Properties

Label 121.2.e
Level $121$
Weight $2$
Character orbit 121.e
Rep. character $\chi_{121}(12,\cdot)$
Character field $\Q(\zeta_{11})$
Dimension $100$
Newform subspaces $1$
Sturm bound $22$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 121.e (of order \(11\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 121 \)
Character field: \(\Q(\zeta_{11})\)
Newform subspaces: \( 1 \)
Sturm bound: \(22\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(121, [\chi])\).

Total New Old
Modular forms 120 120 0
Cusp forms 100 100 0
Eisenstein series 20 20 0

Trace form

\( 100 q - 6 q^{2} - 18 q^{3} - 16 q^{4} - 7 q^{5} - 23 q^{6} - q^{7} + 4 q^{8} + 70 q^{9} - 13 q^{10} - 12 q^{11} - 51 q^{12} - 34 q^{13} - 17 q^{14} - 46 q^{15} + 10 q^{16} + 9 q^{17} - 31 q^{18} + 9 q^{19}+ \cdots - 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(121, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
121.2.e.a 121.e 121.e $100$ $0.966$ None 121.2.e.a \(-6\) \(-18\) \(-7\) \(-1\) $\mathrm{SU}(2)[C_{11}]$