Properties

Label 121.4.a.b
Level $121$
Weight $4$
Character orbit 121.a
Self dual yes
Analytic conductor $7.139$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,4,Mod(1,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.13923111069\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 1) q^{2} + (\beta - 4) q^{3} + ( - 2 \beta + 5) q^{4} + (\beta - 5) q^{5} + ( - 5 \beta + 16) q^{6} + ( - 7 \beta - 4) q^{7} + ( - \beta - 21) q^{8} + ( - 8 \beta + 1) q^{9} + ( - 6 \beta + 17) q^{10}+ \cdots + (205 \beta + 411) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 8 q^{3} + 10 q^{4} - 10 q^{5} + 32 q^{6} - 8 q^{7} - 42 q^{8} + 2 q^{9} + 34 q^{10} - 88 q^{12} + 130 q^{13} - 160 q^{14} + 64 q^{15} - 62 q^{16} - 14 q^{17} - 194 q^{18} - 48 q^{19} - 98 q^{20}+ \cdots + 822 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−4.46410 −7.46410 11.9282 −8.46410 33.3205 20.2487 −17.5359 28.7128 37.7846
1.2 2.46410 −0.535898 −1.92820 −1.53590 −1.32051 −28.2487 −24.4641 −26.7128 −3.78461
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 121.4.a.b 2
3.b odd 2 1 1089.4.a.x 2
4.b odd 2 1 1936.4.a.z 2
11.b odd 2 1 121.4.a.e yes 2
11.c even 5 4 121.4.c.g 8
11.d odd 10 4 121.4.c.d 8
33.d even 2 1 1089.4.a.k 2
44.c even 2 1 1936.4.a.y 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
121.4.a.b 2 1.a even 1 1 trivial
121.4.a.e yes 2 11.b odd 2 1
121.4.c.d 8 11.d odd 10 4
121.4.c.g 8 11.c even 5 4
1089.4.a.k 2 33.d even 2 1
1089.4.a.x 2 3.b odd 2 1
1936.4.a.y 2 44.c even 2 1
1936.4.a.z 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 2T_{2} - 11 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(121))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 2T - 11 \) Copy content Toggle raw display
$3$ \( T^{2} + 8T + 4 \) Copy content Toggle raw display
$5$ \( T^{2} + 10T + 13 \) Copy content Toggle raw display
$7$ \( T^{2} + 8T - 572 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 130T + 4213 \) Copy content Toggle raw display
$17$ \( T^{2} + 14T - 3839 \) Copy content Toggle raw display
$19$ \( T^{2} + 48T - 396 \) Copy content Toggle raw display
$23$ \( T^{2} + 128T - 8972 \) Copy content Toggle raw display
$29$ \( T^{2} + 30T - 16203 \) Copy content Toggle raw display
$31$ \( T^{2} + 184T - 18044 \) Copy content Toggle raw display
$37$ \( T^{2} - 126T - 70923 \) Copy content Toggle raw display
$41$ \( T^{2} - 370T + 34177 \) Copy content Toggle raw display
$43$ \( T^{2} + 264T + 11616 \) Copy content Toggle raw display
$47$ \( T^{2} - 256T - 131468 \) Copy content Toggle raw display
$53$ \( T^{2} + 162T - 80139 \) Copy content Toggle raw display
$59$ \( T^{2} + 1304 T + 403936 \) Copy content Toggle raw display
$61$ \( T^{2} + 300T - 79068 \) Copy content Toggle raw display
$67$ \( T^{2} + 656T + 106132 \) Copy content Toggle raw display
$71$ \( T^{2} + 1176 T + 308112 \) Copy content Toggle raw display
$73$ \( T^{2} + 668T - 277244 \) Copy content Toggle raw display
$79$ \( T^{2} - 416T - 99308 \) Copy content Toggle raw display
$83$ \( T^{2} + 960T + 199188 \) Copy content Toggle raw display
$89$ \( T^{2} + 1074T - 83343 \) Copy content Toggle raw display
$97$ \( T^{2} + 338T - 628511 \) Copy content Toggle raw display
show more
show less