Properties

Label 121.4.a
Level $121$
Weight $4$
Character orbit 121.a
Rep. character $\chi_{121}(1,\cdot)$
Character field $\Q$
Dimension $23$
Newform subspaces $8$
Sturm bound $44$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 121.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(44\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(121))\).

Total New Old
Modular forms 39 32 7
Cusp forms 27 23 4
Eisenstein series 12 9 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)Dim
\(+\)\(13\)
\(-\)\(10\)

Trace form

\( 23 q - 2 q^{2} + 88 q^{4} + 2 q^{5} + 26 q^{6} - 20 q^{7} + 12 q^{8} + 107 q^{9} - 50 q^{10} - 2 q^{12} - 80 q^{13} - 48 q^{14} + 232 q^{15} + 140 q^{16} + 124 q^{17} - 92 q^{18} - 72 q^{19} - 4 q^{20}+ \cdots + 870 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(121))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11
121.4.a.a 121.a 1.a $1$ $7.139$ \(\Q\) \(\Q(\sqrt{-11}) \) 121.4.a.a \(0\) \(8\) \(18\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q+8q^{3}-8q^{4}+18q^{5}+37q^{9}-2^{6}q^{12}+\cdots\)
121.4.a.b 121.a 1.a $2$ $7.139$ \(\Q(\sqrt{3}) \) None 121.4.a.b \(-2\) \(-8\) \(-10\) \(-8\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(-4+\beta )q^{3}+(5-2\beta )q^{4}+\cdots\)
121.4.a.c 121.a 1.a $2$ $7.139$ \(\Q(\sqrt{3}) \) None 11.4.a.a \(-2\) \(-2\) \(2\) \(-20\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}+(-1+4\beta )q^{3}+(-4+\cdots)q^{4}+\cdots\)
121.4.a.d 121.a 1.a $2$ $7.139$ \(\Q(\sqrt{26}) \) None 121.4.a.d \(0\) \(-10\) \(10\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-5q^{3}+18q^{4}+5q^{5}-5\beta q^{6}+\cdots\)
121.4.a.e 121.a 1.a $2$ $7.139$ \(\Q(\sqrt{3}) \) None 121.4.a.b \(2\) \(-8\) \(-10\) \(8\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(-4-\beta )q^{3}+(5+2\beta )q^{4}+\cdots\)
121.4.a.f 121.a 1.a $4$ $7.139$ \(\Q(\sqrt{5}, \sqrt{37})\) None 11.4.c.a \(-4\) \(6\) \(-11\) \(-25\) $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1}+\beta _{2})q^{2}+(1-\beta _{2})q^{3}+\cdots\)
121.4.a.g 121.a 1.a $4$ $7.139$ \(\Q(\sqrt{5}, \sqrt{37})\) None 11.4.c.a \(4\) \(6\) \(-11\) \(25\) $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(2+\beta _{2})q^{3}+(3+\cdots)q^{4}+\cdots\)
121.4.a.h 121.a 1.a $6$ $7.139$ 6.6.\(\cdots\).1 None 121.4.a.h \(0\) \(8\) \(14\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1+\beta _{4})q^{3}+(3+\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(121))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(121)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)