Properties

Label 121.2.g
Level $121$
Weight $2$
Character orbit 121.g
Rep. character $\chi_{121}(4,\cdot)$
Character field $\Q(\zeta_{55})$
Dimension $400$
Newform subspaces $1$
Sturm bound $22$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 121.g (of order \(55\) and degree \(40\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{55})\)
Newform subspaces: \( 1 \)
Sturm bound: \(22\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(121, [\chi])\).

Total New Old
Modular forms 480 480 0
Cusp forms 400 400 0
Eisenstein series 80 80 0

Trace form

\( 400 q - 44 q^{2} - 32 q^{3} - 34 q^{4} - 43 q^{5} - 22 q^{6} - 44 q^{7} - 44 q^{8} - 110 q^{9} - 22 q^{10} - 33 q^{11} + 6 q^{12} - 11 q^{13} - 18 q^{14} + 16 q^{15} - 30 q^{16} - 44 q^{17} + 11 q^{18}+ \cdots + 143 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(121, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
121.2.g.a 121.g 121.g $400$ $0.966$ None 121.2.g.a \(-44\) \(-32\) \(-43\) \(-44\) $\mathrm{SU}(2)[C_{55}]$