Properties

Label 121.4.a.c.1.1
Level $121$
Weight $4$
Character 121.1
Self dual yes
Analytic conductor $7.139$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(1,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.13923111069\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 121.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{2} -7.92820 q^{3} -0.535898 q^{4} +14.8564 q^{5} +21.6603 q^{6} -3.07180 q^{7} +23.3205 q^{8} +35.8564 q^{9} +O(q^{10})\) \(q-2.73205 q^{2} -7.92820 q^{3} -0.535898 q^{4} +14.8564 q^{5} +21.6603 q^{6} -3.07180 q^{7} +23.3205 q^{8} +35.8564 q^{9} -40.5885 q^{10} +4.24871 q^{12} -5.35898 q^{13} +8.39230 q^{14} -117.785 q^{15} -59.4256 q^{16} +41.2154 q^{17} -97.9615 q^{18} -139.923 q^{19} -7.96152 q^{20} +24.3538 q^{21} -111.354 q^{23} -184.890 q^{24} +95.7128 q^{25} +14.6410 q^{26} -70.2154 q^{27} +1.64617 q^{28} +24.9948 q^{29} +321.794 q^{30} +31.4974 q^{31} -24.2102 q^{32} -112.603 q^{34} -45.6359 q^{35} -19.2154 q^{36} +13.1436 q^{37} +382.277 q^{38} +42.4871 q^{39} +346.459 q^{40} -261.072 q^{41} -66.5359 q^{42} +57.7128 q^{43} +532.697 q^{45} +304.224 q^{46} -343.846 q^{47} +471.138 q^{48} -333.564 q^{49} -261.492 q^{50} -326.764 q^{51} +2.87187 q^{52} -342.995 q^{53} +191.832 q^{54} -71.6359 q^{56} +1109.34 q^{57} -68.2872 q^{58} +88.3693 q^{59} +63.1206 q^{60} -738.697 q^{61} -86.0526 q^{62} -110.144 q^{63} +541.549 q^{64} -79.6152 q^{65} +342.359 q^{67} -22.0873 q^{68} +882.836 q^{69} +124.679 q^{70} -207.364 q^{71} +836.190 q^{72} +1010.60 q^{73} -35.9090 q^{74} -758.831 q^{75} +74.9845 q^{76} -116.077 q^{78} -1294.23 q^{79} -882.851 q^{80} -411.441 q^{81} +713.261 q^{82} -441.846 q^{83} -13.0512 q^{84} +612.313 q^{85} -157.674 q^{86} -198.164 q^{87} -1489.11 q^{89} -1455.36 q^{90} +16.4617 q^{91} +59.6743 q^{92} -249.718 q^{93} +939.405 q^{94} -2078.75 q^{95} +191.944 q^{96} +1346.42 q^{97} +911.314 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} - 8 q^{4} + 2 q^{5} + 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} - 8 q^{4} + 2 q^{5} + 26 q^{6} - 20 q^{7} + 12 q^{8} + 44 q^{9} - 50 q^{10} - 40 q^{12} - 80 q^{13} - 4 q^{14} - 194 q^{15} - 8 q^{16} + 124 q^{17} - 92 q^{18} - 72 q^{19} + 88 q^{20} - 76 q^{21} - 98 q^{23} - 252 q^{24} + 136 q^{25} - 40 q^{26} - 182 q^{27} + 128 q^{28} - 144 q^{29} + 266 q^{30} - 34 q^{31} + 104 q^{32} - 52 q^{34} + 172 q^{35} - 80 q^{36} + 54 q^{37} + 432 q^{38} - 400 q^{39} + 492 q^{40} - 536 q^{41} - 140 q^{42} + 60 q^{43} + 428 q^{45} + 314 q^{46} - 272 q^{47} + 776 q^{48} - 390 q^{49} - 232 q^{50} + 164 q^{51} + 560 q^{52} - 492 q^{53} + 110 q^{54} + 120 q^{56} + 1512 q^{57} - 192 q^{58} + 634 q^{59} + 632 q^{60} - 840 q^{61} - 134 q^{62} - 248 q^{63} + 224 q^{64} + 880 q^{65} + 754 q^{67} - 640 q^{68} + 962 q^{69} + 284 q^{70} - 678 q^{71} + 744 q^{72} + 400 q^{73} - 6 q^{74} - 520 q^{75} - 432 q^{76} - 440 q^{78} - 316 q^{79} - 1544 q^{80} - 1294 q^{81} + 512 q^{82} - 468 q^{83} + 736 q^{84} - 452 q^{85} - 156 q^{86} - 1200 q^{87} - 1842 q^{89} - 1532 q^{90} + 1280 q^{91} - 40 q^{92} - 638 q^{93} + 992 q^{94} - 2952 q^{95} + 952 q^{96} + 2194 q^{97} + 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73205 −0.965926 −0.482963 0.875641i \(-0.660439\pi\)
−0.482963 + 0.875641i \(0.660439\pi\)
\(3\) −7.92820 −1.52578 −0.762892 0.646526i \(-0.776221\pi\)
−0.762892 + 0.646526i \(0.776221\pi\)
\(4\) −0.535898 −0.0669873
\(5\) 14.8564 1.32880 0.664399 0.747378i \(-0.268688\pi\)
0.664399 + 0.747378i \(0.268688\pi\)
\(6\) 21.6603 1.47379
\(7\) −3.07180 −0.165861 −0.0829307 0.996555i \(-0.526428\pi\)
−0.0829307 + 0.996555i \(0.526428\pi\)
\(8\) 23.3205 1.03063
\(9\) 35.8564 1.32802
\(10\) −40.5885 −1.28352
\(11\) 0 0
\(12\) 4.24871 0.102208
\(13\) −5.35898 −0.114332 −0.0571659 0.998365i \(-0.518206\pi\)
−0.0571659 + 0.998365i \(0.518206\pi\)
\(14\) 8.39230 0.160210
\(15\) −117.785 −2.02746
\(16\) −59.4256 −0.928525
\(17\) 41.2154 0.588012 0.294006 0.955804i \(-0.405011\pi\)
0.294006 + 0.955804i \(0.405011\pi\)
\(18\) −97.9615 −1.28276
\(19\) −139.923 −1.68950 −0.844751 0.535159i \(-0.820252\pi\)
−0.844751 + 0.535159i \(0.820252\pi\)
\(20\) −7.96152 −0.0890125
\(21\) 24.3538 0.253069
\(22\) 0 0
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) −184.890 −1.57252
\(25\) 95.7128 0.765703
\(26\) 14.6410 0.110436
\(27\) −70.2154 −0.500480
\(28\) 1.64617 0.0111106
\(29\) 24.9948 0.160049 0.0800246 0.996793i \(-0.474500\pi\)
0.0800246 + 0.996793i \(0.474500\pi\)
\(30\) 321.794 1.95837
\(31\) 31.4974 0.182487 0.0912436 0.995829i \(-0.470916\pi\)
0.0912436 + 0.995829i \(0.470916\pi\)
\(32\) −24.2102 −0.133744
\(33\) 0 0
\(34\) −112.603 −0.567976
\(35\) −45.6359 −0.220396
\(36\) −19.2154 −0.0889601
\(37\) 13.1436 0.0583998 0.0291999 0.999574i \(-0.490704\pi\)
0.0291999 + 0.999574i \(0.490704\pi\)
\(38\) 382.277 1.63193
\(39\) 42.4871 0.174446
\(40\) 346.459 1.36950
\(41\) −261.072 −0.994453 −0.497226 0.867621i \(-0.665648\pi\)
−0.497226 + 0.867621i \(0.665648\pi\)
\(42\) −66.5359 −0.244446
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) 0 0
\(45\) 532.697 1.76466
\(46\) 304.224 0.975118
\(47\) −343.846 −1.06713 −0.533565 0.845759i \(-0.679148\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(48\) 471.138 1.41673
\(49\) −333.564 −0.972490
\(50\) −261.492 −0.739612
\(51\) −326.764 −0.897179
\(52\) 2.87187 0.00765879
\(53\) −342.995 −0.888943 −0.444471 0.895793i \(-0.646608\pi\)
−0.444471 + 0.895793i \(0.646608\pi\)
\(54\) 191.832 0.483426
\(55\) 0 0
\(56\) −71.6359 −0.170942
\(57\) 1109.34 2.57782
\(58\) −68.2872 −0.154596
\(59\) 88.3693 0.194995 0.0974975 0.995236i \(-0.468916\pi\)
0.0974975 + 0.995236i \(0.468916\pi\)
\(60\) 63.1206 0.135814
\(61\) −738.697 −1.55050 −0.775250 0.631654i \(-0.782376\pi\)
−0.775250 + 0.631654i \(0.782376\pi\)
\(62\) −86.0526 −0.176269
\(63\) −110.144 −0.220266
\(64\) 541.549 1.05771
\(65\) −79.6152 −0.151924
\(66\) 0 0
\(67\) 342.359 0.624266 0.312133 0.950038i \(-0.398957\pi\)
0.312133 + 0.950038i \(0.398957\pi\)
\(68\) −22.0873 −0.0393893
\(69\) 882.836 1.54030
\(70\) 124.679 0.212886
\(71\) −207.364 −0.346614 −0.173307 0.984868i \(-0.555445\pi\)
−0.173307 + 0.984868i \(0.555445\pi\)
\(72\) 836.190 1.36869
\(73\) 1010.60 1.62030 0.810149 0.586224i \(-0.199386\pi\)
0.810149 + 0.586224i \(0.199386\pi\)
\(74\) −35.9090 −0.0564099
\(75\) −758.831 −1.16830
\(76\) 74.9845 0.113175
\(77\) 0 0
\(78\) −116.077 −0.168502
\(79\) −1294.23 −1.84319 −0.921593 0.388157i \(-0.873112\pi\)
−0.921593 + 0.388157i \(0.873112\pi\)
\(80\) −882.851 −1.23382
\(81\) −411.441 −0.564391
\(82\) 713.261 0.960568
\(83\) −441.846 −0.584324 −0.292162 0.956369i \(-0.594375\pi\)
−0.292162 + 0.956369i \(0.594375\pi\)
\(84\) −13.0512 −0.0169524
\(85\) 612.313 0.781349
\(86\) −157.674 −0.197703
\(87\) −198.164 −0.244200
\(88\) 0 0
\(89\) −1489.11 −1.77355 −0.886773 0.462205i \(-0.847058\pi\)
−0.886773 + 0.462205i \(0.847058\pi\)
\(90\) −1455.36 −1.70453
\(91\) 16.4617 0.0189633
\(92\) 59.6743 0.0676248
\(93\) −249.718 −0.278436
\(94\) 939.405 1.03077
\(95\) −2078.75 −2.24501
\(96\) 191.944 0.204064
\(97\) 1346.42 1.40936 0.704679 0.709526i \(-0.251091\pi\)
0.704679 + 0.709526i \(0.251091\pi\)
\(98\) 911.314 0.939353
\(99\) 0 0
\(100\) −51.2923 −0.0512923
\(101\) 161.461 0.159069 0.0795347 0.996832i \(-0.474657\pi\)
0.0795347 + 0.996832i \(0.474657\pi\)
\(102\) 892.736 0.866608
\(103\) −34.7592 −0.0332517 −0.0166259 0.999862i \(-0.505292\pi\)
−0.0166259 + 0.999862i \(0.505292\pi\)
\(104\) −124.974 −0.117834
\(105\) 361.810 0.336277
\(106\) 937.079 0.858653
\(107\) −832.179 −0.751867 −0.375934 0.926647i \(-0.622678\pi\)
−0.375934 + 0.926647i \(0.622678\pi\)
\(108\) 37.6283 0.0335258
\(109\) −1044.26 −0.917629 −0.458815 0.888532i \(-0.651726\pi\)
−0.458815 + 0.888532i \(0.651726\pi\)
\(110\) 0 0
\(111\) −104.205 −0.0891055
\(112\) 182.543 0.154007
\(113\) 295.082 0.245654 0.122827 0.992428i \(-0.460804\pi\)
0.122827 + 0.992428i \(0.460804\pi\)
\(114\) −3030.77 −2.48998
\(115\) −1654.32 −1.34144
\(116\) −13.3947 −0.0107213
\(117\) −192.154 −0.151834
\(118\) −241.429 −0.188351
\(119\) −126.605 −0.0975285
\(120\) −2746.80 −2.08956
\(121\) 0 0
\(122\) 2018.16 1.49767
\(123\) 2069.83 1.51732
\(124\) −16.8794 −0.0122243
\(125\) −435.102 −0.311334
\(126\) 300.918 0.212761
\(127\) 1317.60 0.920618 0.460309 0.887759i \(-0.347739\pi\)
0.460309 + 0.887759i \(0.347739\pi\)
\(128\) −1285.86 −0.887928
\(129\) −457.559 −0.312293
\(130\) 217.513 0.146747
\(131\) 1600.71 1.06759 0.533797 0.845612i \(-0.320765\pi\)
0.533797 + 0.845612i \(0.320765\pi\)
\(132\) 0 0
\(133\) 429.815 0.280223
\(134\) −935.342 −0.602994
\(135\) −1043.15 −0.665036
\(136\) 961.164 0.606023
\(137\) 1611.68 1.00507 0.502536 0.864556i \(-0.332400\pi\)
0.502536 + 0.864556i \(0.332400\pi\)
\(138\) −2411.95 −1.48782
\(139\) 31.8619 0.0194424 0.00972120 0.999953i \(-0.496906\pi\)
0.00972120 + 0.999953i \(0.496906\pi\)
\(140\) 24.4562 0.0147637
\(141\) 2726.08 1.62821
\(142\) 566.529 0.334803
\(143\) 0 0
\(144\) −2130.79 −1.23310
\(145\) 371.334 0.212673
\(146\) −2761.01 −1.56509
\(147\) 2644.56 1.48381
\(148\) −7.04363 −0.00391205
\(149\) 2428.34 1.33515 0.667576 0.744542i \(-0.267332\pi\)
0.667576 + 0.744542i \(0.267332\pi\)
\(150\) 2073.16 1.12849
\(151\) 2576.68 1.38866 0.694328 0.719659i \(-0.255702\pi\)
0.694328 + 0.719659i \(0.255702\pi\)
\(152\) −3263.08 −1.74125
\(153\) 1477.84 0.780889
\(154\) 0 0
\(155\) 467.939 0.242489
\(156\) −22.7688 −0.0116856
\(157\) 2475.94 1.25861 0.629305 0.777158i \(-0.283340\pi\)
0.629305 + 0.777158i \(0.283340\pi\)
\(158\) 3535.89 1.78038
\(159\) 2719.33 1.35633
\(160\) −359.677 −0.177719
\(161\) 342.056 0.167440
\(162\) 1124.08 0.545160
\(163\) −2725.11 −1.30949 −0.654745 0.755850i \(-0.727224\pi\)
−0.654745 + 0.755850i \(0.727224\pi\)
\(164\) 139.908 0.0666157
\(165\) 0 0
\(166\) 1207.15 0.564414
\(167\) −2737.30 −1.26837 −0.634187 0.773180i \(-0.718665\pi\)
−0.634187 + 0.773180i \(0.718665\pi\)
\(168\) 567.944 0.260820
\(169\) −2168.28 −0.986928
\(170\) −1672.87 −0.754725
\(171\) −5017.14 −2.24368
\(172\) −30.9282 −0.0137108
\(173\) −2307.42 −1.01404 −0.507022 0.861933i \(-0.669254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(174\) 541.395 0.235879
\(175\) −294.010 −0.127001
\(176\) 0 0
\(177\) −700.610 −0.297520
\(178\) 4068.33 1.71311
\(179\) −1312.15 −0.547905 −0.273953 0.961743i \(-0.588331\pi\)
−0.273953 + 0.961743i \(0.588331\pi\)
\(180\) −285.472 −0.118210
\(181\) −803.174 −0.329831 −0.164916 0.986308i \(-0.552735\pi\)
−0.164916 + 0.986308i \(0.552735\pi\)
\(182\) −44.9742 −0.0183171
\(183\) 5856.54 2.36573
\(184\) −2596.83 −1.04044
\(185\) 195.267 0.0776015
\(186\) 682.242 0.268949
\(187\) 0 0
\(188\) 184.267 0.0714842
\(189\) 215.687 0.0830103
\(190\) 5679.26 2.16851
\(191\) 1718.25 0.650932 0.325466 0.945554i \(-0.394479\pi\)
0.325466 + 0.945554i \(0.394479\pi\)
\(192\) −4293.51 −1.61384
\(193\) −1340.18 −0.499837 −0.249919 0.968267i \(-0.580404\pi\)
−0.249919 + 0.968267i \(0.580404\pi\)
\(194\) −3678.48 −1.36134
\(195\) 631.206 0.231803
\(196\) 178.756 0.0651445
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 2232.07 0.789156
\(201\) −2714.29 −0.952494
\(202\) −441.121 −0.153649
\(203\) −76.7791 −0.0265460
\(204\) 175.112 0.0600996
\(205\) −3878.59 −1.32143
\(206\) 94.9639 0.0321187
\(207\) −3992.75 −1.34065
\(208\) 318.461 0.106160
\(209\) 0 0
\(210\) −988.484 −0.324819
\(211\) 107.343 0.0350228 0.0175114 0.999847i \(-0.494426\pi\)
0.0175114 + 0.999847i \(0.494426\pi\)
\(212\) 183.810 0.0595479
\(213\) 1644.03 0.528858
\(214\) 2273.56 0.726248
\(215\) 857.405 0.271975
\(216\) −1637.46 −0.515810
\(217\) −96.7537 −0.0302676
\(218\) 2852.96 0.886362
\(219\) −8012.24 −2.47222
\(220\) 0 0
\(221\) −220.873 −0.0672285
\(222\) 284.694 0.0860693
\(223\) −3933.68 −1.18125 −0.590625 0.806946i \(-0.701119\pi\)
−0.590625 + 0.806946i \(0.701119\pi\)
\(224\) 74.3689 0.0221830
\(225\) 3431.92 1.01686
\(226\) −806.178 −0.237284
\(227\) 1771.90 0.518085 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(228\) −594.493 −0.172681
\(229\) 1915.37 0.552713 0.276356 0.961055i \(-0.410873\pi\)
0.276356 + 0.961055i \(0.410873\pi\)
\(230\) 4519.68 1.29573
\(231\) 0 0
\(232\) 582.892 0.164952
\(233\) −4396.32 −1.23610 −0.618052 0.786137i \(-0.712078\pi\)
−0.618052 + 0.786137i \(0.712078\pi\)
\(234\) 524.974 0.146661
\(235\) −5108.32 −1.41800
\(236\) −47.3570 −0.0130622
\(237\) 10260.9 2.81230
\(238\) 345.892 0.0942053
\(239\) 4084.49 1.10546 0.552728 0.833362i \(-0.313587\pi\)
0.552728 + 0.833362i \(0.313587\pi\)
\(240\) 6999.42 1.88255
\(241\) −3908.58 −1.04471 −0.522353 0.852730i \(-0.674946\pi\)
−0.522353 + 0.852730i \(0.674946\pi\)
\(242\) 0 0
\(243\) 5157.80 1.36162
\(244\) 395.867 0.103864
\(245\) −4955.56 −1.29224
\(246\) −5654.88 −1.46562
\(247\) 749.845 0.193164
\(248\) 734.536 0.188077
\(249\) 3503.05 0.891552
\(250\) 1188.72 0.300725
\(251\) 1094.89 0.275335 0.137667 0.990479i \(-0.456040\pi\)
0.137667 + 0.990479i \(0.456040\pi\)
\(252\) 59.0258 0.0147551
\(253\) 0 0
\(254\) −3599.76 −0.889249
\(255\) −4854.54 −1.19217
\(256\) −819.364 −0.200040
\(257\) 783.179 0.190091 0.0950454 0.995473i \(-0.469700\pi\)
0.0950454 + 0.995473i \(0.469700\pi\)
\(258\) 1250.07 0.301652
\(259\) −40.3744 −0.00968628
\(260\) 42.6657 0.0101770
\(261\) 896.225 0.212548
\(262\) −4373.23 −1.03122
\(263\) −6180.06 −1.44897 −0.724484 0.689292i \(-0.757922\pi\)
−0.724484 + 0.689292i \(0.757922\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) −1174.28 −0.270675
\(267\) 11806.0 2.70605
\(268\) −183.470 −0.0418179
\(269\) 986.965 0.223704 0.111852 0.993725i \(-0.464322\pi\)
0.111852 + 0.993725i \(0.464322\pi\)
\(270\) 2849.93 0.642376
\(271\) −4576.99 −1.02595 −0.512975 0.858404i \(-0.671457\pi\)
−0.512975 + 0.858404i \(0.671457\pi\)
\(272\) −2449.25 −0.545984
\(273\) −130.512 −0.0289338
\(274\) −4403.18 −0.970825
\(275\) 0 0
\(276\) −473.110 −0.103181
\(277\) −567.836 −0.123169 −0.0615847 0.998102i \(-0.519615\pi\)
−0.0615847 + 0.998102i \(0.519615\pi\)
\(278\) −87.0484 −0.0187799
\(279\) 1129.38 0.242346
\(280\) −1064.25 −0.227147
\(281\) −5311.01 −1.12750 −0.563752 0.825944i \(-0.690643\pi\)
−0.563752 + 0.825944i \(0.690643\pi\)
\(282\) −7447.79 −1.57273
\(283\) 4728.44 0.993204 0.496602 0.867978i \(-0.334581\pi\)
0.496602 + 0.867978i \(0.334581\pi\)
\(284\) 111.126 0.0232187
\(285\) 16480.8 3.42539
\(286\) 0 0
\(287\) 801.960 0.164941
\(288\) −868.092 −0.177614
\(289\) −3214.29 −0.654242
\(290\) −1014.50 −0.205426
\(291\) −10674.7 −2.15038
\(292\) −541.579 −0.108539
\(293\) −2328.92 −0.464358 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(294\) −7225.08 −1.43325
\(295\) 1312.85 0.259109
\(296\) 306.515 0.0601886
\(297\) 0 0
\(298\) −6634.36 −1.28966
\(299\) 596.743 0.115420
\(300\) 406.656 0.0782610
\(301\) −177.282 −0.0339481
\(302\) −7039.61 −1.34134
\(303\) −1280.10 −0.242705
\(304\) 8315.01 1.56875
\(305\) −10974.4 −2.06030
\(306\) −4037.52 −0.754280
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) 0 0
\(309\) 275.578 0.0507349
\(310\) −1278.43 −0.234226
\(311\) 3572.71 0.651413 0.325707 0.945471i \(-0.394398\pi\)
0.325707 + 0.945471i \(0.394398\pi\)
\(312\) 990.821 0.179789
\(313\) 7184.36 1.29739 0.648697 0.761047i \(-0.275314\pi\)
0.648697 + 0.761047i \(0.275314\pi\)
\(314\) −6764.40 −1.21572
\(315\) −1636.34 −0.292690
\(316\) 693.573 0.123470
\(317\) −15.7077 −0.00278306 −0.00139153 0.999999i \(-0.500443\pi\)
−0.00139153 + 0.999999i \(0.500443\pi\)
\(318\) −7429.36 −1.31012
\(319\) 0 0
\(320\) 8045.47 1.40549
\(321\) 6597.69 1.14719
\(322\) −934.515 −0.161734
\(323\) −5766.98 −0.993447
\(324\) 220.491 0.0378070
\(325\) −512.923 −0.0875442
\(326\) 7445.13 1.26487
\(327\) 8279.08 1.40010
\(328\) −6088.33 −1.02491
\(329\) 1056.23 0.176996
\(330\) 0 0
\(331\) −1318.95 −0.219022 −0.109511 0.993986i \(-0.534928\pi\)
−0.109511 + 0.993986i \(0.534928\pi\)
\(332\) 236.785 0.0391423
\(333\) 471.282 0.0775558
\(334\) 7478.43 1.22515
\(335\) 5086.22 0.829523
\(336\) −1447.24 −0.234981
\(337\) 239.183 0.0386621 0.0193310 0.999813i \(-0.493846\pi\)
0.0193310 + 0.999813i \(0.493846\pi\)
\(338\) 5923.85 0.953299
\(339\) −2339.47 −0.374816
\(340\) −328.137 −0.0523404
\(341\) 0 0
\(342\) 13707.1 2.16723
\(343\) 2078.27 0.327160
\(344\) 1345.89 0.210947
\(345\) 13115.8 2.04675
\(346\) 6303.98 0.979491
\(347\) 5862.79 0.907006 0.453503 0.891255i \(-0.350174\pi\)
0.453503 + 0.891255i \(0.350174\pi\)
\(348\) 106.196 0.0163583
\(349\) −3491.73 −0.535553 −0.267776 0.963481i \(-0.586289\pi\)
−0.267776 + 0.963481i \(0.586289\pi\)
\(350\) 803.251 0.122673
\(351\) 376.283 0.0572208
\(352\) 0 0
\(353\) −10916.7 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(354\) 1914.10 0.287382
\(355\) −3080.69 −0.460580
\(356\) 798.013 0.118805
\(357\) 1003.75 0.148807
\(358\) 3584.87 0.529236
\(359\) 11500.7 1.69077 0.845384 0.534160i \(-0.179372\pi\)
0.845384 + 0.534160i \(0.179372\pi\)
\(360\) 12422.8 1.81872
\(361\) 12719.5 1.85442
\(362\) 2194.31 0.318592
\(363\) 0 0
\(364\) −8.82180 −0.00127030
\(365\) 15013.9 2.15305
\(366\) −16000.4 −2.28512
\(367\) 6767.01 0.962493 0.481246 0.876585i \(-0.340184\pi\)
0.481246 + 0.876585i \(0.340184\pi\)
\(368\) 6617.27 0.937362
\(369\) −9361.10 −1.32065
\(370\) −533.478 −0.0749573
\(371\) 1053.61 0.147441
\(372\) 133.823 0.0186517
\(373\) 5310.22 0.737139 0.368569 0.929600i \(-0.379848\pi\)
0.368569 + 0.929600i \(0.379848\pi\)
\(374\) 0 0
\(375\) 3449.58 0.475028
\(376\) −8018.67 −1.09982
\(377\) −133.947 −0.0182987
\(378\) −589.269 −0.0801818
\(379\) −838.267 −0.113612 −0.0568059 0.998385i \(-0.518092\pi\)
−0.0568059 + 0.998385i \(0.518092\pi\)
\(380\) 1114.00 0.150387
\(381\) −10446.2 −1.40466
\(382\) −4694.34 −0.628752
\(383\) −2832.16 −0.377851 −0.188925 0.981991i \(-0.560500\pi\)
−0.188925 + 0.981991i \(0.560500\pi\)
\(384\) 10194.5 1.35479
\(385\) 0 0
\(386\) 3661.45 0.482806
\(387\) 2069.37 0.271814
\(388\) −721.542 −0.0944091
\(389\) 3111.25 0.405519 0.202759 0.979229i \(-0.435009\pi\)
0.202759 + 0.979229i \(0.435009\pi\)
\(390\) −1724.49 −0.223905
\(391\) −4589.49 −0.593608
\(392\) −7778.88 −1.00228
\(393\) −12690.8 −1.62892
\(394\) −9612.25 −1.22908
\(395\) −19227.5 −2.44922
\(396\) 0 0
\(397\) 14208.7 1.79626 0.898131 0.439728i \(-0.144925\pi\)
0.898131 + 0.439728i \(0.144925\pi\)
\(398\) −2250.37 −0.283419
\(399\) −3407.66 −0.427560
\(400\) −5687.79 −0.710974
\(401\) −6261.68 −0.779784 −0.389892 0.920861i \(-0.627488\pi\)
−0.389892 + 0.920861i \(0.627488\pi\)
\(402\) 7415.58 0.920039
\(403\) −168.794 −0.0208641
\(404\) −86.5269 −0.0106556
\(405\) −6112.54 −0.749961
\(406\) 209.764 0.0256415
\(407\) 0 0
\(408\) −7620.30 −0.924660
\(409\) 4192.50 0.506860 0.253430 0.967354i \(-0.418441\pi\)
0.253430 + 0.967354i \(0.418441\pi\)
\(410\) 10596.5 1.27640
\(411\) −12777.7 −1.53352
\(412\) 18.6274 0.00222744
\(413\) −271.453 −0.0323421
\(414\) 10908.4 1.29497
\(415\) −6564.25 −0.776448
\(416\) 129.742 0.0152912
\(417\) −252.608 −0.0296649
\(418\) 0 0
\(419\) −9287.15 −1.08283 −0.541416 0.840755i \(-0.682112\pi\)
−0.541416 + 0.840755i \(0.682112\pi\)
\(420\) −193.894 −0.0225263
\(421\) 13146.0 1.52185 0.760923 0.648842i \(-0.224746\pi\)
0.760923 + 0.648842i \(0.224746\pi\)
\(422\) −293.267 −0.0338294
\(423\) −12329.1 −1.41716
\(424\) −7998.81 −0.916172
\(425\) 3944.84 0.450242
\(426\) −4491.56 −0.510838
\(427\) 2269.13 0.257168
\(428\) 445.964 0.0503656
\(429\) 0 0
\(430\) −2342.47 −0.262707
\(431\) −4909.67 −0.548701 −0.274351 0.961630i \(-0.588463\pi\)
−0.274351 + 0.961630i \(0.588463\pi\)
\(432\) 4172.59 0.464708
\(433\) −11743.3 −1.30334 −0.651671 0.758502i \(-0.725932\pi\)
−0.651671 + 0.758502i \(0.725932\pi\)
\(434\) 264.336 0.0292363
\(435\) −2944.01 −0.324493
\(436\) 559.615 0.0614695
\(437\) 15581.0 1.70558
\(438\) 21889.8 2.38798
\(439\) 11824.2 1.28551 0.642754 0.766073i \(-0.277792\pi\)
0.642754 + 0.766073i \(0.277792\pi\)
\(440\) 0 0
\(441\) −11960.4 −1.29148
\(442\) 603.435 0.0649377
\(443\) 10102.1 1.08344 0.541722 0.840558i \(-0.317772\pi\)
0.541722 + 0.840558i \(0.317772\pi\)
\(444\) 55.8433 0.00596894
\(445\) −22122.9 −2.35668
\(446\) 10747.0 1.14100
\(447\) −19252.4 −2.03715
\(448\) −1663.53 −0.175434
\(449\) −345.254 −0.0362885 −0.0181443 0.999835i \(-0.505776\pi\)
−0.0181443 + 0.999835i \(0.505776\pi\)
\(450\) −9376.17 −0.982216
\(451\) 0 0
\(452\) −158.134 −0.0164557
\(453\) −20428.4 −2.11879
\(454\) −4840.93 −0.500431
\(455\) 244.562 0.0251983
\(456\) 25870.3 2.65678
\(457\) 10567.1 1.08164 0.540821 0.841138i \(-0.318114\pi\)
0.540821 + 0.841138i \(0.318114\pi\)
\(458\) −5232.89 −0.533879
\(459\) −2893.95 −0.294288
\(460\) 886.546 0.0898596
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) 3431.20 0.344409 0.172204 0.985061i \(-0.444911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(464\) −1485.33 −0.148610
\(465\) −3709.91 −0.369985
\(466\) 12011.0 1.19399
\(467\) 5116.96 0.507034 0.253517 0.967331i \(-0.418413\pi\)
0.253517 + 0.967331i \(0.418413\pi\)
\(468\) 102.975 0.0101710
\(469\) −1051.66 −0.103542
\(470\) 13956.2 1.36968
\(471\) −19629.8 −1.92037
\(472\) 2060.82 0.200968
\(473\) 0 0
\(474\) −28033.2 −2.71648
\(475\) −13392.4 −1.29366
\(476\) 67.8476 0.00653317
\(477\) −12298.6 −1.18053
\(478\) −11159.0 −1.06779
\(479\) −11566.9 −1.10335 −0.551675 0.834059i \(-0.686011\pi\)
−0.551675 + 0.834059i \(0.686011\pi\)
\(480\) 2851.59 0.271160
\(481\) −70.4363 −0.00667696
\(482\) 10678.4 1.00911
\(483\) −2711.89 −0.255477
\(484\) 0 0
\(485\) 20002.9 1.87275
\(486\) −14091.4 −1.31522
\(487\) −18326.5 −1.70525 −0.852623 0.522527i \(-0.824990\pi\)
−0.852623 + 0.522527i \(0.824990\pi\)
\(488\) −17226.8 −1.59799
\(489\) 21605.2 1.99800
\(490\) 13538.9 1.24821
\(491\) 7617.58 0.700156 0.350078 0.936721i \(-0.386155\pi\)
0.350078 + 0.936721i \(0.386155\pi\)
\(492\) −1109.22 −0.101641
\(493\) 1030.17 0.0941108
\(494\) −2048.62 −0.186582
\(495\) 0 0
\(496\) −1871.75 −0.169444
\(497\) 636.980 0.0574899
\(498\) −9570.50 −0.861173
\(499\) 12909.1 1.15810 0.579050 0.815292i \(-0.303424\pi\)
0.579050 + 0.815292i \(0.303424\pi\)
\(500\) 233.171 0.0208554
\(501\) 21701.8 1.93526
\(502\) −2991.30 −0.265953
\(503\) −10165.7 −0.901121 −0.450561 0.892746i \(-0.648776\pi\)
−0.450561 + 0.892746i \(0.648776\pi\)
\(504\) −2568.60 −0.227013
\(505\) 2398.74 0.211371
\(506\) 0 0
\(507\) 17190.6 1.50584
\(508\) −706.102 −0.0616697
\(509\) 6449.93 0.561666 0.280833 0.959757i \(-0.409389\pi\)
0.280833 + 0.959757i \(0.409389\pi\)
\(510\) 13262.8 1.15155
\(511\) −3104.36 −0.268745
\(512\) 12525.4 1.08115
\(513\) 9824.75 0.845562
\(514\) −2139.68 −0.183614
\(515\) −516.397 −0.0441848
\(516\) 245.205 0.0209197
\(517\) 0 0
\(518\) 110.305 0.00935623
\(519\) 18293.7 1.54721
\(520\) −1856.67 −0.156577
\(521\) −19327.4 −1.62524 −0.812620 0.582794i \(-0.801959\pi\)
−0.812620 + 0.582794i \(0.801959\pi\)
\(522\) −2448.53 −0.205305
\(523\) −6259.09 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(524\) −857.819 −0.0715153
\(525\) 2330.97 0.193775
\(526\) 16884.2 1.39960
\(527\) 1298.18 0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 13921.6 1.14098
\(531\) 3168.61 0.258956
\(532\) −230.337 −0.0187714
\(533\) 1399.08 0.113698
\(534\) −32254.6 −2.61384
\(535\) −12363.2 −0.999079
\(536\) 7983.99 0.643387
\(537\) 10403.0 0.835985
\(538\) −2696.44 −0.216081
\(539\) 0 0
\(540\) 559.022 0.0445490
\(541\) 14008.2 1.11323 0.556616 0.830770i \(-0.312100\pi\)
0.556616 + 0.830770i \(0.312100\pi\)
\(542\) 12504.6 0.990991
\(543\) 6367.72 0.503251
\(544\) −997.834 −0.0786430
\(545\) −15513.9 −1.21934
\(546\) 356.565 0.0279479
\(547\) 4949.45 0.386879 0.193440 0.981112i \(-0.438036\pi\)
0.193440 + 0.981112i \(0.438036\pi\)
\(548\) −863.695 −0.0673270
\(549\) −26487.0 −2.05909
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) 20588.2 1.58748
\(553\) 3975.60 0.305714
\(554\) 1551.36 0.118973
\(555\) −1548.11 −0.118403
\(556\) −17.0748 −0.00130239
\(557\) 3801.58 0.289188 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(558\) −3085.54 −0.234088
\(559\) −309.282 −0.0234011
\(560\) 2711.94 0.204644
\(561\) 0 0
\(562\) 14510.0 1.08908
\(563\) 9900.11 0.741101 0.370551 0.928812i \(-0.379169\pi\)
0.370551 + 0.928812i \(0.379169\pi\)
\(564\) −1460.90 −0.109069
\(565\) 4383.85 0.326425
\(566\) −12918.3 −0.959361
\(567\) 1263.86 0.0936107
\(568\) −4835.84 −0.357231
\(569\) −5329.16 −0.392636 −0.196318 0.980540i \(-0.562898\pi\)
−0.196318 + 0.980540i \(0.562898\pi\)
\(570\) −45026.3 −3.30868
\(571\) 16962.6 1.24319 0.621597 0.783337i \(-0.286484\pi\)
0.621597 + 0.783337i \(0.286484\pi\)
\(572\) 0 0
\(573\) −13622.6 −0.993181
\(574\) −2190.99 −0.159321
\(575\) −10658.0 −0.772989
\(576\) 19418.0 1.40466
\(577\) −15487.0 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(578\) 8781.61 0.631949
\(579\) 10625.3 0.762643
\(580\) −198.997 −0.0142464
\(581\) 1357.26 0.0969169
\(582\) 29163.7 2.07710
\(583\) 0 0
\(584\) 23567.7 1.66993
\(585\) −2854.72 −0.201757
\(586\) 6362.72 0.448535
\(587\) 11084.2 0.779373 0.389686 0.920948i \(-0.372583\pi\)
0.389686 + 0.920948i \(0.372583\pi\)
\(588\) −1417.22 −0.0993964
\(589\) −4407.22 −0.308313
\(590\) −3586.77 −0.250280
\(591\) −27894.0 −1.94147
\(592\) −781.066 −0.0542257
\(593\) −4349.68 −0.301214 −0.150607 0.988594i \(-0.548123\pi\)
−0.150607 + 0.988594i \(0.548123\pi\)
\(594\) 0 0
\(595\) −1880.90 −0.129596
\(596\) −1301.34 −0.0894382
\(597\) −6530.40 −0.447691
\(598\) −1630.33 −0.111487
\(599\) 13183.9 0.899299 0.449650 0.893205i \(-0.351549\pi\)
0.449650 + 0.893205i \(0.351549\pi\)
\(600\) −17696.3 −1.20408
\(601\) 18765.0 1.27361 0.636806 0.771024i \(-0.280255\pi\)
0.636806 + 0.771024i \(0.280255\pi\)
\(602\) 484.344 0.0327913
\(603\) 12275.8 0.829034
\(604\) −1380.84 −0.0930223
\(605\) 0 0
\(606\) 3497.29 0.234435
\(607\) −21871.4 −1.46249 −0.731244 0.682116i \(-0.761060\pi\)
−0.731244 + 0.682116i \(0.761060\pi\)
\(608\) 3387.57 0.225961
\(609\) 608.720 0.0405034
\(610\) 29982.6 1.99010
\(611\) 1842.67 0.122007
\(612\) −791.970 −0.0523096
\(613\) 3527.85 0.232445 0.116222 0.993223i \(-0.462921\pi\)
0.116222 + 0.993223i \(0.462921\pi\)
\(614\) −4584.56 −0.301332
\(615\) 30750.2 2.01621
\(616\) 0 0
\(617\) −22728.1 −1.48298 −0.741490 0.670963i \(-0.765881\pi\)
−0.741490 + 0.670963i \(0.765881\pi\)
\(618\) −752.893 −0.0490062
\(619\) −21443.3 −1.39237 −0.696187 0.717861i \(-0.745121\pi\)
−0.696187 + 0.717861i \(0.745121\pi\)
\(620\) −250.767 −0.0162437
\(621\) 7818.75 0.505243
\(622\) −9760.81 −0.629217
\(623\) 4574.25 0.294163
\(624\) −2524.82 −0.161977
\(625\) −18428.2 −1.17940
\(626\) −19628.0 −1.25319
\(627\) 0 0
\(628\) −1326.85 −0.0843109
\(629\) 541.718 0.0343398
\(630\) 4470.56 0.282716
\(631\) 21532.0 1.35844 0.679219 0.733936i \(-0.262319\pi\)
0.679219 + 0.733936i \(0.262319\pi\)
\(632\) −30182.0 −1.89964
\(633\) −851.038 −0.0534372
\(634\) 42.9141 0.00268823
\(635\) 19574.9 1.22332
\(636\) −1457.29 −0.0908572
\(637\) 1787.56 0.111187
\(638\) 0 0
\(639\) −7435.33 −0.460309
\(640\) −19103.2 −1.17988
\(641\) 20148.3 1.24151 0.620756 0.784004i \(-0.286826\pi\)
0.620756 + 0.784004i \(0.286826\pi\)
\(642\) −18025.2 −1.10810
\(643\) 28869.7 1.77062 0.885310 0.465000i \(-0.153946\pi\)
0.885310 + 0.465000i \(0.153946\pi\)
\(644\) −183.307 −0.0112163
\(645\) −6797.68 −0.414974
\(646\) 15755.7 0.959597
\(647\) −1590.02 −0.0966155 −0.0483077 0.998833i \(-0.515383\pi\)
−0.0483077 + 0.998833i \(0.515383\pi\)
\(648\) −9595.02 −0.581679
\(649\) 0 0
\(650\) 1401.33 0.0845612
\(651\) 767.083 0.0461818
\(652\) 1460.38 0.0877192
\(653\) 20028.1 1.20024 0.600122 0.799909i \(-0.295119\pi\)
0.600122 + 0.799909i \(0.295119\pi\)
\(654\) −22618.9 −1.35240
\(655\) 23780.8 1.41862
\(656\) 15514.4 0.923375
\(657\) 36236.5 2.15178
\(658\) −2885.66 −0.170965
\(659\) 10520.7 0.621897 0.310948 0.950427i \(-0.399353\pi\)
0.310948 + 0.950427i \(0.399353\pi\)
\(660\) 0 0
\(661\) 3295.83 0.193938 0.0969690 0.995287i \(-0.469085\pi\)
0.0969690 + 0.995287i \(0.469085\pi\)
\(662\) 3603.45 0.211559
\(663\) 1751.12 0.102576
\(664\) −10304.1 −0.602222
\(665\) 6385.51 0.372360
\(666\) −1287.57 −0.0749132
\(667\) −2783.27 −0.161572
\(668\) 1466.91 0.0849649
\(669\) 31187.0 1.80233
\(670\) −13895.8 −0.801257
\(671\) 0 0
\(672\) −589.612 −0.0338464
\(673\) 1187.64 0.0680239 0.0340119 0.999421i \(-0.489172\pi\)
0.0340119 + 0.999421i \(0.489172\pi\)
\(674\) −653.460 −0.0373447
\(675\) −6720.51 −0.383219
\(676\) 1161.98 0.0661117
\(677\) −13221.4 −0.750574 −0.375287 0.926909i \(-0.622456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(678\) 6391.55 0.362044
\(679\) −4135.91 −0.233758
\(680\) 14279.4 0.805282
\(681\) −14048.0 −0.790485
\(682\) 0 0
\(683\) −13831.4 −0.774882 −0.387441 0.921894i \(-0.626641\pi\)
−0.387441 + 0.921894i \(0.626641\pi\)
\(684\) 2688.68 0.150298
\(685\) 23943.7 1.33554
\(686\) −5677.93 −0.316012
\(687\) −15185.4 −0.843320
\(688\) −3429.62 −0.190048
\(689\) 1838.10 0.101635
\(690\) −35832.9 −1.97701
\(691\) −9817.07 −0.540462 −0.270231 0.962796i \(-0.587100\pi\)
−0.270231 + 0.962796i \(0.587100\pi\)
\(692\) 1236.54 0.0679280
\(693\) 0 0
\(694\) −16017.4 −0.876101
\(695\) 473.354 0.0258350
\(696\) −4621.29 −0.251680
\(697\) −10760.2 −0.584750
\(698\) 9539.58 0.517304
\(699\) 34854.9 1.88603
\(700\) 157.560 0.00850742
\(701\) −29949.8 −1.61368 −0.806838 0.590773i \(-0.798823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(702\) −1028.02 −0.0552711
\(703\) −1839.09 −0.0986667
\(704\) 0 0
\(705\) 40499.8 2.16356
\(706\) 29825.0 1.58991
\(707\) −495.976 −0.0263835
\(708\) 375.456 0.0199301
\(709\) 11307.5 0.598959 0.299479 0.954103i \(-0.403187\pi\)
0.299479 + 0.954103i \(0.403187\pi\)
\(710\) 8416.59 0.444886
\(711\) −46406.3 −2.44778
\(712\) −34726.9 −1.82787
\(713\) −3507.36 −0.184224
\(714\) −2742.30 −0.143737
\(715\) 0 0
\(716\) 703.181 0.0367027
\(717\) −32382.7 −1.68669
\(718\) −31420.6 −1.63316
\(719\) −32623.4 −1.69214 −0.846070 0.533071i \(-0.821038\pi\)
−0.846070 + 0.533071i \(0.821038\pi\)
\(720\) −31655.9 −1.63853
\(721\) 106.773 0.00551518
\(722\) −34750.2 −1.79123
\(723\) 30988.0 1.59399
\(724\) 430.420 0.0220945
\(725\) 2392.33 0.122550
\(726\) 0 0
\(727\) −502.545 −0.0256373 −0.0128187 0.999918i \(-0.504080\pi\)
−0.0128187 + 0.999918i \(0.504080\pi\)
\(728\) 383.895 0.0195441
\(729\) −29783.2 −1.51314
\(730\) −41018.7 −2.07968
\(731\) 2378.66 0.120353
\(732\) −3138.51 −0.158474
\(733\) −8631.37 −0.434935 −0.217467 0.976068i \(-0.569780\pi\)
−0.217467 + 0.976068i \(0.569780\pi\)
\(734\) −18487.8 −0.929697
\(735\) 39288.7 1.97168
\(736\) 2695.90 0.135017
\(737\) 0 0
\(738\) 25575.0 1.27565
\(739\) 18357.5 0.913792 0.456896 0.889520i \(-0.348961\pi\)
0.456896 + 0.889520i \(0.348961\pi\)
\(740\) −104.643 −0.00519832
\(741\) −5944.93 −0.294726
\(742\) −2878.52 −0.142417
\(743\) −11182.6 −0.552155 −0.276078 0.961135i \(-0.589035\pi\)
−0.276078 + 0.961135i \(0.589035\pi\)
\(744\) −5823.55 −0.286965
\(745\) 36076.4 1.77415
\(746\) −14507.8 −0.712021
\(747\) −15843.0 −0.775991
\(748\) 0 0
\(749\) 2556.29 0.124706
\(750\) −9424.43 −0.458842
\(751\) 16733.4 0.813063 0.406531 0.913637i \(-0.366738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(752\) 20433.3 0.990857
\(753\) −8680.53 −0.420101
\(754\) 365.950 0.0176752
\(755\) 38280.2 1.84524
\(756\) −115.587 −0.00556064
\(757\) −24402.4 −1.17163 −0.585813 0.810446i \(-0.699225\pi\)
−0.585813 + 0.810446i \(0.699225\pi\)
\(758\) 2290.19 0.109741
\(759\) 0 0
\(760\) −48477.6 −2.31377
\(761\) −8469.33 −0.403434 −0.201717 0.979444i \(-0.564652\pi\)
−0.201717 + 0.979444i \(0.564652\pi\)
\(762\) 28539.7 1.35680
\(763\) 3207.74 0.152199
\(764\) −920.805 −0.0436042
\(765\) 21955.3 1.03764
\(766\) 7737.62 0.364976
\(767\) −473.570 −0.0222941
\(768\) 6496.08 0.305218
\(769\) −32834.7 −1.53973 −0.769864 0.638208i \(-0.779676\pi\)
−0.769864 + 0.638208i \(0.779676\pi\)
\(770\) 0 0
\(771\) −6209.20 −0.290038
\(772\) 718.202 0.0334827
\(773\) −35571.4 −1.65513 −0.827564 0.561371i \(-0.810274\pi\)
−0.827564 + 0.561371i \(0.810274\pi\)
\(774\) −5653.64 −0.262553
\(775\) 3014.71 0.139731
\(776\) 31399.1 1.45253
\(777\) 320.097 0.0147792
\(778\) −8500.11 −0.391701
\(779\) 36530.0 1.68013
\(780\) −338.262 −0.0155279
\(781\) 0 0
\(782\) 12538.7 0.573381
\(783\) −1755.02 −0.0801014
\(784\) 19822.3 0.902982
\(785\) 36783.6 1.67244
\(786\) 34671.8 1.57341
\(787\) −15729.6 −0.712452 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(788\) −1885.47 −0.0852373
\(789\) 48996.7 2.21081
\(790\) 52530.6 2.36577
\(791\) −906.431 −0.0407446
\(792\) 0 0
\(793\) 3958.67 0.177272
\(794\) −38819.0 −1.73506
\(795\) 40399.5 1.80229
\(796\) −441.415 −0.0196552
\(797\) 7888.07 0.350577 0.175288 0.984517i \(-0.443914\pi\)
0.175288 + 0.984517i \(0.443914\pi\)
\(798\) 9309.91 0.412991
\(799\) −14171.8 −0.627485
\(800\) −2317.23 −0.102408
\(801\) −53394.2 −2.35530
\(802\) 17107.2 0.753214
\(803\) 0 0
\(804\) 1454.58 0.0638050
\(805\) 5081.73 0.222494
\(806\) 461.154 0.0201532
\(807\) −7824.86 −0.341323
\(808\) 3765.36 0.163942
\(809\) −5896.97 −0.256275 −0.128138 0.991756i \(-0.540900\pi\)
−0.128138 + 0.991756i \(0.540900\pi\)
\(810\) 16699.8 0.724407
\(811\) −14197.9 −0.614744 −0.307372 0.951589i \(-0.599450\pi\)
−0.307372 + 0.951589i \(0.599450\pi\)
\(812\) 41.1458 0.00177824
\(813\) 36287.3 1.56538
\(814\) 0 0
\(815\) −40485.3 −1.74005
\(816\) 19418.2 0.833053
\(817\) −8075.35 −0.345803
\(818\) −11454.1 −0.489589
\(819\) 590.258 0.0251835
\(820\) 2078.53 0.0885188
\(821\) 19841.7 0.843459 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(822\) 34909.3 1.48127
\(823\) −28202.2 −1.19449 −0.597246 0.802058i \(-0.703738\pi\)
−0.597246 + 0.802058i \(0.703738\pi\)
\(824\) −810.602 −0.0342702
\(825\) 0 0
\(826\) 741.622 0.0312401
\(827\) −34031.0 −1.43092 −0.715462 0.698651i \(-0.753784\pi\)
−0.715462 + 0.698651i \(0.753784\pi\)
\(828\) 2139.71 0.0898067
\(829\) 4931.55 0.206610 0.103305 0.994650i \(-0.467058\pi\)
0.103305 + 0.994650i \(0.467058\pi\)
\(830\) 17933.9 0.749992
\(831\) 4501.92 0.187930
\(832\) −2902.15 −0.120930
\(833\) −13748.0 −0.571836
\(834\) 690.138 0.0286541
\(835\) −40666.4 −1.68541
\(836\) 0 0
\(837\) −2211.60 −0.0913312
\(838\) 25373.0 1.04594
\(839\) −38189.8 −1.57146 −0.785731 0.618568i \(-0.787713\pi\)
−0.785731 + 0.618568i \(0.787713\pi\)
\(840\) 8437.60 0.346577
\(841\) −23764.3 −0.974384
\(842\) −35915.6 −1.46999
\(843\) 42106.8 1.72033
\(844\) −57.5250 −0.00234608
\(845\) −32212.9 −1.31143
\(846\) 33683.7 1.36888
\(847\) 0 0
\(848\) 20382.7 0.825406
\(849\) −37488.0 −1.51541
\(850\) −10777.5 −0.434900
\(851\) −1463.59 −0.0589556
\(852\) −881.030 −0.0354268
\(853\) −42966.8 −1.72469 −0.862343 0.506325i \(-0.831003\pi\)
−0.862343 + 0.506325i \(0.831003\pi\)
\(854\) −6199.37 −0.248405
\(855\) −74536.6 −2.98140
\(856\) −19406.8 −0.774898
\(857\) 17281.5 0.688828 0.344414 0.938818i \(-0.388078\pi\)
0.344414 + 0.938818i \(0.388078\pi\)
\(858\) 0 0
\(859\) 9316.75 0.370062 0.185031 0.982733i \(-0.440761\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(860\) −459.482 −0.0182188
\(861\) −6358.10 −0.251665
\(862\) 13413.5 0.530005
\(863\) −9647.65 −0.380544 −0.190272 0.981731i \(-0.560937\pi\)
−0.190272 + 0.981731i \(0.560937\pi\)
\(864\) 1699.93 0.0669361
\(865\) −34279.9 −1.34746
\(866\) 32083.3 1.25893
\(867\) 25483.6 0.998232
\(868\) 51.8501 0.00202754
\(869\) 0 0
\(870\) 8043.18 0.313436
\(871\) −1834.70 −0.0713735
\(872\) −24352.6 −0.945737
\(873\) 48277.6 1.87165
\(874\) −42568.0 −1.64746
\(875\) 1336.55 0.0516383
\(876\) 4293.75 0.165608
\(877\) −19728.7 −0.759624 −0.379812 0.925064i \(-0.624011\pi\)
−0.379812 + 0.925064i \(0.624011\pi\)
\(878\) −32304.3 −1.24171
\(879\) 18464.1 0.708509
\(880\) 0 0
\(881\) 19473.9 0.744712 0.372356 0.928090i \(-0.378550\pi\)
0.372356 + 0.928090i \(0.378550\pi\)
\(882\) 32676.4 1.24748
\(883\) 49092.4 1.87100 0.935499 0.353329i \(-0.114950\pi\)
0.935499 + 0.353329i \(0.114950\pi\)
\(884\) 118.365 0.00450346
\(885\) −10408.5 −0.395344
\(886\) −27599.5 −1.04653
\(887\) −9292.86 −0.351774 −0.175887 0.984410i \(-0.556279\pi\)
−0.175887 + 0.984410i \(0.556279\pi\)
\(888\) −2430.12 −0.0918348
\(889\) −4047.41 −0.152695
\(890\) 60440.8 2.27638
\(891\) 0 0
\(892\) 2108.05 0.0791288
\(893\) 48112.0 1.80292
\(894\) 52598.5 1.96774
\(895\) −19493.9 −0.728055
\(896\) 3949.89 0.147273
\(897\) −4731.10 −0.176106
\(898\) 943.252 0.0350520
\(899\) 787.273 0.0292069
\(900\) −1839.16 −0.0681170
\(901\) −14136.7 −0.522709
\(902\) 0 0
\(903\) 1405.53 0.0517974
\(904\) 6881.46 0.253179
\(905\) −11932.3 −0.438279
\(906\) 55811.5 2.04659
\(907\) 37688.7 1.37975 0.689875 0.723928i \(-0.257665\pi\)
0.689875 + 0.723928i \(0.257665\pi\)
\(908\) −949.559 −0.0347051
\(909\) 5789.42 0.211246
\(910\) −668.155 −0.0243397
\(911\) 33049.6 1.20196 0.600979 0.799265i \(-0.294778\pi\)
0.600979 + 0.799265i \(0.294778\pi\)
\(912\) −65923.1 −2.39357
\(913\) 0 0
\(914\) −28870.0 −1.04479
\(915\) 87007.2 3.14357
\(916\) −1026.44 −0.0370247
\(917\) −4917.06 −0.177073
\(918\) 7906.43 0.284260
\(919\) 23148.0 0.830883 0.415442 0.909620i \(-0.363627\pi\)
0.415442 + 0.909620i \(0.363627\pi\)
\(920\) −38579.5 −1.38253
\(921\) −13304.1 −0.475986
\(922\) 12933.4 0.461973
\(923\) 1111.26 0.0396290
\(924\) 0 0
\(925\) 1258.01 0.0447169
\(926\) −9374.21 −0.332673
\(927\) −1246.34 −0.0441588
\(928\) −605.131 −0.0214056
\(929\) −23177.9 −0.818561 −0.409280 0.912409i \(-0.634220\pi\)
−0.409280 + 0.912409i \(0.634220\pi\)
\(930\) 10135.7 0.357378
\(931\) 46673.3 1.64302
\(932\) 2355.98 0.0828033
\(933\) −28325.1 −0.993916
\(934\) −13979.8 −0.489757
\(935\) 0 0
\(936\) −4481.13 −0.156485
\(937\) 34574.7 1.20545 0.602724 0.797950i \(-0.294082\pi\)
0.602724 + 0.797950i \(0.294082\pi\)
\(938\) 2873.18 0.100014
\(939\) −56959.1 −1.97954
\(940\) 2737.54 0.0949880
\(941\) −41831.2 −1.44916 −0.724578 0.689192i \(-0.757966\pi\)
−0.724578 + 0.689192i \(0.757966\pi\)
\(942\) 53629.6 1.85493
\(943\) 29071.3 1.00392
\(944\) −5251.40 −0.181058
\(945\) 3204.34 0.110304
\(946\) 0 0
\(947\) 27231.2 0.934419 0.467209 0.884147i \(-0.345259\pi\)
0.467209 + 0.884147i \(0.345259\pi\)
\(948\) −5498.79 −0.188389
\(949\) −5415.79 −0.185252
\(950\) 36588.8 1.24958
\(951\) 124.534 0.00424635
\(952\) −2952.50 −0.100516
\(953\) −40939.4 −1.39156 −0.695781 0.718254i \(-0.744942\pi\)
−0.695781 + 0.718254i \(0.744942\pi\)
\(954\) 33600.3 1.14030
\(955\) 25527.0 0.864956
\(956\) −2188.87 −0.0740515
\(957\) 0 0
\(958\) 31601.3 1.06575
\(959\) −4950.74 −0.166703
\(960\) −63786.1 −2.14447
\(961\) −28798.9 −0.966698
\(962\) 192.436 0.00644945
\(963\) −29839.0 −0.998491
\(964\) 2094.60 0.0699820
\(965\) −19910.3 −0.664182
\(966\) 7409.03 0.246772
\(967\) 46173.1 1.53550 0.767750 0.640750i \(-0.221376\pi\)
0.767750 + 0.640750i \(0.221376\pi\)
\(968\) 0 0
\(969\) 45721.8 1.51579
\(970\) −54648.9 −1.80894
\(971\) −5153.91 −0.170337 −0.0851683 0.996367i \(-0.527143\pi\)
−0.0851683 + 0.996367i \(0.527143\pi\)
\(972\) −2764.06 −0.0912111
\(973\) −97.8734 −0.00322474
\(974\) 50069.0 1.64714
\(975\) 4066.56 0.133574
\(976\) 43897.6 1.43968
\(977\) 9692.13 0.317378 0.158689 0.987329i \(-0.449273\pi\)
0.158689 + 0.987329i \(0.449273\pi\)
\(978\) −59026.5 −1.92992
\(979\) 0 0
\(980\) 2655.68 0.0865638
\(981\) −37443.3 −1.21863
\(982\) −20811.6 −0.676299
\(983\) 32915.7 1.06800 0.534002 0.845483i \(-0.320687\pi\)
0.534002 + 0.845483i \(0.320687\pi\)
\(984\) 48269.5 1.56380
\(985\) 52269.7 1.69081
\(986\) −2814.48 −0.0909041
\(987\) −8373.97 −0.270057
\(988\) −401.841 −0.0129395
\(989\) −6426.54 −0.206625
\(990\) 0 0
\(991\) 29477.9 0.944901 0.472451 0.881357i \(-0.343370\pi\)
0.472451 + 0.881357i \(0.343370\pi\)
\(992\) −762.560 −0.0244066
\(993\) 10456.9 0.334180
\(994\) −1740.26 −0.0555310
\(995\) 12237.1 0.389892
\(996\) −1877.28 −0.0597227
\(997\) 31944.4 1.01473 0.507366 0.861731i \(-0.330619\pi\)
0.507366 + 0.861731i \(0.330619\pi\)
\(998\) −35268.4 −1.11864
\(999\) −922.883 −0.0292279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.4.a.c.1.1 2
3.2 odd 2 1089.4.a.v.1.2 2
4.3 odd 2 1936.4.a.w.1.2 2
11.2 odd 10 121.4.c.c.81.1 8
11.3 even 5 121.4.c.f.9.1 8
11.4 even 5 121.4.c.f.27.1 8
11.5 even 5 121.4.c.f.3.2 8
11.6 odd 10 121.4.c.c.3.1 8
11.7 odd 10 121.4.c.c.27.2 8
11.8 odd 10 121.4.c.c.9.2 8
11.9 even 5 121.4.c.f.81.2 8
11.10 odd 2 11.4.a.a.1.2 2
33.32 even 2 99.4.a.c.1.1 2
44.43 even 2 176.4.a.i.1.2 2
55.32 even 4 275.4.b.c.199.4 4
55.43 even 4 275.4.b.c.199.1 4
55.54 odd 2 275.4.a.b.1.1 2
77.76 even 2 539.4.a.e.1.2 2
88.21 odd 2 704.4.a.p.1.2 2
88.43 even 2 704.4.a.n.1.1 2
132.131 odd 2 1584.4.a.bc.1.1 2
143.142 odd 2 1859.4.a.a.1.1 2
165.164 even 2 2475.4.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 11.10 odd 2
99.4.a.c.1.1 2 33.32 even 2
121.4.a.c.1.1 2 1.1 even 1 trivial
121.4.c.c.3.1 8 11.6 odd 10
121.4.c.c.9.2 8 11.8 odd 10
121.4.c.c.27.2 8 11.7 odd 10
121.4.c.c.81.1 8 11.2 odd 10
121.4.c.f.3.2 8 11.5 even 5
121.4.c.f.9.1 8 11.3 even 5
121.4.c.f.27.1 8 11.4 even 5
121.4.c.f.81.2 8 11.9 even 5
176.4.a.i.1.2 2 44.43 even 2
275.4.a.b.1.1 2 55.54 odd 2
275.4.b.c.199.1 4 55.43 even 4
275.4.b.c.199.4 4 55.32 even 4
539.4.a.e.1.2 2 77.76 even 2
704.4.a.n.1.1 2 88.43 even 2
704.4.a.p.1.2 2 88.21 odd 2
1089.4.a.v.1.2 2 3.2 odd 2
1584.4.a.bc.1.1 2 132.131 odd 2
1859.4.a.a.1.1 2 143.142 odd 2
1936.4.a.w.1.2 2 4.3 odd 2
2475.4.a.q.1.2 2 165.164 even 2