Properties

Label 121.2.c.b.9.1
Level $121$
Weight $2$
Character 121.9
Analytic conductor $0.966$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [121,2,Mod(3,121)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(121, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("121.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.966189864457\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 9.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 121.9
Dual form 121.2.c.b.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(-1.61803 + 1.17557i) q^{3} +(0.809017 + 0.587785i) q^{4} +(0.309017 + 0.951057i) q^{5} +(0.618034 + 1.90211i) q^{6} +(1.61803 + 1.17557i) q^{7} +(2.42705 - 1.76336i) q^{8} +(0.309017 - 0.951057i) q^{9} +1.00000 q^{10} -2.00000 q^{12} +(0.309017 - 0.951057i) q^{13} +(1.61803 - 1.17557i) q^{14} +(-1.61803 - 1.17557i) q^{15} +(-0.309017 - 0.951057i) q^{16} +(-1.54508 - 4.75528i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(-4.85410 + 3.52671i) q^{19} +(-0.309017 + 0.951057i) q^{20} -4.00000 q^{21} +2.00000 q^{23} +(-1.85410 + 5.70634i) q^{24} +(3.23607 - 2.35114i) q^{25} +(-0.809017 - 0.587785i) q^{26} +(-1.23607 - 3.80423i) q^{27} +(0.618034 + 1.90211i) q^{28} +(-7.28115 - 5.29007i) q^{29} +(-1.61803 + 1.17557i) q^{30} +(-0.618034 + 1.90211i) q^{31} +5.00000 q^{32} -5.00000 q^{34} +(-0.618034 + 1.90211i) q^{35} +(0.809017 - 0.587785i) q^{36} +(2.42705 + 1.76336i) q^{37} +(1.85410 + 5.70634i) q^{38} +(0.618034 + 1.90211i) q^{39} +(2.42705 + 1.76336i) q^{40} +(4.04508 - 2.93893i) q^{41} +(-1.23607 + 3.80423i) q^{42} +1.00000 q^{45} +(0.618034 - 1.90211i) q^{46} +(-1.61803 + 1.17557i) q^{47} +(1.61803 + 1.17557i) q^{48} +(-0.927051 - 2.85317i) q^{49} +(-1.23607 - 3.80423i) q^{50} +(8.09017 + 5.87785i) q^{51} +(0.809017 - 0.587785i) q^{52} +(2.78115 - 8.55951i) q^{53} -4.00000 q^{54} +6.00000 q^{56} +(3.70820 - 11.4127i) q^{57} +(-7.28115 + 5.29007i) q^{58} +(-6.47214 - 4.70228i) q^{59} +(-0.618034 - 1.90211i) q^{60} +(1.85410 + 5.70634i) q^{61} +(1.61803 + 1.17557i) q^{62} +(1.61803 - 1.17557i) q^{63} +(2.16312 - 6.65740i) q^{64} +1.00000 q^{65} +2.00000 q^{67} +(1.54508 - 4.75528i) q^{68} +(-3.23607 + 2.35114i) q^{69} +(1.61803 + 1.17557i) q^{70} +(3.70820 + 11.4127i) q^{71} +(-0.927051 - 2.85317i) q^{72} +(1.61803 + 1.17557i) q^{73} +(2.42705 - 1.76336i) q^{74} +(-2.47214 + 7.60845i) q^{75} -6.00000 q^{76} +2.00000 q^{78} +(-3.09017 + 9.51057i) q^{79} +(0.809017 - 0.587785i) q^{80} +(8.89919 + 6.46564i) q^{81} +(-1.54508 - 4.75528i) q^{82} +(1.85410 + 5.70634i) q^{83} +(-3.23607 - 2.35114i) q^{84} +(4.04508 - 2.93893i) q^{85} +18.0000 q^{87} -9.00000 q^{89} +(0.309017 - 0.951057i) q^{90} +(1.61803 - 1.17557i) q^{91} +(1.61803 + 1.17557i) q^{92} +(-1.23607 - 3.80423i) q^{93} +(0.618034 + 1.90211i) q^{94} +(-4.85410 - 3.52671i) q^{95} +(-8.09017 + 5.87785i) q^{96} +(-4.01722 + 12.3637i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 2 q^{3} + q^{4} - q^{5} - 2 q^{6} + 2 q^{7} + 3 q^{8} - q^{9} + 4 q^{10} - 8 q^{12} - q^{13} + 2 q^{14} - 2 q^{15} + q^{16} + 5 q^{17} - q^{18} - 6 q^{19} + q^{20} - 16 q^{21} + 8 q^{23}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i −0.780378 0.625308i \(-0.784973\pi\)
0.998886 0.0471903i \(-0.0150267\pi\)
\(3\) −1.61803 + 1.17557i −0.934172 + 0.678716i −0.947011 0.321202i \(-0.895913\pi\)
0.0128385 + 0.999918i \(0.495913\pi\)
\(4\) 0.809017 + 0.587785i 0.404508 + 0.293893i
\(5\) 0.309017 + 0.951057i 0.138197 + 0.425325i 0.996074 0.0885298i \(-0.0282169\pi\)
−0.857877 + 0.513855i \(0.828217\pi\)
\(6\) 0.618034 + 1.90211i 0.252311 + 0.776534i
\(7\) 1.61803 + 1.17557i 0.611559 + 0.444324i 0.849963 0.526842i \(-0.176624\pi\)
−0.238404 + 0.971166i \(0.576624\pi\)
\(8\) 2.42705 1.76336i 0.858092 0.623440i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 1.00000 0.316228
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) 0.309017 0.951057i 0.0857059 0.263776i −0.899014 0.437919i \(-0.855716\pi\)
0.984720 + 0.174143i \(0.0557156\pi\)
\(14\) 1.61803 1.17557i 0.432438 0.314184i
\(15\) −1.61803 1.17557i −0.417775 0.303531i
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) −1.54508 4.75528i −0.374738 1.15333i −0.943655 0.330930i \(-0.892637\pi\)
0.568917 0.822395i \(-0.307363\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) −4.85410 + 3.52671i −1.11361 + 0.809083i −0.983228 0.182381i \(-0.941620\pi\)
−0.130379 + 0.991464i \(0.541620\pi\)
\(20\) −0.309017 + 0.951057i −0.0690983 + 0.212663i
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) −1.85410 + 5.70634i −0.378467 + 1.16480i
\(25\) 3.23607 2.35114i 0.647214 0.470228i
\(26\) −0.809017 0.587785i −0.158661 0.115274i
\(27\) −1.23607 3.80423i −0.237881 0.732124i
\(28\) 0.618034 + 1.90211i 0.116797 + 0.359466i
\(29\) −7.28115 5.29007i −1.35208 0.982341i −0.998905 0.0467821i \(-0.985103\pi\)
−0.353171 0.935559i \(-0.614897\pi\)
\(30\) −1.61803 + 1.17557i −0.295411 + 0.214629i
\(31\) −0.618034 + 1.90211i −0.111002 + 0.341630i −0.991092 0.133177i \(-0.957482\pi\)
0.880090 + 0.474807i \(0.157482\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) −0.618034 + 1.90211i −0.104467 + 0.321516i
\(36\) 0.809017 0.587785i 0.134836 0.0979642i
\(37\) 2.42705 + 1.76336i 0.399005 + 0.289894i 0.769135 0.639086i \(-0.220687\pi\)
−0.370131 + 0.928980i \(0.620687\pi\)
\(38\) 1.85410 + 5.70634i 0.300775 + 0.925690i
\(39\) 0.618034 + 1.90211i 0.0989646 + 0.304582i
\(40\) 2.42705 + 1.76336i 0.383750 + 0.278811i
\(41\) 4.04508 2.93893i 0.631736 0.458983i −0.225265 0.974298i \(-0.572325\pi\)
0.857001 + 0.515314i \(0.172325\pi\)
\(42\) −1.23607 + 3.80423i −0.190729 + 0.587005i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) 0.618034 1.90211i 0.0911241 0.280451i
\(47\) −1.61803 + 1.17557i −0.236015 + 0.171475i −0.699506 0.714627i \(-0.746597\pi\)
0.463491 + 0.886101i \(0.346597\pi\)
\(48\) 1.61803 + 1.17557i 0.233543 + 0.169679i
\(49\) −0.927051 2.85317i −0.132436 0.407596i
\(50\) −1.23607 3.80423i −0.174806 0.537999i
\(51\) 8.09017 + 5.87785i 1.13285 + 0.823064i
\(52\) 0.809017 0.587785i 0.112190 0.0815111i
\(53\) 2.78115 8.55951i 0.382021 1.17574i −0.556598 0.830782i \(-0.687894\pi\)
0.938619 0.344957i \(-0.112106\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) 3.70820 11.4127i 0.491164 1.51165i
\(58\) −7.28115 + 5.29007i −0.956062 + 0.694620i
\(59\) −6.47214 4.70228i −0.842600 0.612185i 0.0804955 0.996755i \(-0.474350\pi\)
−0.923096 + 0.384570i \(0.874350\pi\)
\(60\) −0.618034 1.90211i −0.0797878 0.245562i
\(61\) 1.85410 + 5.70634i 0.237393 + 0.730622i 0.996795 + 0.0799995i \(0.0254919\pi\)
−0.759401 + 0.650622i \(0.774508\pi\)
\(62\) 1.61803 + 1.17557i 0.205491 + 0.149298i
\(63\) 1.61803 1.17557i 0.203853 0.148108i
\(64\) 2.16312 6.65740i 0.270390 0.832174i
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 1.54508 4.75528i 0.187369 0.576663i
\(69\) −3.23607 + 2.35114i −0.389577 + 0.283044i
\(70\) 1.61803 + 1.17557i 0.193392 + 0.140508i
\(71\) 3.70820 + 11.4127i 0.440083 + 1.35444i 0.887787 + 0.460254i \(0.152242\pi\)
−0.447704 + 0.894182i \(0.647758\pi\)
\(72\) −0.927051 2.85317i −0.109254 0.336249i
\(73\) 1.61803 + 1.17557i 0.189377 + 0.137590i 0.678434 0.734662i \(-0.262659\pi\)
−0.489057 + 0.872252i \(0.662659\pi\)
\(74\) 2.42705 1.76336i 0.282139 0.204986i
\(75\) −2.47214 + 7.60845i −0.285458 + 0.878548i
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) −3.09017 + 9.51057i −0.347671 + 1.07002i 0.612467 + 0.790496i \(0.290177\pi\)
−0.960138 + 0.279526i \(0.909823\pi\)
\(80\) 0.809017 0.587785i 0.0904508 0.0657164i
\(81\) 8.89919 + 6.46564i 0.988799 + 0.718404i
\(82\) −1.54508 4.75528i −0.170626 0.525133i
\(83\) 1.85410 + 5.70634i 0.203514 + 0.626352i 0.999771 + 0.0213936i \(0.00681031\pi\)
−0.796257 + 0.604959i \(0.793190\pi\)
\(84\) −3.23607 2.35114i −0.353084 0.256531i
\(85\) 4.04508 2.93893i 0.438751 0.318771i
\(86\) 0 0
\(87\) 18.0000 1.92980
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0.309017 0.951057i 0.0325733 0.100250i
\(91\) 1.61803 1.17557i 0.169616 0.123233i
\(92\) 1.61803 + 1.17557i 0.168692 + 0.122562i
\(93\) −1.23607 3.80423i −0.128174 0.394480i
\(94\) 0.618034 + 1.90211i 0.0637453 + 0.196188i
\(95\) −4.85410 3.52671i −0.498020 0.361833i
\(96\) −8.09017 + 5.87785i −0.825700 + 0.599906i
\(97\) −4.01722 + 12.3637i −0.407887 + 1.25535i 0.510573 + 0.859834i \(0.329433\pi\)
−0.918460 + 0.395513i \(0.870567\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) −3.09017 + 9.51057i −0.307483 + 0.946337i 0.671255 + 0.741226i \(0.265755\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(102\) 8.09017 5.87785i 0.801046 0.581994i
\(103\) −6.47214 4.70228i −0.637719 0.463330i 0.221347 0.975195i \(-0.428955\pi\)
−0.859066 + 0.511865i \(0.828955\pi\)
\(104\) −0.927051 2.85317i −0.0909048 0.279776i
\(105\) −1.23607 3.80423i −0.120628 0.371254i
\(106\) −7.28115 5.29007i −0.707208 0.513817i
\(107\) −4.85410 + 3.52671i −0.469264 + 0.340940i −0.797154 0.603776i \(-0.793662\pi\)
0.327891 + 0.944716i \(0.393662\pi\)
\(108\) 1.23607 3.80423i 0.118941 0.366062i
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 0.618034 1.90211i 0.0583987 0.179733i
\(113\) 7.28115 5.29007i 0.684953 0.497648i −0.190044 0.981776i \(-0.560863\pi\)
0.874997 + 0.484128i \(0.160863\pi\)
\(114\) −9.70820 7.05342i −0.909257 0.660614i
\(115\) 0.618034 + 1.90211i 0.0576320 + 0.177373i
\(116\) −2.78115 8.55951i −0.258224 0.794730i
\(117\) −0.809017 0.587785i −0.0747936 0.0543408i
\(118\) −6.47214 + 4.70228i −0.595808 + 0.432880i
\(119\) 3.09017 9.51057i 0.283275 0.871832i
\(120\) −6.00000 −0.547723
\(121\) 0 0
\(122\) 6.00000 0.543214
\(123\) −3.09017 + 9.51057i −0.278631 + 0.857539i
\(124\) −1.61803 + 1.17557i −0.145304 + 0.105569i
\(125\) 7.28115 + 5.29007i 0.651246 + 0.473158i
\(126\) −0.618034 1.90211i −0.0550588 0.169454i
\(127\) −4.94427 15.2169i −0.438733 1.35028i −0.889212 0.457495i \(-0.848747\pi\)
0.450479 0.892787i \(-0.351253\pi\)
\(128\) 2.42705 + 1.76336i 0.214523 + 0.155860i
\(129\) 0 0
\(130\) 0.309017 0.951057i 0.0271026 0.0834132i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 0.618034 1.90211i 0.0533900 0.164318i
\(135\) 3.23607 2.35114i 0.278516 0.202354i
\(136\) −12.1353 8.81678i −1.04059 0.756033i
\(137\) −3.09017 9.51057i −0.264011 0.812542i −0.991920 0.126868i \(-0.959507\pi\)
0.727909 0.685674i \(-0.240493\pi\)
\(138\) 1.23607 + 3.80423i 0.105221 + 0.323837i
\(139\) 1.61803 + 1.17557i 0.137240 + 0.0997106i 0.654287 0.756246i \(-0.272969\pi\)
−0.517047 + 0.855957i \(0.672969\pi\)
\(140\) −1.61803 + 1.17557i −0.136749 + 0.0993538i
\(141\) 1.23607 3.80423i 0.104096 0.320374i
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) 2.78115 8.55951i 0.230962 0.710829i
\(146\) 1.61803 1.17557i 0.133909 0.0972909i
\(147\) 4.85410 + 3.52671i 0.400360 + 0.290878i
\(148\) 0.927051 + 2.85317i 0.0762031 + 0.234529i
\(149\) 5.25329 + 16.1680i 0.430366 + 1.32453i 0.897761 + 0.440482i \(0.145193\pi\)
−0.467395 + 0.884049i \(0.654807\pi\)
\(150\) 6.47214 + 4.70228i 0.528448 + 0.383940i
\(151\) 12.9443 9.40456i 1.05339 0.765333i 0.0805358 0.996752i \(-0.474337\pi\)
0.972854 + 0.231419i \(0.0743369\pi\)
\(152\) −5.56231 + 17.1190i −0.451163 + 1.38854i
\(153\) −5.00000 −0.404226
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) −0.618034 + 1.90211i −0.0494823 + 0.152291i
\(157\) −1.61803 + 1.17557i −0.129133 + 0.0938207i −0.650477 0.759526i \(-0.725431\pi\)
0.521344 + 0.853347i \(0.325431\pi\)
\(158\) 8.09017 + 5.87785i 0.643619 + 0.467617i
\(159\) 5.56231 + 17.1190i 0.441120 + 1.35763i
\(160\) 1.54508 + 4.75528i 0.122150 + 0.375938i
\(161\) 3.23607 + 2.35114i 0.255038 + 0.185296i
\(162\) 8.89919 6.46564i 0.699186 0.507988i
\(163\) −0.618034 + 1.90211i −0.0484082 + 0.148985i −0.972339 0.233575i \(-0.924958\pi\)
0.923931 + 0.382560i \(0.124958\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 3.70820 11.4127i 0.286949 0.883140i −0.698858 0.715260i \(-0.746308\pi\)
0.985808 0.167879i \(-0.0536919\pi\)
\(168\) −9.70820 + 7.05342i −0.749004 + 0.544183i
\(169\) 9.70820 + 7.05342i 0.746785 + 0.542571i
\(170\) −1.54508 4.75528i −0.118503 0.364714i
\(171\) 1.85410 + 5.70634i 0.141787 + 0.436375i
\(172\) 0 0
\(173\) −4.85410 + 3.52671i −0.369051 + 0.268131i −0.756817 0.653627i \(-0.773247\pi\)
0.387767 + 0.921758i \(0.373247\pi\)
\(174\) 5.56231 17.1190i 0.421677 1.29779i
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 16.0000 1.20263
\(178\) −2.78115 + 8.55951i −0.208456 + 0.641562i
\(179\) −19.4164 + 14.1068i −1.45125 + 1.05440i −0.465713 + 0.884936i \(0.654202\pi\)
−0.985537 + 0.169460i \(0.945798\pi\)
\(180\) 0.809017 + 0.587785i 0.0603006 + 0.0438109i
\(181\) 0.309017 + 0.951057i 0.0229691 + 0.0706915i 0.961884 0.273458i \(-0.0881674\pi\)
−0.938915 + 0.344149i \(0.888167\pi\)
\(182\) −0.618034 1.90211i −0.0458117 0.140994i
\(183\) −9.70820 7.05342i −0.717651 0.521404i
\(184\) 4.85410 3.52671i 0.357849 0.259993i
\(185\) −0.927051 + 2.85317i −0.0681581 + 0.209769i
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) −2.00000 −0.145865
\(189\) 2.47214 7.60845i 0.179821 0.553433i
\(190\) −4.85410 + 3.52671i −0.352154 + 0.255855i
\(191\) −6.47214 4.70228i −0.468307 0.340245i 0.328474 0.944513i \(-0.393466\pi\)
−0.796781 + 0.604268i \(0.793466\pi\)
\(192\) 4.32624 + 13.3148i 0.312219 + 0.960912i
\(193\) −1.54508 4.75528i −0.111218 0.342293i 0.879922 0.475119i \(-0.157595\pi\)
−0.991139 + 0.132826i \(0.957595\pi\)
\(194\) 10.5172 + 7.64121i 0.755092 + 0.548607i
\(195\) −1.61803 + 1.17557i −0.115870 + 0.0841844i
\(196\) 0.927051 2.85317i 0.0662179 0.203798i
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 3.70820 11.4127i 0.262210 0.806998i
\(201\) −3.23607 + 2.35114i −0.228255 + 0.165837i
\(202\) 8.09017 + 5.87785i 0.569222 + 0.413564i
\(203\) −5.56231 17.1190i −0.390397 1.20152i
\(204\) 3.09017 + 9.51057i 0.216355 + 0.665873i
\(205\) 4.04508 + 2.93893i 0.282521 + 0.205264i
\(206\) −6.47214 + 4.70228i −0.450935 + 0.327624i
\(207\) 0.618034 1.90211i 0.0429563 0.132206i
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 3.70820 11.4127i 0.255283 0.785681i −0.738490 0.674264i \(-0.764461\pi\)
0.993774 0.111417i \(-0.0355390\pi\)
\(212\) 7.28115 5.29007i 0.500072 0.363323i
\(213\) −19.4164 14.1068i −1.33039 0.966585i
\(214\) 1.85410 + 5.70634i 0.126744 + 0.390077i
\(215\) 0 0
\(216\) −9.70820 7.05342i −0.660560 0.479925i
\(217\) −3.23607 + 2.35114i −0.219679 + 0.159606i
\(218\) −3.39919 + 10.4616i −0.230222 + 0.708550i
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) −1.85410 + 5.70634i −0.124439 + 0.382984i
\(223\) 16.1803 11.7557i 1.08352 0.787220i 0.105223 0.994449i \(-0.466444\pi\)
0.978293 + 0.207228i \(0.0664443\pi\)
\(224\) 8.09017 + 5.87785i 0.540547 + 0.392731i
\(225\) −1.23607 3.80423i −0.0824045 0.253615i
\(226\) −2.78115 8.55951i −0.185000 0.569370i
\(227\) 19.4164 + 14.1068i 1.28871 + 0.936304i 0.999779 0.0210448i \(-0.00669928\pi\)
0.288934 + 0.957349i \(0.406699\pi\)
\(228\) 9.70820 7.05342i 0.642942 0.467124i
\(229\) 2.78115 8.55951i 0.183784 0.565628i −0.816142 0.577852i \(-0.803891\pi\)
0.999925 + 0.0122238i \(0.00389106\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) −27.0000 −1.77264
\(233\) −6.48936 + 19.9722i −0.425132 + 1.30842i 0.477736 + 0.878503i \(0.341458\pi\)
−0.902868 + 0.429918i \(0.858542\pi\)
\(234\) −0.809017 + 0.587785i −0.0528871 + 0.0384247i
\(235\) −1.61803 1.17557i −0.105549 0.0766858i
\(236\) −2.47214 7.60845i −0.160922 0.495268i
\(237\) −6.18034 19.0211i −0.401456 1.23556i
\(238\) −8.09017 5.87785i −0.524408 0.381005i
\(239\) −4.85410 + 3.52671i −0.313986 + 0.228124i −0.733605 0.679576i \(-0.762164\pi\)
0.419619 + 0.907700i \(0.362164\pi\)
\(240\) −0.618034 + 1.90211i −0.0398939 + 0.122781i
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) −1.85410 + 5.70634i −0.118697 + 0.365311i
\(245\) 2.42705 1.76336i 0.155059 0.112657i
\(246\) 8.09017 + 5.87785i 0.515810 + 0.374758i
\(247\) 1.85410 + 5.70634i 0.117974 + 0.363086i
\(248\) 1.85410 + 5.70634i 0.117736 + 0.362353i
\(249\) −9.70820 7.05342i −0.615232 0.446993i
\(250\) 7.28115 5.29007i 0.460501 0.334573i
\(251\) −0.618034 + 1.90211i −0.0390100 + 0.120060i −0.968665 0.248371i \(-0.920105\pi\)
0.929655 + 0.368431i \(0.120105\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) −3.09017 + 9.51057i −0.193514 + 0.595575i
\(256\) 13.7533 9.99235i 0.859581 0.624522i
\(257\) −15.3713 11.1679i −0.958837 0.696636i −0.00595648 0.999982i \(-0.501896\pi\)
−0.952880 + 0.303347i \(0.901896\pi\)
\(258\) 0 0
\(259\) 1.85410 + 5.70634i 0.115208 + 0.354575i
\(260\) 0.809017 + 0.587785i 0.0501731 + 0.0364529i
\(261\) −7.28115 + 5.29007i −0.450692 + 0.327447i
\(262\) 0 0
\(263\) −22.0000 −1.35658 −0.678289 0.734795i \(-0.737278\pi\)
−0.678289 + 0.734795i \(0.737278\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) −3.70820 + 11.4127i −0.227365 + 0.699756i
\(267\) 14.5623 10.5801i 0.891199 0.647494i
\(268\) 1.61803 + 1.17557i 0.0988372 + 0.0718094i
\(269\) 0.309017 + 0.951057i 0.0188411 + 0.0579869i 0.960035 0.279880i \(-0.0902946\pi\)
−0.941194 + 0.337867i \(0.890295\pi\)
\(270\) −1.23607 3.80423i −0.0752247 0.231518i
\(271\) −16.1803 11.7557i −0.982886 0.714108i −0.0245340 0.999699i \(-0.507810\pi\)
−0.958352 + 0.285591i \(0.907810\pi\)
\(272\) −4.04508 + 2.93893i −0.245269 + 0.178199i
\(273\) −1.23607 + 3.80423i −0.0748102 + 0.230242i
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 0.309017 0.951057i 0.0185670 0.0571434i −0.941344 0.337449i \(-0.890436\pi\)
0.959911 + 0.280306i \(0.0904359\pi\)
\(278\) 1.61803 1.17557i 0.0970432 0.0705060i
\(279\) 1.61803 + 1.17557i 0.0968692 + 0.0703796i
\(280\) 1.85410 + 5.70634i 0.110804 + 0.341019i
\(281\) 1.85410 + 5.70634i 0.110606 + 0.340412i 0.991005 0.133822i \(-0.0427251\pi\)
−0.880399 + 0.474234i \(0.842725\pi\)
\(282\) −3.23607 2.35114i −0.192705 0.140008i
\(283\) −22.6525 + 16.4580i −1.34655 + 0.978326i −0.347374 + 0.937727i \(0.612927\pi\)
−0.999176 + 0.0405993i \(0.987073\pi\)
\(284\) −3.70820 + 11.4127i −0.220041 + 0.677218i
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) 1.54508 4.75528i 0.0910450 0.280208i
\(289\) −6.47214 + 4.70228i −0.380714 + 0.276605i
\(290\) −7.28115 5.29007i −0.427564 0.310643i
\(291\) −8.03444 24.7275i −0.470987 1.44955i
\(292\) 0.618034 + 1.90211i 0.0361677 + 0.111313i
\(293\) −7.28115 5.29007i −0.425369 0.309049i 0.354425 0.935084i \(-0.384677\pi\)
−0.779795 + 0.626035i \(0.784677\pi\)
\(294\) 4.85410 3.52671i 0.283097 0.205682i
\(295\) 2.47214 7.60845i 0.143933 0.442981i
\(296\) 9.00000 0.523114
\(297\) 0 0
\(298\) 17.0000 0.984784
\(299\) 0.618034 1.90211i 0.0357418 0.110002i
\(300\) −6.47214 + 4.70228i −0.373669 + 0.271486i
\(301\) 0 0
\(302\) −4.94427 15.2169i −0.284511 0.875634i
\(303\) −6.18034 19.0211i −0.355051 1.09274i
\(304\) 4.85410 + 3.52671i 0.278402 + 0.202271i
\(305\) −4.85410 + 3.52671i −0.277945 + 0.201939i
\(306\) −1.54508 + 4.75528i −0.0883266 + 0.271841i
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) −0.618034 + 1.90211i −0.0351020 + 0.108033i
\(311\) −19.4164 + 14.1068i −1.10100 + 0.799926i −0.981223 0.192875i \(-0.938219\pi\)
−0.119780 + 0.992800i \(0.538219\pi\)
\(312\) 4.85410 + 3.52671i 0.274809 + 0.199661i
\(313\) 7.10739 + 21.8743i 0.401733 + 1.23641i 0.923592 + 0.383377i \(0.125239\pi\)
−0.521859 + 0.853032i \(0.674761\pi\)
\(314\) 0.618034 + 1.90211i 0.0348777 + 0.107342i
\(315\) 1.61803 + 1.17557i 0.0911659 + 0.0662359i
\(316\) −8.09017 + 5.87785i −0.455108 + 0.330655i
\(317\) −0.618034 + 1.90211i −0.0347122 + 0.106833i −0.966911 0.255113i \(-0.917887\pi\)
0.932199 + 0.361946i \(0.117887\pi\)
\(318\) 18.0000 1.00939
\(319\) 0 0
\(320\) 7.00000 0.391312
\(321\) 3.70820 11.4127i 0.206972 0.636994i
\(322\) 3.23607 2.35114i 0.180339 0.131024i
\(323\) 24.2705 + 17.6336i 1.35045 + 0.981157i
\(324\) 3.39919 + 10.4616i 0.188844 + 0.581201i
\(325\) −1.23607 3.80423i −0.0685647 0.211020i
\(326\) 1.61803 + 1.17557i 0.0896146 + 0.0651088i
\(327\) 17.7984 12.9313i 0.984252 0.715101i
\(328\) 4.63525 14.2658i 0.255939 0.787700i
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) −1.85410 + 5.70634i −0.101757 + 0.313176i
\(333\) 2.42705 1.76336i 0.133002 0.0966313i
\(334\) −9.70820 7.05342i −0.531209 0.385946i
\(335\) 0.618034 + 1.90211i 0.0337668 + 0.103924i
\(336\) 1.23607 + 3.80423i 0.0674330 + 0.207538i
\(337\) 10.5172 + 7.64121i 0.572910 + 0.416243i 0.836161 0.548484i \(-0.184795\pi\)
−0.263251 + 0.964727i \(0.584795\pi\)
\(338\) 9.70820 7.05342i 0.528057 0.383656i
\(339\) −5.56231 + 17.1190i −0.302103 + 0.929777i
\(340\) 5.00000 0.271163
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) 6.18034 19.0211i 0.333707 1.02704i
\(344\) 0 0
\(345\) −3.23607 2.35114i −0.174224 0.126581i
\(346\) 1.85410 + 5.70634i 0.0996771 + 0.306775i
\(347\) 8.65248 + 26.6296i 0.464489 + 1.42955i 0.859624 + 0.510928i \(0.170698\pi\)
−0.395135 + 0.918623i \(0.629302\pi\)
\(348\) 14.5623 + 10.5801i 0.780622 + 0.567155i
\(349\) 21.8435 15.8702i 1.16925 0.849512i 0.178334 0.983970i \(-0.442929\pi\)
0.990919 + 0.134458i \(0.0429292\pi\)
\(350\) 2.47214 7.60845i 0.132141 0.406689i
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 4.94427 15.2169i 0.262785 0.808769i
\(355\) −9.70820 + 7.05342i −0.515258 + 0.374357i
\(356\) −7.28115 5.29007i −0.385900 0.280373i
\(357\) 6.18034 + 19.0211i 0.327098 + 1.00670i
\(358\) 7.41641 + 22.8254i 0.391969 + 1.20636i
\(359\) 1.61803 + 1.17557i 0.0853966 + 0.0620442i 0.629664 0.776867i \(-0.283192\pi\)
−0.544268 + 0.838912i \(0.683192\pi\)
\(360\) 2.42705 1.76336i 0.127917 0.0929370i
\(361\) 5.25329 16.1680i 0.276489 0.850945i
\(362\) 1.00000 0.0525588
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) −0.618034 + 1.90211i −0.0323494 + 0.0995611i
\(366\) −9.70820 + 7.05342i −0.507456 + 0.368688i
\(367\) 11.3262 + 8.22899i 0.591225 + 0.429550i 0.842753 0.538300i \(-0.180933\pi\)
−0.251529 + 0.967850i \(0.580933\pi\)
\(368\) −0.618034 1.90211i −0.0322172 0.0991545i
\(369\) −1.54508 4.75528i −0.0804339 0.247550i
\(370\) 2.42705 + 1.76336i 0.126176 + 0.0916725i
\(371\) 14.5623 10.5801i 0.756037 0.549293i
\(372\) 1.23607 3.80423i 0.0640871 0.197240i
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) −18.0000 −0.929516
\(376\) −1.85410 + 5.70634i −0.0956180 + 0.294282i
\(377\) −7.28115 + 5.29007i −0.374998 + 0.272452i
\(378\) −6.47214 4.70228i −0.332891 0.241859i
\(379\) −9.88854 30.4338i −0.507940 1.56328i −0.795771 0.605598i \(-0.792934\pi\)
0.287830 0.957681i \(-0.407066\pi\)
\(380\) −1.85410 5.70634i −0.0951134 0.292729i
\(381\) 25.8885 + 18.8091i 1.32631 + 0.963621i
\(382\) −6.47214 + 4.70228i −0.331143 + 0.240590i
\(383\) 6.18034 19.0211i 0.315801 0.971934i −0.659623 0.751597i \(-0.729284\pi\)
0.975424 0.220338i \(-0.0707160\pi\)
\(384\) −6.00000 −0.306186
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) −10.5172 + 7.64121i −0.533931 + 0.387924i
\(389\) 2.42705 + 1.76336i 0.123056 + 0.0894057i 0.647611 0.761971i \(-0.275768\pi\)
−0.524555 + 0.851377i \(0.675768\pi\)
\(390\) 0.618034 + 1.90211i 0.0312954 + 0.0963172i
\(391\) −3.09017 9.51057i −0.156277 0.480970i
\(392\) −7.28115 5.29007i −0.367754 0.267189i
\(393\) 0 0
\(394\) −3.39919 + 10.4616i −0.171249 + 0.527049i
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) 7.41641 22.8254i 0.371751 1.14413i
\(399\) 19.4164 14.1068i 0.972036 0.706226i
\(400\) −3.23607 2.35114i −0.161803 0.117557i
\(401\) 7.10739 + 21.8743i 0.354926 + 1.09235i 0.956052 + 0.293196i \(0.0947189\pi\)
−0.601126 + 0.799154i \(0.705281\pi\)
\(402\) 1.23607 + 3.80423i 0.0616495 + 0.189738i
\(403\) 1.61803 + 1.17557i 0.0806000 + 0.0585593i
\(404\) −8.09017 + 5.87785i −0.402501 + 0.292434i
\(405\) −3.39919 + 10.4616i −0.168907 + 0.519842i
\(406\) −18.0000 −0.893325
\(407\) 0 0
\(408\) 30.0000 1.48522
\(409\) −6.48936 + 19.9722i −0.320878 + 0.987561i 0.652389 + 0.757884i \(0.273767\pi\)
−0.973267 + 0.229677i \(0.926233\pi\)
\(410\) 4.04508 2.93893i 0.199773 0.145143i
\(411\) 16.1803 + 11.7557i 0.798117 + 0.579866i
\(412\) −2.47214 7.60845i −0.121793 0.374842i
\(413\) −4.94427 15.2169i −0.243292 0.748775i
\(414\) −1.61803 1.17557i −0.0795220 0.0577761i
\(415\) −4.85410 + 3.52671i −0.238278 + 0.173119i
\(416\) 1.54508 4.75528i 0.0757540 0.233147i
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 2.00000 0.0977064 0.0488532 0.998806i \(-0.484443\pi\)
0.0488532 + 0.998806i \(0.484443\pi\)
\(420\) 1.23607 3.80423i 0.0603139 0.185627i
\(421\) −10.5172 + 7.64121i −0.512578 + 0.372410i −0.813801 0.581144i \(-0.802605\pi\)
0.301223 + 0.953554i \(0.402605\pi\)
\(422\) −9.70820 7.05342i −0.472588 0.343355i
\(423\) 0.618034 + 1.90211i 0.0300498 + 0.0924839i
\(424\) −8.34346 25.6785i −0.405194 1.24706i
\(425\) −16.1803 11.7557i −0.784862 0.570235i
\(426\) −19.4164 + 14.1068i −0.940728 + 0.683479i
\(427\) −3.70820 + 11.4127i −0.179453 + 0.552298i
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) 3.70820 11.4127i 0.178618 0.549729i −0.821162 0.570695i \(-0.806674\pi\)
0.999780 + 0.0209654i \(0.00667397\pi\)
\(432\) −3.23607 + 2.35114i −0.155695 + 0.113119i
\(433\) −15.3713 11.1679i −0.738699 0.536696i 0.153605 0.988132i \(-0.450912\pi\)
−0.892303 + 0.451436i \(0.850912\pi\)
\(434\) 1.23607 + 3.80423i 0.0593332 + 0.182609i
\(435\) 5.56231 + 17.1190i 0.266692 + 0.820794i
\(436\) −8.89919 6.46564i −0.426194 0.309648i
\(437\) −9.70820 + 7.05342i −0.464406 + 0.337411i
\(438\) −1.23607 + 3.80423i −0.0590616 + 0.181773i
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −1.54508 + 4.75528i −0.0734922 + 0.226186i
\(443\) 16.1803 11.7557i 0.768751 0.558530i −0.132831 0.991139i \(-0.542407\pi\)
0.901582 + 0.432608i \(0.142407\pi\)
\(444\) −4.85410 3.52671i −0.230365 0.167370i
\(445\) −2.78115 8.55951i −0.131839 0.405760i
\(446\) −6.18034 19.0211i −0.292648 0.900677i
\(447\) −27.5066 19.9847i −1.30102 0.945244i
\(448\) 11.3262 8.22899i 0.535114 0.388783i
\(449\) −4.01722 + 12.3637i −0.189584 + 0.583481i −0.999997 0.00237857i \(-0.999243\pi\)
0.810413 + 0.585859i \(0.199243\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) 9.00000 0.423324
\(453\) −9.88854 + 30.4338i −0.464604 + 1.42991i
\(454\) 19.4164 14.1068i 0.911257 0.662067i
\(455\) 1.61803 + 1.17557i 0.0758546 + 0.0551116i
\(456\) −11.1246 34.2380i −0.520958 1.60334i
\(457\) 12.0517 + 37.0912i 0.563753 + 1.73505i 0.671628 + 0.740889i \(0.265595\pi\)
−0.107875 + 0.994165i \(0.534405\pi\)
\(458\) −7.28115 5.29007i −0.340226 0.247189i
\(459\) −16.1803 + 11.7557i −0.755234 + 0.548709i
\(460\) −0.618034 + 1.90211i −0.0288160 + 0.0886865i
\(461\) 33.0000 1.53696 0.768482 0.639872i \(-0.221013\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) −2.78115 + 8.55951i −0.129112 + 0.397365i
\(465\) 3.23607 2.35114i 0.150069 0.109032i
\(466\) 16.9894 + 12.3435i 0.787017 + 0.571801i
\(467\) 3.70820 + 11.4127i 0.171595 + 0.528116i 0.999462 0.0328096i \(-0.0104455\pi\)
−0.827866 + 0.560925i \(0.810445\pi\)
\(468\) −0.309017 0.951057i −0.0142843 0.0439626i
\(469\) 3.23607 + 2.35114i 0.149428 + 0.108566i
\(470\) −1.61803 + 1.17557i −0.0746343 + 0.0542250i
\(471\) 1.23607 3.80423i 0.0569550 0.175289i
\(472\) −24.0000 −1.10469
\(473\) 0 0
\(474\) −20.0000 −0.918630
\(475\) −7.41641 + 22.8254i −0.340288 + 1.04730i
\(476\) 8.09017 5.87785i 0.370812 0.269411i
\(477\) −7.28115 5.29007i −0.333381 0.242216i
\(478\) 1.85410 + 5.70634i 0.0848047 + 0.261002i
\(479\) −4.94427 15.2169i −0.225910 0.695278i −0.998198 0.0600061i \(-0.980888\pi\)
0.772288 0.635272i \(-0.219112\pi\)
\(480\) −8.09017 5.87785i −0.369264 0.268286i
\(481\) 2.42705 1.76336i 0.110664 0.0804021i
\(482\) 6.79837 20.9232i 0.309657 0.953028i
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) −13.0000 −0.590300
\(486\) −3.09017 + 9.51057i −0.140173 + 0.431408i
\(487\) −1.61803 + 1.17557i −0.0733201 + 0.0532702i −0.623842 0.781551i \(-0.714429\pi\)
0.550521 + 0.834821i \(0.314429\pi\)
\(488\) 14.5623 + 10.5801i 0.659205 + 0.478940i
\(489\) −1.23607 3.80423i −0.0558969 0.172033i
\(490\) −0.927051 2.85317i −0.0418799 0.128893i
\(491\) 1.61803 + 1.17557i 0.0730209 + 0.0530528i 0.623697 0.781666i \(-0.285630\pi\)
−0.550676 + 0.834719i \(0.685630\pi\)
\(492\) −8.09017 + 5.87785i −0.364733 + 0.264994i
\(493\) −13.9058 + 42.7975i −0.626284 + 1.92750i
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −7.41641 + 22.8254i −0.332671 + 1.02386i
\(498\) −9.70820 + 7.05342i −0.435035 + 0.316071i
\(499\) −6.47214 4.70228i −0.289733 0.210503i 0.433419 0.901193i \(-0.357307\pi\)
−0.723151 + 0.690690i \(0.757307\pi\)
\(500\) 2.78115 + 8.55951i 0.124377 + 0.382793i
\(501\) 7.41641 + 22.8254i 0.331341 + 1.01976i
\(502\) 1.61803 + 1.17557i 0.0722164 + 0.0524683i
\(503\) 30.7426 22.3358i 1.37075 0.995906i 0.373068 0.927804i \(-0.378306\pi\)
0.997678 0.0681020i \(-0.0216943\pi\)
\(504\) 1.85410 5.70634i 0.0825883 0.254181i
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) −24.0000 −1.06588
\(508\) 4.94427 15.2169i 0.219367 0.675141i
\(509\) 33.9787 24.6870i 1.50608 1.09423i 0.538200 0.842817i \(-0.319104\pi\)
0.967880 0.251414i \(-0.0808957\pi\)
\(510\) 8.09017 + 5.87785i 0.358239 + 0.260276i
\(511\) 1.23607 + 3.80423i 0.0546804 + 0.168289i
\(512\) −3.39919 10.4616i −0.150224 0.462343i
\(513\) 19.4164 + 14.1068i 0.857255 + 0.622832i
\(514\) −15.3713 + 11.1679i −0.678000 + 0.492596i
\(515\) 2.47214 7.60845i 0.108935 0.335268i
\(516\) 0 0
\(517\) 0 0
\(518\) 6.00000 0.263625
\(519\) 3.70820 11.4127i 0.162772 0.500961i
\(520\) 2.42705 1.76336i 0.106433 0.0773283i
\(521\) −24.2705 17.6336i −1.06331 0.772540i −0.0886124 0.996066i \(-0.528243\pi\)
−0.974698 + 0.223526i \(0.928243\pi\)
\(522\) 2.78115 + 8.55951i 0.121728 + 0.374640i
\(523\) −4.94427 15.2169i −0.216198 0.665389i −0.999066 0.0432015i \(-0.986244\pi\)
0.782868 0.622187i \(-0.213756\pi\)
\(524\) 0 0
\(525\) −12.9443 + 9.40456i −0.564934 + 0.410449i
\(526\) −6.79837 + 20.9232i −0.296423 + 0.912297i
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 2.78115 8.55951i 0.120806 0.371801i
\(531\) −6.47214 + 4.70228i −0.280867 + 0.204062i
\(532\) −9.70820 7.05342i −0.420904 0.305805i
\(533\) −1.54508 4.75528i −0.0669251 0.205974i
\(534\) −5.56231 17.1190i −0.240705 0.740812i
\(535\) −4.85410 3.52671i −0.209861 0.152473i
\(536\) 4.85410 3.52671i 0.209665 0.152331i
\(537\) 14.8328 45.6507i 0.640083 1.96997i
\(538\) 1.00000 0.0431131
\(539\) 0 0
\(540\) 4.00000 0.172133
\(541\) 10.5066 32.3359i 0.451713 1.39023i −0.423238 0.906019i \(-0.639107\pi\)
0.874951 0.484211i \(-0.160893\pi\)
\(542\) −16.1803 + 11.7557i −0.695005 + 0.504951i
\(543\) −1.61803 1.17557i −0.0694365 0.0504486i
\(544\) −7.72542 23.7764i −0.331225 1.01941i
\(545\) −3.39919 10.4616i −0.145605 0.448127i
\(546\) 3.23607 + 2.35114i 0.138491 + 0.100620i
\(547\) 12.9443 9.40456i 0.553457 0.402110i −0.275601 0.961272i \(-0.588877\pi\)
0.829058 + 0.559162i \(0.188877\pi\)
\(548\) 3.09017 9.51057i 0.132006 0.406271i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) −3.70820 + 11.4127i −0.157832 + 0.485756i
\(553\) −16.1803 + 11.7557i −0.688058 + 0.499903i
\(554\) −0.809017 0.587785i −0.0343718 0.0249726i
\(555\) −1.85410 5.70634i −0.0787022 0.242221i
\(556\) 0.618034 + 1.90211i 0.0262105 + 0.0806676i
\(557\) 1.61803 + 1.17557i 0.0685583 + 0.0498105i 0.621537 0.783385i \(-0.286509\pi\)
−0.552978 + 0.833196i \(0.686509\pi\)
\(558\) 1.61803 1.17557i 0.0684968 0.0497659i
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) 10.5066 32.3359i 0.442799 1.36280i −0.442080 0.896976i \(-0.645759\pi\)
0.884879 0.465821i \(-0.154241\pi\)
\(564\) 3.23607 2.35114i 0.136263 0.0990009i
\(565\) 7.28115 + 5.29007i 0.306320 + 0.222555i
\(566\) 8.65248 + 26.6296i 0.363691 + 1.11932i
\(567\) 6.79837 + 20.9232i 0.285505 + 0.878694i
\(568\) 29.1246 + 21.1603i 1.22204 + 0.887865i
\(569\) −4.85410 + 3.52671i −0.203495 + 0.147847i −0.684865 0.728670i \(-0.740139\pi\)
0.481371 + 0.876517i \(0.340139\pi\)
\(570\) 3.70820 11.4127i 0.155320 0.478024i
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 3.09017 9.51057i 0.128981 0.396963i
\(575\) 6.47214 4.70228i 0.269907 0.196099i
\(576\) −5.66312 4.11450i −0.235963 0.171437i
\(577\) −6.48936 19.9722i −0.270155 0.831453i −0.990461 0.137796i \(-0.955998\pi\)
0.720305 0.693657i \(-0.244002\pi\)
\(578\) 2.47214 + 7.60845i 0.102827 + 0.316470i
\(579\) 8.09017 + 5.87785i 0.336216 + 0.244275i
\(580\) 7.28115 5.29007i 0.302333 0.219658i
\(581\) −3.70820 + 11.4127i −0.153842 + 0.473478i
\(582\) −26.0000 −1.07773
\(583\) 0 0
\(584\) 6.00000 0.248282
\(585\) 0.309017 0.951057i 0.0127763 0.0393213i
\(586\) −7.28115 + 5.29007i −0.300782 + 0.218531i
\(587\) 11.3262 + 8.22899i 0.467484 + 0.339647i 0.796460 0.604691i \(-0.206704\pi\)
−0.328976 + 0.944338i \(0.606704\pi\)
\(588\) 1.85410 + 5.70634i 0.0764619 + 0.235325i
\(589\) −3.70820 11.4127i −0.152794 0.470251i
\(590\) −6.47214 4.70228i −0.266454 0.193590i
\(591\) 17.7984 12.9313i 0.732127 0.531922i
\(592\) 0.927051 2.85317i 0.0381016 0.117265i
\(593\) 11.0000 0.451716 0.225858 0.974160i \(-0.427481\pi\)
0.225858 + 0.974160i \(0.427481\pi\)
\(594\) 0 0
\(595\) 10.0000 0.409960
\(596\) −5.25329 + 16.1680i −0.215183 + 0.662265i
\(597\) −38.8328 + 28.2137i −1.58932 + 1.15471i
\(598\) −1.61803 1.17557i −0.0661663 0.0480727i
\(599\) 10.5066 + 32.3359i 0.429287 + 1.32121i 0.898829 + 0.438300i \(0.144419\pi\)
−0.469542 + 0.882910i \(0.655581\pi\)
\(600\) 7.41641 + 22.8254i 0.302774 + 0.931841i
\(601\) 10.5172 + 7.64121i 0.429006 + 0.311691i 0.781251 0.624216i \(-0.214582\pi\)
−0.352245 + 0.935908i \(0.614582\pi\)
\(602\) 0 0
\(603\) 0.618034 1.90211i 0.0251683 0.0774600i
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) −3.09017 + 9.51057i −0.125426 + 0.386022i −0.993978 0.109576i \(-0.965051\pi\)
0.868552 + 0.495597i \(0.165051\pi\)
\(608\) −24.2705 + 17.6336i −0.984299 + 0.715135i
\(609\) 29.1246 + 21.1603i 1.18019 + 0.857457i
\(610\) 1.85410 + 5.70634i 0.0750704 + 0.231043i
\(611\) 0.618034 + 1.90211i 0.0250030 + 0.0769513i
\(612\) −4.04508 2.93893i −0.163513 0.118799i
\(613\) −13.7533 + 9.99235i −0.555490 + 0.403587i −0.829806 0.558053i \(-0.811549\pi\)
0.274315 + 0.961640i \(0.411549\pi\)
\(614\) −6.79837 + 20.9232i −0.274360 + 0.844393i
\(615\) −10.0000 −0.403239
\(616\) 0 0
\(617\) −9.00000 −0.362326 −0.181163 0.983453i \(-0.557986\pi\)
−0.181163 + 0.983453i \(0.557986\pi\)
\(618\) 4.94427 15.2169i 0.198888 0.612114i
\(619\) −1.61803 + 1.17557i −0.0650343 + 0.0472502i −0.619827 0.784738i \(-0.712797\pi\)
0.554793 + 0.831988i \(0.312797\pi\)
\(620\) −1.61803 1.17557i −0.0649818 0.0472120i
\(621\) −2.47214 7.60845i −0.0992034 0.305317i
\(622\) 7.41641 + 22.8254i 0.297371 + 0.915213i
\(623\) −14.5623 10.5801i −0.583426 0.423884i
\(624\) 1.61803 1.17557i 0.0647732 0.0470605i
\(625\) 3.39919 10.4616i 0.135967 0.418465i
\(626\) 23.0000 0.919265
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 4.63525 14.2658i 0.184820 0.568817i
\(630\) 1.61803 1.17557i 0.0644640 0.0468358i
\(631\) 11.3262 + 8.22899i 0.450890 + 0.327591i 0.789947 0.613175i \(-0.210108\pi\)
−0.339057 + 0.940766i \(0.610108\pi\)
\(632\) 9.27051 + 28.5317i 0.368761 + 1.13493i
\(633\) 7.41641 + 22.8254i 0.294776 + 0.907226i
\(634\) 1.61803 + 1.17557i 0.0642603 + 0.0466879i
\(635\) 12.9443 9.40456i 0.513678 0.373209i
\(636\) −5.56231 + 17.1190i −0.220560 + 0.678813i
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) −0.927051 + 2.85317i −0.0366449 + 0.112781i
\(641\) 7.28115 5.29007i 0.287588 0.208945i −0.434632 0.900608i \(-0.643122\pi\)
0.722220 + 0.691663i \(0.243122\pi\)
\(642\) −9.70820 7.05342i −0.383152 0.278376i
\(643\) −3.09017 9.51057i −0.121864 0.375060i 0.871452 0.490480i \(-0.163179\pi\)
−0.993317 + 0.115420i \(0.963179\pi\)
\(644\) 1.23607 + 3.80423i 0.0487079 + 0.149908i
\(645\) 0 0
\(646\) 24.2705 17.6336i 0.954910 0.693783i
\(647\) 6.18034 19.0211i 0.242974 0.747798i −0.752989 0.658033i \(-0.771389\pi\)
0.995963 0.0897645i \(-0.0286114\pi\)
\(648\) 33.0000 1.29636
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) 2.47214 7.60845i 0.0968906 0.298199i
\(652\) −1.61803 + 1.17557i −0.0633671 + 0.0460389i
\(653\) 11.3262 + 8.22899i 0.443230 + 0.322025i 0.786917 0.617059i \(-0.211676\pi\)
−0.343687 + 0.939084i \(0.611676\pi\)
\(654\) −6.79837 20.9232i −0.265837 0.818164i
\(655\) 0 0
\(656\) −4.04508 2.93893i −0.157934 0.114746i
\(657\) 1.61803 1.17557i 0.0631255 0.0458634i
\(658\) −1.23607 + 3.80423i −0.0481869 + 0.148304i
\(659\) 22.0000 0.856998 0.428499 0.903542i \(-0.359042\pi\)
0.428499 + 0.903542i \(0.359042\pi\)
\(660\) 0 0
\(661\) 13.0000 0.505641 0.252821 0.967513i \(-0.418642\pi\)
0.252821 + 0.967513i \(0.418642\pi\)
\(662\) −6.18034 + 19.0211i −0.240206 + 0.739277i
\(663\) 8.09017 5.87785i 0.314196 0.228277i
\(664\) 14.5623 + 10.5801i 0.565127 + 0.410589i
\(665\) −3.70820 11.4127i −0.143798 0.442565i
\(666\) −0.927051 2.85317i −0.0359225 0.110558i
\(667\) −14.5623 10.5801i −0.563855 0.409664i
\(668\) 9.70820 7.05342i 0.375622 0.272905i
\(669\) −12.3607 + 38.0423i −0.477891 + 1.47080i
\(670\) 2.00000 0.0772667
\(671\) 0 0
\(672\) −20.0000 −0.771517
\(673\) −3.09017 + 9.51057i −0.119117 + 0.366605i −0.992784 0.119920i \(-0.961736\pi\)
0.873666 + 0.486526i \(0.161736\pi\)
\(674\) 10.5172 7.64121i 0.405108 0.294328i
\(675\) −12.9443 9.40456i −0.498225 0.361982i
\(676\) 3.70820 + 11.4127i 0.142623 + 0.438949i
\(677\) −8.34346 25.6785i −0.320665 0.986906i −0.973359 0.229285i \(-0.926361\pi\)
0.652694 0.757621i \(-0.273639\pi\)
\(678\) 14.5623 + 10.5801i 0.559262 + 0.406328i
\(679\) −21.0344 + 15.2824i −0.807228 + 0.586485i
\(680\) 4.63525 14.2658i 0.177754 0.547070i
\(681\) −48.0000 −1.83936
\(682\) 0 0
\(683\) 2.00000 0.0765279 0.0382639 0.999268i \(-0.487817\pi\)
0.0382639 + 0.999268i \(0.487817\pi\)
\(684\) −1.85410 + 5.70634i −0.0708934 + 0.218187i
\(685\) 8.09017 5.87785i 0.309110 0.224581i
\(686\) −16.1803 11.7557i −0.617768 0.448835i
\(687\) 5.56231 + 17.1190i 0.212215 + 0.653131i
\(688\) 0 0
\(689\) −7.28115 5.29007i −0.277390 0.201536i
\(690\) −3.23607 + 2.35114i −0.123195 + 0.0895064i
\(691\) 6.18034 19.0211i 0.235111 0.723598i −0.761995 0.647582i \(-0.775780\pi\)
0.997107 0.0760155i \(-0.0242198\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) −0.618034 + 1.90211i −0.0234434 + 0.0721513i
\(696\) 43.6869 31.7404i 1.65595 1.20312i
\(697\) −20.2254 14.6946i −0.766093 0.556599i
\(698\) −8.34346 25.6785i −0.315805 0.971947i
\(699\) −12.9787 39.9444i −0.490900 1.51083i
\(700\) 6.47214 + 4.70228i 0.244624 + 0.177730i
\(701\) −13.7533 + 9.99235i −0.519455 + 0.377406i −0.816398 0.577489i \(-0.804033\pi\)
0.296944 + 0.954895i \(0.404033\pi\)
\(702\) −1.23607 + 3.80423i −0.0466524 + 0.143581i
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) −2.78115 + 8.55951i −0.104670 + 0.322141i
\(707\) −16.1803 + 11.7557i −0.608524 + 0.442119i
\(708\) 12.9443 + 9.40456i 0.486476 + 0.353445i
\(709\) −3.09017 9.51057i −0.116054 0.357177i 0.876112 0.482108i \(-0.160129\pi\)
−0.992165 + 0.124932i \(0.960129\pi\)
\(710\) 3.70820 + 11.4127i 0.139166 + 0.428310i
\(711\) 8.09017 + 5.87785i 0.303405 + 0.220437i
\(712\) −21.8435 + 15.8702i −0.818618 + 0.594761i
\(713\) −1.23607 + 3.80423i −0.0462911 + 0.142469i
\(714\) 20.0000 0.748481
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) 3.70820 11.4127i 0.138485 0.426214i
\(718\) 1.61803 1.17557i 0.0603845 0.0438719i
\(719\) −24.2705 17.6336i −0.905137 0.657621i 0.0346431 0.999400i \(-0.488971\pi\)
−0.939780 + 0.341779i \(0.888971\pi\)
\(720\) −0.309017 0.951057i −0.0115164 0.0354438i
\(721\) −4.94427 15.2169i −0.184134 0.566707i
\(722\) −13.7533 9.99235i −0.511844 0.371877i
\(723\) −35.5967 + 25.8626i −1.32386 + 0.961839i
\(724\) −0.309017 + 0.951057i −0.0114845 + 0.0353457i
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −42.0000 −1.55769 −0.778847 0.627214i \(-0.784195\pi\)
−0.778847 + 0.627214i \(0.784195\pi\)
\(728\) 1.85410 5.70634i 0.0687176 0.211491i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 1.61803 + 1.17557i 0.0598861 + 0.0435098i
\(731\) 0 0
\(732\) −3.70820 11.4127i −0.137059 0.421825i
\(733\) −7.28115 5.29007i −0.268936 0.195393i 0.445141 0.895460i \(-0.353153\pi\)
−0.714077 + 0.700067i \(0.753153\pi\)
\(734\) 11.3262 8.22899i 0.418059 0.303738i
\(735\) −1.85410 + 5.70634i −0.0683896 + 0.210481i
\(736\) 10.0000 0.368605
\(737\) 0 0
\(738\) −5.00000 −0.184053
\(739\) −3.09017 + 9.51057i −0.113674 + 0.349852i −0.991668 0.128819i \(-0.958881\pi\)
0.877994 + 0.478671i \(0.158881\pi\)
\(740\) −2.42705 + 1.76336i −0.0892202 + 0.0648222i
\(741\) −9.70820 7.05342i −0.356640 0.259114i
\(742\) −5.56231 17.1190i −0.204199 0.628459i
\(743\) −11.7426 36.1401i −0.430796 1.32585i −0.897334 0.441352i \(-0.854499\pi\)
0.466538 0.884501i \(-0.345501\pi\)
\(744\) −9.70820 7.05342i −0.355920 0.258591i
\(745\) −13.7533 + 9.99235i −0.503882 + 0.366091i
\(746\) 6.79837 20.9232i 0.248906 0.766054i
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) −5.56231 + 17.1190i −0.203107 + 0.625098i
\(751\) 16.1803 11.7557i 0.590429 0.428972i −0.252040 0.967717i \(-0.581101\pi\)
0.842469 + 0.538745i \(0.181101\pi\)
\(752\) 1.61803 + 1.17557i 0.0590036 + 0.0428686i
\(753\) −1.23607 3.80423i −0.0450448 0.138634i
\(754\) 2.78115 + 8.55951i 0.101284 + 0.311719i
\(755\) 12.9443 + 9.40456i 0.471090 + 0.342267i
\(756\) 6.47214 4.70228i 0.235389 0.171020i
\(757\) 16.3779 50.4060i 0.595265 1.83204i 0.0418620 0.999123i \(-0.486671\pi\)
0.553403 0.832914i \(-0.313329\pi\)
\(758\) −32.0000 −1.16229
\(759\) 0 0
\(760\) −18.0000 −0.652929
\(761\) −6.48936 + 19.9722i −0.235239 + 0.723991i 0.761851 + 0.647753i \(0.224291\pi\)
−0.997090 + 0.0762384i \(0.975709\pi\)
\(762\) 25.8885 18.8091i 0.937843 0.681383i
\(763\) −17.7984 12.9313i −0.644344 0.468144i
\(764\) −2.47214 7.60845i −0.0894387 0.275264i
\(765\) −1.54508 4.75528i −0.0558627 0.171928i
\(766\) −16.1803 11.7557i −0.584619 0.424751i
\(767\) −6.47214 + 4.70228i −0.233695 + 0.169790i
\(768\) −10.5066 + 32.3359i −0.379123 + 1.16682i
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) 38.0000 1.36854
\(772\) 1.54508 4.75528i 0.0556088 0.171146i
\(773\) 33.9787 24.6870i 1.22213 0.887929i 0.225854 0.974161i \(-0.427483\pi\)
0.996275 + 0.0862321i \(0.0274827\pi\)
\(774\) 0 0
\(775\) 2.47214 + 7.60845i 0.0888017 + 0.273304i
\(776\) 12.0517 + 37.0912i 0.432629 + 1.33150i
\(777\) −9.70820 7.05342i −0.348280 0.253040i
\(778\) 2.42705 1.76336i 0.0870140 0.0632194i
\(779\) −9.27051 + 28.5317i −0.332150 + 1.02225i
\(780\) −2.00000 −0.0716115
\(781\) 0 0
\(782\) −10.0000 −0.357599
\(783\) −11.1246 + 34.2380i −0.397561 + 1.22357i
\(784\) −2.42705 + 1.76336i −0.0866804 + 0.0629770i
\(785\) −1.61803 1.17557i −0.0577501 0.0419579i
\(786\) 0 0
\(787\) 8.65248 + 26.6296i 0.308427 + 0.949242i 0.978376 + 0.206835i \(0.0663162\pi\)
−0.669948 + 0.742408i \(0.733684\pi\)
\(788\) −8.89919 6.46564i −0.317020 0.230329i
\(789\) 35.5967 25.8626i 1.26728 0.920731i
\(790\) −3.09017 + 9.51057i −0.109943 + 0.338371i
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) 4.01722 12.3637i 0.142566 0.438773i
\(795\) −14.5623 + 10.5801i −0.516472 + 0.375239i
\(796\) 19.4164 + 14.1068i 0.688196 + 0.500004i
\(797\) −3.09017 9.51057i −0.109459 0.336882i 0.881292 0.472573i \(-0.156675\pi\)
−0.990751 + 0.135691i \(0.956675\pi\)
\(798\) −7.41641 22.8254i −0.262538 0.808009i
\(799\) 8.09017 + 5.87785i 0.286210 + 0.207943i
\(800\) 16.1803 11.7557i 0.572061 0.415627i
\(801\) −2.78115 + 8.55951i −0.0982672 + 0.302435i
\(802\) 23.0000 0.812158
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) −1.23607 + 3.80423i −0.0435657 + 0.134081i
\(806\) 1.61803 1.17557i 0.0569928 0.0414077i
\(807\) −1.61803 1.17557i −0.0569575 0.0413820i
\(808\) 9.27051 + 28.5317i 0.326135 + 1.00374i
\(809\) 1.85410 + 5.70634i 0.0651868 + 0.200624i 0.978345 0.206981i \(-0.0663639\pi\)
−0.913158 + 0.407605i \(0.866364\pi\)
\(810\) 8.89919 + 6.46564i 0.312686 + 0.227179i
\(811\) −22.6525 + 16.4580i −0.795436 + 0.577918i −0.909572 0.415547i \(-0.863590\pi\)
0.114136 + 0.993465i \(0.463590\pi\)
\(812\) 5.56231 17.1190i 0.195199 0.600760i
\(813\) 40.0000 1.40286
\(814\) 0 0
\(815\) −2.00000 −0.0700569
\(816\) 3.09017 9.51057i 0.108178 0.332936i
\(817\) 0 0
\(818\) 16.9894 + 12.3435i 0.594019 + 0.431580i
\(819\) −0.618034 1.90211i −0.0215959 0.0664652i
\(820\) 1.54508 + 4.75528i 0.0539567 + 0.166062i
\(821\) 1.61803 + 1.17557i 0.0564698 + 0.0410277i 0.615662 0.788010i \(-0.288889\pi\)
−0.559192 + 0.829038i \(0.688889\pi\)
\(822\) 16.1803 11.7557i 0.564354 0.410027i
\(823\) −7.41641 + 22.8254i −0.258520 + 0.795642i 0.734596 + 0.678505i \(0.237372\pi\)
−0.993116 + 0.117137i \(0.962628\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) −3.09017 + 9.51057i −0.107456 + 0.330715i −0.990299 0.138953i \(-0.955626\pi\)
0.882843 + 0.469668i \(0.155626\pi\)
\(828\) 1.61803 1.17557i 0.0562306 0.0408539i
\(829\) 38.0238 + 27.6259i 1.32062 + 0.959487i 0.999924 + 0.0123055i \(0.00391706\pi\)
0.320697 + 0.947182i \(0.396083\pi\)
\(830\) 1.85410 + 5.70634i 0.0643568 + 0.198070i
\(831\) 0.618034 + 1.90211i 0.0214394 + 0.0659836i
\(832\) −5.66312 4.11450i −0.196333 0.142645i
\(833\) −12.1353 + 8.81678i −0.420462 + 0.305483i
\(834\) −1.23607 + 3.80423i −0.0428015 + 0.131730i
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0.618034 1.90211i 0.0213496 0.0657074i
\(839\) −37.2148 + 27.0381i −1.28480 + 0.933460i −0.999687 0.0250351i \(-0.992030\pi\)
−0.285110 + 0.958495i \(0.592030\pi\)
\(840\) −9.70820 7.05342i −0.334965 0.243366i
\(841\) 16.0689 + 49.4549i 0.554099 + 1.70534i
\(842\) 4.01722 + 12.3637i 0.138443 + 0.426082i
\(843\) −9.70820 7.05342i −0.334368 0.242933i
\(844\) 9.70820 7.05342i 0.334170 0.242789i
\(845\) −3.70820 + 11.4127i −0.127566 + 0.392608i
\(846\) 2.00000 0.0687614
\(847\) 0 0
\(848\) −9.00000 −0.309061
\(849\) 17.3050 53.2592i 0.593904 1.82785i
\(850\) −16.1803 + 11.7557i −0.554981 + 0.403217i
\(851\) 4.85410 + 3.52671i 0.166396 + 0.120894i
\(852\) −7.41641 22.8254i −0.254082 0.781984i
\(853\) 5.25329 + 16.1680i 0.179869 + 0.553580i 0.999822 0.0188502i \(-0.00600057\pi\)
−0.819953 + 0.572431i \(0.806001\pi\)
\(854\) 9.70820 + 7.05342i 0.332208 + 0.241363i
\(855\) −4.85410 + 3.52671i −0.166007 + 0.120611i
\(856\) −5.56231 + 17.1190i −0.190116 + 0.585116i
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 0 0
\(861\) −16.1803 + 11.7557i −0.551425 + 0.400633i
\(862\) −9.70820 7.05342i −0.330663 0.240241i
\(863\) −16.6869 51.3571i −0.568029 1.74821i −0.658775 0.752340i \(-0.728925\pi\)
0.0907454 0.995874i \(-0.471075\pi\)
\(864\) −6.18034 19.0211i −0.210259 0.647112i
\(865\) −4.85410 3.52671i −0.165044 0.119912i
\(866\) −15.3713 + 11.1679i −0.522339 + 0.379501i
\(867\) 4.94427 15.2169i 0.167916 0.516793i
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 18.0000 0.610257
\(871\) 0.618034 1.90211i 0.0209413 0.0644506i
\(872\) −26.6976 + 19.3969i −0.904093 + 0.656862i
\(873\) 10.5172 + 7.64121i 0.355954 + 0.258616i
\(874\) 3.70820 + 11.4127i 0.125432 + 0.386040i
\(875\) 5.56231 + 17.1190i 0.188040 + 0.578728i
\(876\) −3.23607 2.35114i −0.109337 0.0794377i
\(877\) 21.8435 15.8702i 0.737601 0.535899i −0.154358 0.988015i \(-0.549331\pi\)
0.891959 + 0.452116i \(0.149331\pi\)
\(878\) 6.79837 20.9232i 0.229434 0.706125i
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) −0.927051 + 2.85317i −0.0312154 + 0.0960712i
\(883\) 16.1803 11.7557i 0.544512 0.395611i −0.281246 0.959636i \(-0.590748\pi\)
0.825758 + 0.564025i \(0.190748\pi\)
\(884\) −4.04508 2.93893i −0.136051 0.0988468i
\(885\) 4.94427 + 15.2169i 0.166200 + 0.511511i
\(886\) −6.18034 19.0211i −0.207633 0.639027i
\(887\) 37.2148 + 27.0381i 1.24955 + 0.907851i 0.998196 0.0600439i \(-0.0191241\pi\)
0.251354 + 0.967895i \(0.419124\pi\)
\(888\) −14.5623 + 10.5801i −0.488679 + 0.355046i
\(889\) 9.88854 30.4338i 0.331651 1.02072i
\(890\) −9.00000 −0.301681
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 3.70820 11.4127i 0.124090 0.381911i
\(894\) −27.5066 + 19.9847i −0.919958 + 0.668388i
\(895\) −19.4164 14.1068i −0.649019 0.471540i
\(896\) 1.85410 + 5.70634i 0.0619412 + 0.190635i
\(897\) 1.23607 + 3.80423i 0.0412711 + 0.127019i
\(898\) 10.5172 + 7.64121i 0.350964 + 0.254990i
\(899\) 14.5623 10.5801i 0.485680 0.352867i
\(900\) 1.23607 3.80423i 0.0412023 0.126808i
\(901\) −45.0000 −1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) 8.34346 25.6785i 0.277499 0.854055i
\(905\) −0.809017 + 0.587785i −0.0268926 + 0.0195386i
\(906\) 25.8885 + 18.8091i 0.860089 + 0.624891i
\(907\) 3.70820 + 11.4127i 0.123129 + 0.378952i 0.993556 0.113346i \(-0.0361570\pi\)
−0.870427 + 0.492298i \(0.836157\pi\)
\(908\) 7.41641 + 22.8254i 0.246122 + 0.757486i
\(909\) 8.09017 + 5.87785i 0.268334 + 0.194956i
\(910\) 1.61803 1.17557i 0.0536373 0.0389698i
\(911\) −7.41641 + 22.8254i −0.245717 + 0.756238i 0.749801 + 0.661663i \(0.230149\pi\)
−0.995518 + 0.0945746i \(0.969851\pi\)
\(912\) −12.0000 −0.397360
\(913\) 0 0
\(914\) 39.0000 1.29001
\(915\) 3.70820 11.4127i 0.122589 0.377292i
\(916\) 7.28115 5.29007i 0.240576 0.174789i
\(917\) 0 0
\(918\) 6.18034 + 19.0211i 0.203982 + 0.627791i
\(919\) 8.65248 + 26.6296i 0.285419 + 0.878429i 0.986273 + 0.165124i \(0.0528025\pi\)
−0.700854 + 0.713305i \(0.747198\pi\)
\(920\) 4.85410 + 3.52671i 0.160035 + 0.116272i
\(921\) 35.5967 25.8626i 1.17295 0.852200i
\(922\) 10.1976 31.3849i 0.335839 1.03361i
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) −6.18034 + 19.0211i −0.203099 + 0.625073i
\(927\) −6.47214 + 4.70228i −0.212573 + 0.154443i
\(928\) −36.4058 26.4503i −1.19508 0.868275i
\(929\) −6.48936 19.9722i −0.212909 0.655266i −0.999295 0.0375315i \(-0.988051\pi\)
0.786387 0.617735i \(-0.211949\pi\)
\(930\) −1.23607 3.80423i −0.0405323 0.124745i
\(931\) 14.5623 + 10.5801i 0.477260 + 0.346750i
\(932\) −16.9894 + 12.3435i −0.556505 + 0.404324i
\(933\) 14.8328 45.6507i 0.485605 1.49454i
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) −3.00000 −0.0980581
\(937\) 7.10739 21.8743i 0.232188 0.714602i −0.765294 0.643681i \(-0.777406\pi\)
0.997482 0.0709209i \(-0.0225938\pi\)
\(938\) 3.23607 2.35114i 0.105661 0.0767675i
\(939\) −37.2148 27.0381i −1.21446 0.882356i
\(940\) −0.618034 1.90211i −0.0201580 0.0620401i
\(941\) −8.34346 25.6785i −0.271989 0.837096i −0.990000 0.141065i \(-0.954947\pi\)
0.718011 0.696031i \(-0.245053\pi\)
\(942\) −3.23607 2.35114i −0.105437 0.0766043i
\(943\) 8.09017 5.87785i 0.263452 0.191409i
\(944\) −2.47214 + 7.60845i −0.0804612 + 0.247634i
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) −42.0000 −1.36482 −0.682408 0.730971i \(-0.739067\pi\)
−0.682408 + 0.730971i \(0.739067\pi\)
\(948\) 6.18034 19.0211i 0.200728 0.617778i
\(949\) 1.61803 1.17557i 0.0525236 0.0381606i
\(950\) 19.4164 + 14.1068i 0.629951 + 0.457687i
\(951\) −1.23607 3.80423i −0.0400823 0.123360i
\(952\) −9.27051 28.5317i −0.300459 0.924718i
\(953\) −25.0795 18.2213i −0.812406 0.590247i 0.102121 0.994772i \(-0.467437\pi\)
−0.914527 + 0.404525i \(0.867437\pi\)
\(954\) −7.28115 + 5.29007i −0.235736 + 0.171272i
\(955\) 2.47214 7.60845i 0.0799964 0.246204i
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) 6.18034 19.0211i 0.199574 0.614224i
\(960\) −11.3262 + 8.22899i −0.365553 + 0.265590i
\(961\) 21.8435 + 15.8702i 0.704628 + 0.511942i
\(962\) −0.927051 2.85317i −0.0298893 0.0919899i
\(963\) 1.85410 + 5.70634i 0.0597476 + 0.183884i
\(964\) 17.7984 + 12.9313i 0.573247 + 0.416488i
\(965\) 4.04508 2.93893i 0.130216 0.0946074i
\(966\) −2.47214 + 7.60845i −0.0795397 + 0.244798i
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) −60.0000 −1.92748
\(970\) −4.01722 + 12.3637i −0.128985 + 0.396976i
\(971\) −1.61803 + 1.17557i −0.0519252 + 0.0377259i −0.613445 0.789737i \(-0.710217\pi\)
0.561520 + 0.827463i \(0.310217\pi\)
\(972\) −8.09017 5.87785i −0.259492 0.188532i
\(973\) 1.23607 + 3.80423i 0.0396265 + 0.121958i
\(974\) 0.618034 + 1.90211i 0.0198031 + 0.0609476i
\(975\) 6.47214 + 4.70228i 0.207274 + 0.150594i
\(976\) 4.85410 3.52671i 0.155376 0.112887i
\(977\) −17.6140 + 54.2102i −0.563521 + 1.73434i 0.108785 + 0.994065i \(0.465304\pi\)
−0.672306 + 0.740273i \(0.734696\pi\)
\(978\) −4.00000 −0.127906
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) −3.39919 + 10.4616i −0.108528 + 0.334014i
\(982\) 1.61803 1.17557i 0.0516335 0.0375140i
\(983\) 29.1246 + 21.1603i 0.928931 + 0.674908i 0.945731 0.324951i \(-0.105348\pi\)
−0.0168000 + 0.999859i \(0.505348\pi\)
\(984\) 9.27051 + 28.5317i 0.295533 + 0.909557i
\(985\) −3.39919 10.4616i −0.108307 0.333335i
\(986\) 36.4058 + 26.4503i 1.15940 + 0.842350i
\(987\) 6.47214 4.70228i 0.206010 0.149675i
\(988\) −1.85410 + 5.70634i −0.0589868 + 0.181543i
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) −3.09017 + 9.51057i −0.0981130 + 0.301961i
\(993\) 32.3607 23.5114i 1.02694 0.746112i
\(994\) 19.4164 + 14.1068i 0.615851 + 0.447442i
\(995\) 7.41641 + 22.8254i 0.235116 + 0.723612i
\(996\) −3.70820 11.4127i −0.117499 0.361625i
\(997\) −42.8779 31.1526i −1.35796 0.986613i −0.998572 0.0534239i \(-0.982987\pi\)
−0.359385 0.933189i \(-0.617013\pi\)
\(998\) −6.47214 + 4.70228i −0.204872 + 0.148848i
\(999\) 3.70820 11.4127i 0.117322 0.361081i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.2.c.b.9.1 4
11.2 odd 10 121.2.c.d.3.1 4
11.3 even 5 inner 121.2.c.b.81.1 4
11.4 even 5 121.2.a.c.1.1 yes 1
11.5 even 5 inner 121.2.c.b.27.1 4
11.6 odd 10 121.2.c.d.27.1 4
11.7 odd 10 121.2.a.a.1.1 1
11.8 odd 10 121.2.c.d.81.1 4
11.9 even 5 inner 121.2.c.b.3.1 4
11.10 odd 2 121.2.c.d.9.1 4
33.26 odd 10 1089.2.a.c.1.1 1
33.29 even 10 1089.2.a.i.1.1 1
44.7 even 10 1936.2.a.a.1.1 1
44.15 odd 10 1936.2.a.b.1.1 1
55.4 even 10 3025.2.a.b.1.1 1
55.29 odd 10 3025.2.a.e.1.1 1
77.48 odd 10 5929.2.a.g.1.1 1
77.62 even 10 5929.2.a.a.1.1 1
88.29 odd 10 7744.2.a.f.1.1 1
88.37 even 10 7744.2.a.c.1.1 1
88.51 even 10 7744.2.a.be.1.1 1
88.59 odd 10 7744.2.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.2.a.a.1.1 1 11.7 odd 10
121.2.a.c.1.1 yes 1 11.4 even 5
121.2.c.b.3.1 4 11.9 even 5 inner
121.2.c.b.9.1 4 1.1 even 1 trivial
121.2.c.b.27.1 4 11.5 even 5 inner
121.2.c.b.81.1 4 11.3 even 5 inner
121.2.c.d.3.1 4 11.2 odd 10
121.2.c.d.9.1 4 11.10 odd 2
121.2.c.d.27.1 4 11.6 odd 10
121.2.c.d.81.1 4 11.8 odd 10
1089.2.a.c.1.1 1 33.26 odd 10
1089.2.a.i.1.1 1 33.29 even 10
1936.2.a.a.1.1 1 44.7 even 10
1936.2.a.b.1.1 1 44.15 odd 10
3025.2.a.b.1.1 1 55.4 even 10
3025.2.a.e.1.1 1 55.29 odd 10
5929.2.a.a.1.1 1 77.62 even 10
5929.2.a.g.1.1 1 77.48 odd 10
7744.2.a.c.1.1 1 88.37 even 10
7744.2.a.f.1.1 1 88.29 odd 10
7744.2.a.be.1.1 1 88.51 even 10
7744.2.a.bf.1.1 1 88.59 odd 10