966\pi\)
0.762513 + 0.646973i \(0.223966\pi\)
\(942\) 3301.26 0.114183
\(943\) 34223.7 1.18184
\(944\) 22720.1 0.783344
\(945\) −1248.88 −0.0429906
\(946\) 0 0
\(947\) 8692.03 0.298261 0.149130 0.988818i \(-0.452353\pi\)
0.149130 + 0.988818i \(0.452353\pi\)
\(948\) 175.238 0.00600365
\(949\) 19823.0 0.678062
\(950\) 16674.5 0.569464
\(951\) −3493.69 −0.119128
\(952\) −38253.9 −1.30233
\(953\) −57906.0 −1.96827 −0.984133 0.177431i \(-0.943221\pi\)
−0.984133 + 0.177431i \(0.943221\pi\)
\(954\) −24713.2 −0.838699
\(955\) 5426.38 0.183867
\(956\) −10214.2 −0.345556
\(957\) 0 0
\(958\) 42096.2 1.41969
\(959\) −45352.6 −1.52713
\(960\) 468.129 0.0157383
\(961\) −24776.6 −0.831679
\(962\) −35539.5 −1.19110
\(963\) −15977.6 −0.534654
\(964\) 7992.67 0.267040
\(965\) 4002.03 0.133503
\(966\) −6651.64 −0.221545
\(967\) 56564.3 1.88106 0.940530 0.339711i \(-0.110329\pi\)
0.940530 + 0.339711i \(0.110329\pi\)
\(968\) 0 0
\(969\) 1636.77 0.0542628
\(970\) 2428.20 0.0803762
\(971\) −30894.7 −1.02107 −0.510534 0.859857i \(-0.670552\pi\)
−0.510534 + 0.859857i \(0.670552\pi\)
\(972\) 2227.91 0.0735187
\(973\) 30206.3 0.995242
\(974\) −1137.93 −0.0374350
\(975\) −4499.67 −0.147800
\(976\) −21024.1 −0.689513
\(977\) −29998.9 −0.982342 −0.491171 0.871063i \(-0.663431\pi\)
−0.491171 + 0.871063i \(0.663431\pi\)
\(978\) 2460.14 0.0804361
\(979\) 0 0
\(980\) 1347.46 0.0439216
\(981\) −40874.8 −1.33031
\(982\) −30906.6 −1.00435
\(983\) −24485.9 −0.794485 −0.397242 0.917714i \(-0.630033\pi\)
−0.397242 + 0.917714i \(0.630033\pi\)
\(984\) 2516.23 0.0815188
\(985\) −1104.62 −0.0357321
\(986\) −15436.3 −0.498573
\(987\) −7758.68 −0.250214
\(988\) 7284.05 0.234551
\(989\) −37127.1 −1.19370
\(990\) 0 0
\(991\) −52661.1 −1.68803 −0.844014 0.536321i \(-0.819814\pi\)
−0.844014 + 0.536321i \(0.819814\pi\)
\(992\) −6031.98 −0.193060
\(993\) −3150.84 −0.100694
\(994\) 27426.1 0.875156
\(995\) −1589.89 −0.0506562
\(996\) 313.438 0.00997155
\(997\) 54748.6 1.73912 0.869561 0.493826i \(-0.164402\pi\)
0.869561 + 0.493826i \(0.164402\pi\)
\(998\) 45036.3 1.42846
\(999\) −6063.88 −0.192045
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.a.e.1.1 yes 2
3.2 odd 2 1089.4.a.k.1.2 2
4.3 odd 2 1936.4.a.y.1.1 2
11.2 odd 10 121.4.c.g.81.1 8
11.3 even 5 121.4.c.d.9.1 8
11.4 even 5 121.4.c.d.27.1 8
11.5 even 5 121.4.c.d.3.2 8
11.6 odd 10 121.4.c.g.3.1 8
11.7 odd 10 121.4.c.g.27.2 8
11.8 odd 10 121.4.c.g.9.2 8
11.9 even 5 121.4.c.d.81.2 8
11.10 odd 2 121.4.a.b.1.2 2
33.32 even 2 1089.4.a.x.1.1 2
44.43 even 2 1936.4.a.z.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.4.a.b.1.2 2 11.10 odd 2
121.4.a.e.1.1 yes 2 1.1 even 1 trivial
121.4.c.d.3.2 8 11.5 even 5
121.4.c.d.9.1 8 11.3 even 5
121.4.c.d.27.1 8 11.4 even 5
121.4.c.d.81.2 8 11.9 even 5
121.4.c.g.3.1 8 11.6 odd 10
121.4.c.g.9.2 8 11.8 odd 10
121.4.c.g.27.2 8 11.7 odd 10
121.4.c.g.81.1 8 11.2 odd 10
1089.4.a.k.1.2 2 3.2 odd 2
1089.4.a.x.1.1 2 33.32 even 2
1936.4.a.y.1.1 2 4.3 odd 2
1936.4.a.z.1.1 2 44.43 even 2