Properties

Label 121.2.c.b.3.1
Level $121$
Weight $2$
Character 121.3
Analytic conductor $0.966$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [121,2,Mod(3,121)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(121, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("121.3");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 121 = 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 121.c (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.966189864457\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 3.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 121.3
Dual form 121.2.c.b.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{2} +(0.618034 + 1.90211i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(-0.809017 - 0.587785i) q^{5} +(-1.61803 - 1.17557i) q^{6} +(-0.618034 + 1.90211i) q^{7} +(-0.927051 - 2.85317i) q^{8} +(-0.809017 + 0.587785i) q^{9} +1.00000 q^{10} -2.00000 q^{12} +(-0.809017 + 0.587785i) q^{13} +(-0.618034 - 1.90211i) q^{14} +(0.618034 - 1.90211i) q^{15} +(0.809017 + 0.587785i) q^{16} +(4.04508 + 2.93893i) q^{17} +(0.309017 - 0.951057i) q^{18} +(1.85410 + 5.70634i) q^{19} +(0.809017 - 0.587785i) q^{20} -4.00000 q^{21} +2.00000 q^{23} +(4.85410 - 3.52671i) q^{24} +(-1.23607 - 3.80423i) q^{25} +(0.309017 - 0.951057i) q^{26} +(3.23607 + 2.35114i) q^{27} +(-1.61803 - 1.17557i) q^{28} +(2.78115 - 8.55951i) q^{29} +(0.618034 + 1.90211i) q^{30} +(1.61803 - 1.17557i) q^{31} +5.00000 q^{32} -5.00000 q^{34} +(1.61803 - 1.17557i) q^{35} +(-0.309017 - 0.951057i) q^{36} +(-0.927051 + 2.85317i) q^{37} +(-4.85410 - 3.52671i) q^{38} +(-1.61803 - 1.17557i) q^{39} +(-0.927051 + 2.85317i) q^{40} +(-1.54508 - 4.75528i) q^{41} +(3.23607 - 2.35114i) q^{42} +1.00000 q^{45} +(-1.61803 + 1.17557i) q^{46} +(0.618034 + 1.90211i) q^{47} +(-0.618034 + 1.90211i) q^{48} +(2.42705 + 1.76336i) q^{49} +(3.23607 + 2.35114i) q^{50} +(-3.09017 + 9.51057i) q^{51} +(-0.309017 - 0.951057i) q^{52} +(-7.28115 + 5.29007i) q^{53} -4.00000 q^{54} +6.00000 q^{56} +(-9.70820 + 7.05342i) q^{57} +(2.78115 + 8.55951i) q^{58} +(2.47214 - 7.60845i) q^{59} +(1.61803 + 1.17557i) q^{60} +(-4.85410 - 3.52671i) q^{61} +(-0.618034 + 1.90211i) q^{62} +(-0.618034 - 1.90211i) q^{63} +(-5.66312 + 4.11450i) q^{64} +1.00000 q^{65} +2.00000 q^{67} +(-4.04508 + 2.93893i) q^{68} +(1.23607 + 3.80423i) q^{69} +(-0.618034 + 1.90211i) q^{70} +(-9.70820 - 7.05342i) q^{71} +(2.42705 + 1.76336i) q^{72} +(-0.618034 + 1.90211i) q^{73} +(-0.927051 - 2.85317i) q^{74} +(6.47214 - 4.70228i) q^{75} -6.00000 q^{76} +2.00000 q^{78} +(8.09017 - 5.87785i) q^{79} +(-0.309017 - 0.951057i) q^{80} +(-3.39919 + 10.4616i) q^{81} +(4.04508 + 2.93893i) q^{82} +(-4.85410 - 3.52671i) q^{83} +(1.23607 - 3.80423i) q^{84} +(-1.54508 - 4.75528i) q^{85} +18.0000 q^{87} -9.00000 q^{89} +(-0.809017 + 0.587785i) q^{90} +(-0.618034 - 1.90211i) q^{91} +(-0.618034 + 1.90211i) q^{92} +(3.23607 + 2.35114i) q^{93} +(-1.61803 - 1.17557i) q^{94} +(1.85410 - 5.70634i) q^{95} +(3.09017 + 9.51057i) q^{96} +(10.5172 - 7.64121i) q^{97} -3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 2 q^{3} + q^{4} - q^{5} - 2 q^{6} + 2 q^{7} + 3 q^{8} - q^{9} + 4 q^{10} - 8 q^{12} - q^{13} + 2 q^{14} - 2 q^{15} + q^{16} + 5 q^{17} - q^{18} - 6 q^{19} + q^{20} - 16 q^{21} + 8 q^{23}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/121\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 0.587785i −0.572061 + 0.415627i −0.835853 0.548953i \(-0.815027\pi\)
0.263792 + 0.964580i \(0.415027\pi\)
\(3\) 0.618034 + 1.90211i 0.356822 + 1.09819i 0.954945 + 0.296781i \(0.0959133\pi\)
−0.598123 + 0.801404i \(0.704087\pi\)
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) −0.809017 0.587785i −0.361803 0.262866i 0.392000 0.919965i \(-0.371783\pi\)
−0.753804 + 0.657099i \(0.771783\pi\)
\(6\) −1.61803 1.17557i −0.660560 0.479925i
\(7\) −0.618034 + 1.90211i −0.233595 + 0.718931i 0.763710 + 0.645560i \(0.223376\pi\)
−0.997305 + 0.0733714i \(0.976624\pi\)
\(8\) −0.927051 2.85317i −0.327762 1.00875i
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 1.00000 0.316228
\(11\) 0 0
\(12\) −2.00000 −0.577350
\(13\) −0.809017 + 0.587785i −0.224381 + 0.163022i −0.694297 0.719689i \(-0.744284\pi\)
0.469916 + 0.882711i \(0.344284\pi\)
\(14\) −0.618034 1.90211i −0.165177 0.508361i
\(15\) 0.618034 1.90211i 0.159576 0.491123i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 4.04508 + 2.93893i 0.981077 + 0.712794i 0.957949 0.286938i \(-0.0926374\pi\)
0.0231281 + 0.999733i \(0.492637\pi\)
\(18\) 0.309017 0.951057i 0.0728360 0.224166i
\(19\) 1.85410 + 5.70634i 0.425360 + 1.30912i 0.902649 + 0.430377i \(0.141620\pi\)
−0.477289 + 0.878746i \(0.658380\pi\)
\(20\) 0.809017 0.587785i 0.180902 0.131433i
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 4.85410 3.52671i 0.990839 0.719887i
\(25\) −1.23607 3.80423i −0.247214 0.760845i
\(26\) 0.309017 0.951057i 0.0606032 0.186518i
\(27\) 3.23607 + 2.35114i 0.622782 + 0.452477i
\(28\) −1.61803 1.17557i −0.305780 0.222162i
\(29\) 2.78115 8.55951i 0.516447 1.58946i −0.264186 0.964472i \(-0.585103\pi\)
0.780633 0.624989i \(-0.214897\pi\)
\(30\) 0.618034 + 1.90211i 0.112837 + 0.347277i
\(31\) 1.61803 1.17557i 0.290607 0.211139i −0.432923 0.901431i \(-0.642518\pi\)
0.723531 + 0.690292i \(0.242518\pi\)
\(32\) 5.00000 0.883883
\(33\) 0 0
\(34\) −5.00000 −0.857493
\(35\) 1.61803 1.17557i 0.273498 0.198708i
\(36\) −0.309017 0.951057i −0.0515028 0.158509i
\(37\) −0.927051 + 2.85317i −0.152406 + 0.469058i −0.997889 0.0649448i \(-0.979313\pi\)
0.845483 + 0.534003i \(0.179313\pi\)
\(38\) −4.85410 3.52671i −0.787439 0.572108i
\(39\) −1.61803 1.17557i −0.259093 0.188242i
\(40\) −0.927051 + 2.85317i −0.146580 + 0.451126i
\(41\) −1.54508 4.75528i −0.241302 0.742650i −0.996223 0.0868346i \(-0.972325\pi\)
0.754921 0.655816i \(-0.227675\pi\)
\(42\) 3.23607 2.35114i 0.499336 0.362789i
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 1.00000 0.149071
\(46\) −1.61803 + 1.17557i −0.238566 + 0.173328i
\(47\) 0.618034 + 1.90211i 0.0901495 + 0.277452i 0.985959 0.166986i \(-0.0534035\pi\)
−0.895810 + 0.444438i \(0.853403\pi\)
\(48\) −0.618034 + 1.90211i −0.0892055 + 0.274546i
\(49\) 2.42705 + 1.76336i 0.346722 + 0.251908i
\(50\) 3.23607 + 2.35114i 0.457649 + 0.332502i
\(51\) −3.09017 + 9.51057i −0.432710 + 1.33175i
\(52\) −0.309017 0.951057i −0.0428529 0.131888i
\(53\) −7.28115 + 5.29007i −1.00014 + 0.726647i −0.962119 0.272630i \(-0.912106\pi\)
−0.0380244 + 0.999277i \(0.512106\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) 6.00000 0.801784
\(57\) −9.70820 + 7.05342i −1.28588 + 0.934249i
\(58\) 2.78115 + 8.55951i 0.365183 + 1.12392i
\(59\) 2.47214 7.60845i 0.321845 0.990536i −0.651000 0.759078i \(-0.725650\pi\)
0.972845 0.231458i \(-0.0743497\pi\)
\(60\) 1.61803 + 1.17557i 0.208887 + 0.151765i
\(61\) −4.85410 3.52671i −0.621504 0.451549i 0.231942 0.972730i \(-0.425492\pi\)
−0.853447 + 0.521180i \(0.825492\pi\)
\(62\) −0.618034 + 1.90211i −0.0784904 + 0.241569i
\(63\) −0.618034 1.90211i −0.0778650 0.239644i
\(64\) −5.66312 + 4.11450i −0.707890 + 0.514312i
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) −4.04508 + 2.93893i −0.490539 + 0.356397i
\(69\) 1.23607 + 3.80423i 0.148805 + 0.457975i
\(70\) −0.618034 + 1.90211i −0.0738692 + 0.227346i
\(71\) −9.70820 7.05342i −1.15215 0.837087i −0.163386 0.986562i \(-0.552242\pi\)
−0.988766 + 0.149475i \(0.952242\pi\)
\(72\) 2.42705 + 1.76336i 0.286031 + 0.207813i
\(73\) −0.618034 + 1.90211i −0.0723354 + 0.222625i −0.980688 0.195580i \(-0.937341\pi\)
0.908352 + 0.418206i \(0.137341\pi\)
\(74\) −0.927051 2.85317i −0.107767 0.331674i
\(75\) 6.47214 4.70228i 0.747338 0.542973i
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 2.00000 0.226455
\(79\) 8.09017 5.87785i 0.910215 0.661310i −0.0308541 0.999524i \(-0.509823\pi\)
0.941069 + 0.338214i \(0.109823\pi\)
\(80\) −0.309017 0.951057i −0.0345492 0.106331i
\(81\) −3.39919 + 10.4616i −0.377687 + 1.16240i
\(82\) 4.04508 + 2.93893i 0.446705 + 0.324550i
\(83\) −4.85410 3.52671i −0.532807 0.387107i 0.288600 0.957450i \(-0.406810\pi\)
−0.821407 + 0.570343i \(0.806810\pi\)
\(84\) 1.23607 3.80423i 0.134866 0.415075i
\(85\) −1.54508 4.75528i −0.167588 0.515783i
\(86\) 0 0
\(87\) 18.0000 1.92980
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) −0.809017 + 0.587785i −0.0852779 + 0.0619580i
\(91\) −0.618034 1.90211i −0.0647876 0.199396i
\(92\) −0.618034 + 1.90211i −0.0644345 + 0.198309i
\(93\) 3.23607 + 2.35114i 0.335565 + 0.243802i
\(94\) −1.61803 1.17557i −0.166887 0.121251i
\(95\) 1.85410 5.70634i 0.190227 0.585458i
\(96\) 3.09017 + 9.51057i 0.315389 + 0.970668i
\(97\) 10.5172 7.64121i 1.06786 0.775847i 0.0923353 0.995728i \(-0.470567\pi\)
0.975527 + 0.219881i \(0.0705669\pi\)
\(98\) −3.00000 −0.303046
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 8.09017 5.87785i 0.805002 0.584868i −0.107375 0.994219i \(-0.534245\pi\)
0.912377 + 0.409350i \(0.134245\pi\)
\(102\) −3.09017 9.51057i −0.305972 0.941686i
\(103\) 2.47214 7.60845i 0.243587 0.749683i −0.752279 0.658845i \(-0.771045\pi\)
0.995866 0.0908382i \(-0.0289546\pi\)
\(104\) 2.42705 + 1.76336i 0.237992 + 0.172911i
\(105\) 3.23607 + 2.35114i 0.315808 + 0.229448i
\(106\) 2.78115 8.55951i 0.270129 0.831373i
\(107\) 1.85410 + 5.70634i 0.179243 + 0.551653i 0.999802 0.0199092i \(-0.00633772\pi\)
−0.820559 + 0.571562i \(0.806338\pi\)
\(108\) −3.23607 + 2.35114i −0.311391 + 0.226239i
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) −1.61803 + 1.17557i −0.152890 + 0.111081i
\(113\) −2.78115 8.55951i −0.261629 0.805211i −0.992451 0.122643i \(-0.960863\pi\)
0.730822 0.682568i \(-0.239137\pi\)
\(114\) 3.70820 11.4127i 0.347305 1.06890i
\(115\) −1.61803 1.17557i −0.150882 0.109623i
\(116\) 7.28115 + 5.29007i 0.676038 + 0.491170i
\(117\) 0.309017 0.951057i 0.0285686 0.0879252i
\(118\) 2.47214 + 7.60845i 0.227579 + 0.700415i
\(119\) −8.09017 + 5.87785i −0.741625 + 0.538822i
\(120\) −6.00000 −0.547723
\(121\) 0 0
\(122\) 6.00000 0.543214
\(123\) 8.09017 5.87785i 0.729466 0.529988i
\(124\) 0.618034 + 1.90211i 0.0555011 + 0.170815i
\(125\) −2.78115 + 8.55951i −0.248754 + 0.765586i
\(126\) 1.61803 + 1.17557i 0.144146 + 0.104728i
\(127\) 12.9443 + 9.40456i 1.14862 + 0.834520i 0.988297 0.152545i \(-0.0487468\pi\)
0.160322 + 0.987065i \(0.448747\pi\)
\(128\) −0.927051 + 2.85317i −0.0819405 + 0.252187i
\(129\) 0 0
\(130\) −0.809017 + 0.587785i −0.0709555 + 0.0515522i
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) −1.61803 + 1.17557i −0.139777 + 0.101554i
\(135\) −1.23607 3.80423i −0.106384 0.327416i
\(136\) 4.63525 14.2658i 0.397470 1.22329i
\(137\) 8.09017 + 5.87785i 0.691190 + 0.502179i 0.877051 0.480397i \(-0.159507\pi\)
−0.185861 + 0.982576i \(0.559507\pi\)
\(138\) −3.23607 2.35114i −0.275472 0.200142i
\(139\) −0.618034 + 1.90211i −0.0524210 + 0.161335i −0.973840 0.227236i \(-0.927031\pi\)
0.921419 + 0.388571i \(0.127031\pi\)
\(140\) 0.618034 + 1.90211i 0.0522334 + 0.160758i
\(141\) −3.23607 + 2.35114i −0.272526 + 0.198002i
\(142\) 12.0000 1.00702
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −7.28115 + 5.29007i −0.604667 + 0.439316i
\(146\) −0.618034 1.90211i −0.0511489 0.157420i
\(147\) −1.85410 + 5.70634i −0.152924 + 0.470651i
\(148\) −2.42705 1.76336i −0.199502 0.144947i
\(149\) −13.7533 9.99235i −1.12671 0.818605i −0.141500 0.989938i \(-0.545193\pi\)
−0.985213 + 0.171333i \(0.945193\pi\)
\(150\) −2.47214 + 7.60845i −0.201849 + 0.621228i
\(151\) −4.94427 15.2169i −0.402359 1.23833i −0.923080 0.384607i \(-0.874337\pi\)
0.520721 0.853727i \(-0.325663\pi\)
\(152\) 14.5623 10.5801i 1.18116 0.858162i
\(153\) −5.00000 −0.404226
\(154\) 0 0
\(155\) −2.00000 −0.160644
\(156\) 1.61803 1.17557i 0.129546 0.0941210i
\(157\) 0.618034 + 1.90211i 0.0493245 + 0.151805i 0.972685 0.232129i \(-0.0745691\pi\)
−0.923361 + 0.383934i \(0.874569\pi\)
\(158\) −3.09017 + 9.51057i −0.245841 + 0.756620i
\(159\) −14.5623 10.5801i −1.15487 0.839059i
\(160\) −4.04508 2.93893i −0.319792 0.232343i
\(161\) −1.23607 + 3.80423i −0.0974158 + 0.299815i
\(162\) −3.39919 10.4616i −0.267065 0.821943i
\(163\) 1.61803 1.17557i 0.126734 0.0920778i −0.522612 0.852570i \(-0.675042\pi\)
0.649347 + 0.760493i \(0.275042\pi\)
\(164\) 5.00000 0.390434
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) −9.70820 + 7.05342i −0.751243 + 0.545810i −0.896212 0.443626i \(-0.853692\pi\)
0.144969 + 0.989436i \(0.453692\pi\)
\(168\) 3.70820 + 11.4127i 0.286094 + 0.880507i
\(169\) −3.70820 + 11.4127i −0.285246 + 0.877898i
\(170\) 4.04508 + 2.93893i 0.310244 + 0.225405i
\(171\) −4.85410 3.52671i −0.371202 0.269694i
\(172\) 0 0
\(173\) 1.85410 + 5.70634i 0.140965 + 0.433845i 0.996470 0.0839492i \(-0.0267533\pi\)
−0.855505 + 0.517794i \(0.826753\pi\)
\(174\) −14.5623 + 10.5801i −1.10397 + 0.802078i
\(175\) 8.00000 0.604743
\(176\) 0 0
\(177\) 16.0000 1.20263
\(178\) 7.28115 5.29007i 0.545745 0.396507i
\(179\) 7.41641 + 22.8254i 0.554328 + 1.70605i 0.697710 + 0.716380i \(0.254202\pi\)
−0.143382 + 0.989667i \(0.545798\pi\)
\(180\) −0.309017 + 0.951057i −0.0230328 + 0.0708876i
\(181\) −0.809017 0.587785i −0.0601338 0.0436897i 0.557312 0.830303i \(-0.311833\pi\)
−0.617446 + 0.786613i \(0.711833\pi\)
\(182\) 1.61803 + 1.17557i 0.119937 + 0.0871391i
\(183\) 3.70820 11.4127i 0.274118 0.843649i
\(184\) −1.85410 5.70634i −0.136686 0.420677i
\(185\) 2.42705 1.76336i 0.178440 0.129644i
\(186\) −4.00000 −0.293294
\(187\) 0 0
\(188\) −2.00000 −0.145865
\(189\) −6.47214 + 4.70228i −0.470779 + 0.342041i
\(190\) 1.85410 + 5.70634i 0.134511 + 0.413981i
\(191\) 2.47214 7.60845i 0.178877 0.550528i −0.820912 0.571055i \(-0.806534\pi\)
0.999789 + 0.0205267i \(0.00653431\pi\)
\(192\) −11.3262 8.22899i −0.817401 0.593876i
\(193\) 4.04508 + 2.93893i 0.291172 + 0.211549i 0.723775 0.690036i \(-0.242405\pi\)
−0.432604 + 0.901584i \(0.642405\pi\)
\(194\) −4.01722 + 12.3637i −0.288420 + 0.887664i
\(195\) 0.618034 + 1.90211i 0.0442583 + 0.136213i
\(196\) −2.42705 + 1.76336i −0.173361 + 0.125954i
\(197\) −11.0000 −0.783718 −0.391859 0.920025i \(-0.628168\pi\)
−0.391859 + 0.920025i \(0.628168\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) −9.70820 + 7.05342i −0.686474 + 0.498752i
\(201\) 1.23607 + 3.80423i 0.0871855 + 0.268329i
\(202\) −3.09017 + 9.51057i −0.217424 + 0.669161i
\(203\) 14.5623 + 10.5801i 1.02207 + 0.742580i
\(204\) −8.09017 5.87785i −0.566425 0.411532i
\(205\) −1.54508 + 4.75528i −0.107913 + 0.332123i
\(206\) 2.47214 + 7.60845i 0.172242 + 0.530106i
\(207\) −1.61803 + 1.17557i −0.112461 + 0.0817078i
\(208\) −1.00000 −0.0693375
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) −9.70820 + 7.05342i −0.668340 + 0.485578i −0.869469 0.493987i \(-0.835539\pi\)
0.201129 + 0.979565i \(0.435539\pi\)
\(212\) −2.78115 8.55951i −0.191010 0.587869i
\(213\) 7.41641 22.8254i 0.508164 1.56397i
\(214\) −4.85410 3.52671i −0.331820 0.241081i
\(215\) 0 0
\(216\) 3.70820 11.4127i 0.252311 0.776534i
\(217\) 1.23607 + 3.80423i 0.0839098 + 0.258248i
\(218\) 8.89919 6.46564i 0.602729 0.437908i
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −5.00000 −0.336336
\(222\) 4.85410 3.52671i 0.325786 0.236697i
\(223\) −6.18034 19.0211i −0.413866 1.27375i −0.913261 0.407375i \(-0.866444\pi\)
0.499395 0.866374i \(-0.333556\pi\)
\(224\) −3.09017 + 9.51057i −0.206471 + 0.635451i
\(225\) 3.23607 + 2.35114i 0.215738 + 0.156743i
\(226\) 7.28115 + 5.29007i 0.484335 + 0.351890i
\(227\) −7.41641 + 22.8254i −0.492244 + 1.51497i 0.328963 + 0.944343i \(0.393301\pi\)
−0.821208 + 0.570629i \(0.806699\pi\)
\(228\) −3.70820 11.4127i −0.245582 0.755823i
\(229\) −7.28115 + 5.29007i −0.481152 + 0.349577i −0.801772 0.597631i \(-0.796109\pi\)
0.320619 + 0.947208i \(0.396109\pi\)
\(230\) 2.00000 0.131876
\(231\) 0 0
\(232\) −27.0000 −1.77264
\(233\) 16.9894 12.3435i 1.11301 0.808649i 0.129875 0.991530i \(-0.458542\pi\)
0.983135 + 0.182881i \(0.0585425\pi\)
\(234\) 0.309017 + 0.951057i 0.0202011 + 0.0621725i
\(235\) 0.618034 1.90211i 0.0403161 0.124080i
\(236\) 6.47214 + 4.70228i 0.421300 + 0.306092i
\(237\) 16.1803 + 11.7557i 1.05103 + 0.763615i
\(238\) 3.09017 9.51057i 0.200306 0.616478i
\(239\) 1.85410 + 5.70634i 0.119932 + 0.369112i 0.992944 0.118587i \(-0.0378363\pi\)
−0.873012 + 0.487699i \(0.837836\pi\)
\(240\) 1.61803 1.17557i 0.104444 0.0758827i
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 4.85410 3.52671i 0.310752 0.225775i
\(245\) −0.927051 2.85317i −0.0592271 0.182282i
\(246\) −3.09017 + 9.51057i −0.197022 + 0.606371i
\(247\) −4.85410 3.52671i −0.308859 0.224399i
\(248\) −4.85410 3.52671i −0.308236 0.223946i
\(249\) 3.70820 11.4127i 0.234998 0.723249i
\(250\) −2.78115 8.55951i −0.175896 0.541351i
\(251\) 1.61803 1.17557i 0.102129 0.0742014i −0.535548 0.844504i \(-0.679895\pi\)
0.637678 + 0.770303i \(0.279895\pi\)
\(252\) 2.00000 0.125988
\(253\) 0 0
\(254\) −16.0000 −1.00393
\(255\) 8.09017 5.87785i 0.506626 0.368085i
\(256\) −5.25329 16.1680i −0.328331 1.01050i
\(257\) 5.87132 18.0701i 0.366243 1.12718i −0.582956 0.812504i \(-0.698104\pi\)
0.949199 0.314676i \(-0.101896\pi\)
\(258\) 0 0
\(259\) −4.85410 3.52671i −0.301619 0.219139i
\(260\) −0.309017 + 0.951057i −0.0191644 + 0.0589820i
\(261\) 2.78115 + 8.55951i 0.172149 + 0.529820i
\(262\) 0 0
\(263\) −22.0000 −1.35658 −0.678289 0.734795i \(-0.737278\pi\)
−0.678289 + 0.734795i \(0.737278\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 9.70820 7.05342i 0.595248 0.432473i
\(267\) −5.56231 17.1190i −0.340408 1.04767i
\(268\) −0.618034 + 1.90211i −0.0377524 + 0.116190i
\(269\) −0.809017 0.587785i −0.0493266 0.0358379i 0.562849 0.826560i \(-0.309705\pi\)
−0.612175 + 0.790722i \(0.709705\pi\)
\(270\) 3.23607 + 2.35114i 0.196941 + 0.143086i
\(271\) 6.18034 19.0211i 0.375429 1.15545i −0.567760 0.823194i \(-0.692190\pi\)
0.943189 0.332257i \(-0.107810\pi\)
\(272\) 1.54508 + 4.75528i 0.0936845 + 0.288331i
\(273\) 3.23607 2.35114i 0.195856 0.142298i
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) −0.809017 + 0.587785i −0.0486091 + 0.0353166i −0.611825 0.790994i \(-0.709564\pi\)
0.563215 + 0.826310i \(0.309564\pi\)
\(278\) −0.618034 1.90211i −0.0370672 0.114081i
\(279\) −0.618034 + 1.90211i −0.0370007 + 0.113877i
\(280\) −4.85410 3.52671i −0.290088 0.210761i
\(281\) −4.85410 3.52671i −0.289571 0.210386i 0.433510 0.901149i \(-0.357275\pi\)
−0.723081 + 0.690763i \(0.757275\pi\)
\(282\) 1.23607 3.80423i 0.0736068 0.226538i
\(283\) 8.65248 + 26.6296i 0.514336 + 1.58296i 0.784486 + 0.620146i \(0.212927\pi\)
−0.270150 + 0.962818i \(0.587073\pi\)
\(284\) 9.70820 7.05342i 0.576076 0.418544i
\(285\) 12.0000 0.710819
\(286\) 0 0
\(287\) 10.0000 0.590281
\(288\) −4.04508 + 2.93893i −0.238359 + 0.173178i
\(289\) 2.47214 + 7.60845i 0.145420 + 0.447556i
\(290\) 2.78115 8.55951i 0.163315 0.502632i
\(291\) 21.0344 + 15.2824i 1.23306 + 0.895871i
\(292\) −1.61803 1.17557i −0.0946883 0.0687951i
\(293\) 2.78115 8.55951i 0.162477 0.500052i −0.836365 0.548173i \(-0.815323\pi\)
0.998841 + 0.0481214i \(0.0153234\pi\)
\(294\) −1.85410 5.70634i −0.108133 0.332800i
\(295\) −6.47214 + 4.70228i −0.376822 + 0.273777i
\(296\) 9.00000 0.523114
\(297\) 0 0
\(298\) 17.0000 0.984784
\(299\) −1.61803 + 1.17557i −0.0935733 + 0.0679850i
\(300\) 2.47214 + 7.60845i 0.142729 + 0.439274i
\(301\) 0 0
\(302\) 12.9443 + 9.40456i 0.744859 + 0.541172i
\(303\) 16.1803 + 11.7557i 0.929536 + 0.675348i
\(304\) −1.85410 + 5.70634i −0.106340 + 0.327281i
\(305\) 1.85410 + 5.70634i 0.106166 + 0.326744i
\(306\) 4.04508 2.93893i 0.231242 0.168007i
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) 1.61803 1.17557i 0.0918982 0.0667679i
\(311\) 7.41641 + 22.8254i 0.420546 + 1.29431i 0.907195 + 0.420710i \(0.138219\pi\)
−0.486649 + 0.873597i \(0.661781\pi\)
\(312\) −1.85410 + 5.70634i −0.104968 + 0.323058i
\(313\) −18.6074 13.5191i −1.05175 0.764142i −0.0792071 0.996858i \(-0.525239\pi\)
−0.972545 + 0.232716i \(0.925239\pi\)
\(314\) −1.61803 1.17557i −0.0913109 0.0663413i
\(315\) −0.618034 + 1.90211i −0.0348223 + 0.107172i
\(316\) 3.09017 + 9.51057i 0.173836 + 0.535011i
\(317\) 1.61803 1.17557i 0.0908778 0.0660266i −0.541418 0.840753i \(-0.682113\pi\)
0.632296 + 0.774727i \(0.282113\pi\)
\(318\) 18.0000 1.00939
\(319\) 0 0
\(320\) 7.00000 0.391312
\(321\) −9.70820 + 7.05342i −0.541859 + 0.393684i
\(322\) −1.23607 3.80423i −0.0688834 0.212001i
\(323\) −9.27051 + 28.5317i −0.515825 + 1.58755i
\(324\) −8.89919 6.46564i −0.494399 0.359202i
\(325\) 3.23607 + 2.35114i 0.179505 + 0.130418i
\(326\) −0.618034 + 1.90211i −0.0342297 + 0.105348i
\(327\) −6.79837 20.9232i −0.375951 1.15706i
\(328\) −12.1353 + 8.81678i −0.670057 + 0.486825i
\(329\) −4.00000 −0.220527
\(330\) 0 0
\(331\) −20.0000 −1.09930 −0.549650 0.835395i \(-0.685239\pi\)
−0.549650 + 0.835395i \(0.685239\pi\)
\(332\) 4.85410 3.52671i 0.266403 0.193553i
\(333\) −0.927051 2.85317i −0.0508021 0.156353i
\(334\) 3.70820 11.4127i 0.202904 0.624474i
\(335\) −1.61803 1.17557i −0.0884026 0.0642283i
\(336\) −3.23607 2.35114i −0.176542 0.128265i
\(337\) −4.01722 + 12.3637i −0.218832 + 0.673496i 0.780027 + 0.625745i \(0.215205\pi\)
−0.998859 + 0.0477501i \(0.984795\pi\)
\(338\) −3.70820 11.4127i −0.201700 0.620768i
\(339\) 14.5623 10.5801i 0.790916 0.574634i
\(340\) 5.00000 0.271163
\(341\) 0 0
\(342\) 6.00000 0.324443
\(343\) −16.1803 + 11.7557i −0.873656 + 0.634748i
\(344\) 0 0
\(345\) 1.23607 3.80423i 0.0665477 0.204813i
\(346\) −4.85410 3.52671i −0.260958 0.189597i
\(347\) −22.6525 16.4580i −1.21605 0.883511i −0.220283 0.975436i \(-0.570698\pi\)
−0.995766 + 0.0919250i \(0.970698\pi\)
\(348\) −5.56231 + 17.1190i −0.298171 + 0.917676i
\(349\) −8.34346 25.6785i −0.446615 1.37454i −0.880703 0.473669i \(-0.842929\pi\)
0.434088 0.900871i \(-0.357071\pi\)
\(350\) −6.47214 + 4.70228i −0.345950 + 0.251348i
\(351\) −4.00000 −0.213504
\(352\) 0 0
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) −12.9443 + 9.40456i −0.687980 + 0.499847i
\(355\) 3.70820 + 11.4127i 0.196811 + 0.605722i
\(356\) 2.78115 8.55951i 0.147401 0.453653i
\(357\) −16.1803 11.7557i −0.856354 0.622178i
\(358\) −19.4164 14.1068i −1.02619 0.745570i
\(359\) −0.618034 + 1.90211i −0.0326186 + 0.100390i −0.966040 0.258391i \(-0.916808\pi\)
0.933422 + 0.358781i \(0.116808\pi\)
\(360\) −0.927051 2.85317i −0.0488599 0.150375i
\(361\) −13.7533 + 9.99235i −0.723857 + 0.525913i
\(362\) 1.00000 0.0525588
\(363\) 0 0
\(364\) 2.00000 0.104828
\(365\) 1.61803 1.17557i 0.0846918 0.0615322i
\(366\) 3.70820 + 11.4127i 0.193831 + 0.596550i
\(367\) −4.32624 + 13.3148i −0.225828 + 0.695026i 0.772379 + 0.635162i \(0.219067\pi\)
−0.998207 + 0.0598642i \(0.980933\pi\)
\(368\) 1.61803 + 1.17557i 0.0843459 + 0.0612808i
\(369\) 4.04508 + 2.93893i 0.210579 + 0.152994i
\(370\) −0.927051 + 2.85317i −0.0481951 + 0.148329i
\(371\) −5.56231 17.1190i −0.288781 0.888775i
\(372\) −3.23607 + 2.35114i −0.167782 + 0.121901i
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) −18.0000 −0.929516
\(376\) 4.85410 3.52671i 0.250331 0.181876i
\(377\) 2.78115 + 8.55951i 0.143237 + 0.440837i
\(378\) 2.47214 7.60845i 0.127153 0.391337i
\(379\) 25.8885 + 18.8091i 1.32981 + 0.966160i 0.999754 + 0.0221971i \(0.00706614\pi\)
0.330052 + 0.943963i \(0.392934\pi\)
\(380\) 4.85410 + 3.52671i 0.249010 + 0.180916i
\(381\) −9.88854 + 30.4338i −0.506605 + 1.55917i
\(382\) 2.47214 + 7.60845i 0.126485 + 0.389282i
\(383\) −16.1803 + 11.7557i −0.826777 + 0.600688i −0.918646 0.395083i \(-0.870716\pi\)
0.0918688 + 0.995771i \(0.470716\pi\)
\(384\) −6.00000 −0.306186
\(385\) 0 0
\(386\) −5.00000 −0.254493
\(387\) 0 0
\(388\) 4.01722 + 12.3637i 0.203943 + 0.627674i
\(389\) −0.927051 + 2.85317i −0.0470034 + 0.144661i −0.971804 0.235791i \(-0.924232\pi\)
0.924800 + 0.380453i \(0.124232\pi\)
\(390\) −1.61803 1.17557i −0.0819323 0.0595273i
\(391\) 8.09017 + 5.87785i 0.409137 + 0.297256i
\(392\) 2.78115 8.55951i 0.140469 0.432320i
\(393\) 0 0
\(394\) 8.89919 6.46564i 0.448335 0.325734i
\(395\) −10.0000 −0.503155
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) −19.4164 + 14.1068i −0.973257 + 0.707112i
\(399\) −7.41641 22.8254i −0.371285 1.14270i
\(400\) 1.23607 3.80423i 0.0618034 0.190211i
\(401\) −18.6074 13.5191i −0.929209 0.675110i 0.0165902 0.999862i \(-0.494719\pi\)
−0.945799 + 0.324753i \(0.894719\pi\)
\(402\) −3.23607 2.35114i −0.161400 0.117264i
\(403\) −0.618034 + 1.90211i −0.0307865 + 0.0947510i
\(404\) 3.09017 + 9.51057i 0.153742 + 0.473168i
\(405\) 8.89919 6.46564i 0.442204 0.321280i
\(406\) −18.0000 −0.893325
\(407\) 0 0
\(408\) 30.0000 1.48522
\(409\) 16.9894 12.3435i 0.840070 0.610346i −0.0823205 0.996606i \(-0.526233\pi\)
0.922390 + 0.386260i \(0.126233\pi\)
\(410\) −1.54508 4.75528i −0.0763063 0.234847i
\(411\) −6.18034 + 19.0211i −0.304854 + 0.938243i
\(412\) 6.47214 + 4.70228i 0.318859 + 0.231665i
\(413\) 12.9443 + 9.40456i 0.636946 + 0.462768i
\(414\) 0.618034 1.90211i 0.0303747 0.0934838i
\(415\) 1.85410 + 5.70634i 0.0910143 + 0.280113i
\(416\) −4.04508 + 2.93893i −0.198327 + 0.144093i
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) 2.00000 0.0977064 0.0488532 0.998806i \(-0.484443\pi\)
0.0488532 + 0.998806i \(0.484443\pi\)
\(420\) −3.23607 + 2.35114i −0.157904 + 0.114724i
\(421\) 4.01722 + 12.3637i 0.195787 + 0.602572i 0.999967 + 0.00818455i \(0.00260525\pi\)
−0.804179 + 0.594387i \(0.797395\pi\)
\(422\) 3.70820 11.4127i 0.180513 0.555560i
\(423\) −1.61803 1.17557i −0.0786715 0.0571582i
\(424\) 21.8435 + 15.8702i 1.06081 + 0.770725i
\(425\) 6.18034 19.0211i 0.299791 0.922660i
\(426\) 7.41641 + 22.8254i 0.359326 + 1.10589i
\(427\) 9.70820 7.05342i 0.469813 0.341339i
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) −9.70820 + 7.05342i −0.467628 + 0.339751i −0.796516 0.604617i \(-0.793326\pi\)
0.328888 + 0.944369i \(0.393326\pi\)
\(432\) 1.23607 + 3.80423i 0.0594703 + 0.183031i
\(433\) 5.87132 18.0701i 0.282158 0.868392i −0.705078 0.709129i \(-0.749088\pi\)
0.987236 0.159263i \(-0.0509118\pi\)
\(434\) −3.23607 2.35114i −0.155336 0.112858i
\(435\) −14.5623 10.5801i −0.698209 0.507279i
\(436\) 3.39919 10.4616i 0.162792 0.501021i
\(437\) 3.70820 + 11.4127i 0.177387 + 0.545942i
\(438\) 3.23607 2.35114i 0.154625 0.112342i
\(439\) 22.0000 1.05000 0.525001 0.851101i \(-0.324065\pi\)
0.525001 + 0.851101i \(0.324065\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 4.04508 2.93893i 0.192405 0.139790i
\(443\) −6.18034 19.0211i −0.293637 0.903721i −0.983676 0.179949i \(-0.942407\pi\)
0.690039 0.723772i \(-0.257593\pi\)
\(444\) 1.85410 5.70634i 0.0879918 0.270811i
\(445\) 7.28115 + 5.29007i 0.345160 + 0.250773i
\(446\) 16.1803 + 11.7557i 0.766161 + 0.556649i
\(447\) 10.5066 32.3359i 0.496944 1.52944i
\(448\) −4.32624 13.3148i −0.204396 0.629065i
\(449\) 10.5172 7.64121i 0.496338 0.360611i −0.311278 0.950319i \(-0.600757\pi\)
0.807617 + 0.589708i \(0.200757\pi\)
\(450\) −4.00000 −0.188562
\(451\) 0 0
\(452\) 9.00000 0.423324
\(453\) 25.8885 18.8091i 1.21635 0.883730i
\(454\) −7.41641 22.8254i −0.348069 1.07125i
\(455\) −0.618034 + 1.90211i −0.0289739 + 0.0891724i
\(456\) 29.1246 + 21.1603i 1.36388 + 0.990920i
\(457\) −31.5517 22.9236i −1.47592 1.07232i −0.978842 0.204619i \(-0.934405\pi\)
−0.497083 0.867703i \(-0.665595\pi\)
\(458\) 2.78115 8.55951i 0.129955 0.399960i
\(459\) 6.18034 + 19.0211i 0.288474 + 0.887830i
\(460\) 1.61803 1.17557i 0.0754412 0.0548113i
\(461\) 33.0000 1.53696 0.768482 0.639872i \(-0.221013\pi\)
0.768482 + 0.639872i \(0.221013\pi\)
\(462\) 0 0
\(463\) −20.0000 −0.929479 −0.464739 0.885448i \(-0.653852\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 7.28115 5.29007i 0.338019 0.245585i
\(465\) −1.23607 3.80423i −0.0573213 0.176417i
\(466\) −6.48936 + 19.9722i −0.300614 + 0.925194i
\(467\) −9.70820 7.05342i −0.449242 0.326393i 0.340054 0.940406i \(-0.389555\pi\)
−0.789296 + 0.614012i \(0.789555\pi\)
\(468\) 0.809017 + 0.587785i 0.0373968 + 0.0271704i
\(469\) −1.23607 + 3.80423i −0.0570763 + 0.175663i
\(470\) 0.618034 + 1.90211i 0.0285078 + 0.0877379i
\(471\) −3.23607 + 2.35114i −0.149110 + 0.108335i
\(472\) −24.0000 −1.10469
\(473\) 0 0
\(474\) −20.0000 −0.918630
\(475\) 19.4164 14.1068i 0.890886 0.647266i
\(476\) −3.09017 9.51057i −0.141638 0.435916i
\(477\) 2.78115 8.55951i 0.127340 0.391913i
\(478\) −4.85410 3.52671i −0.222021 0.161308i
\(479\) 12.9443 + 9.40456i 0.591439 + 0.429705i 0.842830 0.538180i \(-0.180888\pi\)
−0.251391 + 0.967886i \(0.580888\pi\)
\(480\) 3.09017 9.51057i 0.141046 0.434096i
\(481\) −0.927051 2.85317i −0.0422699 0.130093i
\(482\) −17.7984 + 12.9313i −0.810694 + 0.589003i
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) −13.0000 −0.590300
\(486\) 8.09017 5.87785i 0.366978 0.266625i
\(487\) 0.618034 + 1.90211i 0.0280058 + 0.0861930i 0.964082 0.265603i \(-0.0855711\pi\)
−0.936077 + 0.351796i \(0.885571\pi\)
\(488\) −5.56231 + 17.1190i −0.251794 + 0.774942i
\(489\) 3.23607 + 2.35114i 0.146340 + 0.106322i
\(490\) 2.42705 + 1.76336i 0.109643 + 0.0796603i
\(491\) −0.618034 + 1.90211i −0.0278915 + 0.0858412i −0.964033 0.265782i \(-0.914370\pi\)
0.936142 + 0.351623i \(0.114370\pi\)
\(492\) 3.09017 + 9.51057i 0.139316 + 0.428769i
\(493\) 36.4058 26.4503i 1.63963 1.19126i
\(494\) 6.00000 0.269953
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) 19.4164 14.1068i 0.870945 0.632779i
\(498\) 3.70820 + 11.4127i 0.166169 + 0.511414i
\(499\) 2.47214 7.60845i 0.110668 0.340601i −0.880351 0.474323i \(-0.842693\pi\)
0.991019 + 0.133722i \(0.0426929\pi\)
\(500\) −7.28115 5.29007i −0.325623 0.236579i
\(501\) −19.4164 14.1068i −0.867461 0.630247i
\(502\) −0.618034 + 1.90211i −0.0275842 + 0.0848955i
\(503\) −11.7426 36.1401i −0.523579 1.61141i −0.767109 0.641516i \(-0.778306\pi\)
0.243531 0.969893i \(-0.421694\pi\)
\(504\) −4.85410 + 3.52671i −0.216219 + 0.157092i
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) −24.0000 −1.06588
\(508\) −12.9443 + 9.40456i −0.574309 + 0.417260i
\(509\) −12.9787 39.9444i −0.575271 1.77050i −0.635253 0.772304i \(-0.719104\pi\)
0.0599820 0.998199i \(-0.480896\pi\)
\(510\) −3.09017 + 9.51057i −0.136835 + 0.421135i
\(511\) −3.23607 2.35114i −0.143155 0.104008i
\(512\) 8.89919 + 6.46564i 0.393292 + 0.285744i
\(513\) −7.41641 + 22.8254i −0.327442 + 1.00776i
\(514\) 5.87132 + 18.0701i 0.258973 + 0.797037i
\(515\) −6.47214 + 4.70228i −0.285196 + 0.207207i
\(516\) 0 0
\(517\) 0 0
\(518\) 6.00000 0.263625
\(519\) −9.70820 + 7.05342i −0.426143 + 0.309611i
\(520\) −0.927051 2.85317i −0.0406539 0.125120i
\(521\) 9.27051 28.5317i 0.406148 1.25000i −0.513784 0.857920i \(-0.671757\pi\)
0.919933 0.392077i \(-0.128243\pi\)
\(522\) −7.28115 5.29007i −0.318687 0.231540i
\(523\) 12.9443 + 9.40456i 0.566013 + 0.411233i 0.833655 0.552286i \(-0.186244\pi\)
−0.267641 + 0.963519i \(0.586244\pi\)
\(524\) 0 0
\(525\) 4.94427 + 15.2169i 0.215786 + 0.664120i
\(526\) 17.7984 12.9313i 0.776046 0.563830i
\(527\) 10.0000 0.435607
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) −7.28115 + 5.29007i −0.316273 + 0.229786i
\(531\) 2.47214 + 7.60845i 0.107282 + 0.330179i
\(532\) 3.70820 11.4127i 0.160771 0.494802i
\(533\) 4.04508 + 2.93893i 0.175212 + 0.127299i
\(534\) 14.5623 + 10.5801i 0.630173 + 0.457847i
\(535\) 1.85410 5.70634i 0.0801598 0.246707i
\(536\) −1.85410 5.70634i −0.0800850 0.246476i
\(537\) −38.8328 + 28.2137i −1.67576 + 1.21751i
\(538\) 1.00000 0.0431131
\(539\) 0 0
\(540\) 4.00000 0.172133
\(541\) −27.5066 + 19.9847i −1.18260 + 0.859209i −0.992463 0.122548i \(-0.960893\pi\)
−0.190138 + 0.981757i \(0.560893\pi\)
\(542\) 6.18034 + 19.0211i 0.265468 + 0.817028i
\(543\) 0.618034 1.90211i 0.0265224 0.0816275i
\(544\) 20.2254 + 14.6946i 0.867158 + 0.630027i
\(545\) 8.89919 + 6.46564i 0.381199 + 0.276957i
\(546\) −1.23607 + 3.80423i −0.0528988 + 0.162806i
\(547\) −4.94427 15.2169i −0.211402 0.650628i −0.999390 0.0349369i \(-0.988877\pi\)
0.787988 0.615691i \(-0.211123\pi\)
\(548\) −8.09017 + 5.87785i −0.345595 + 0.251089i
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) 54.0000 2.30048
\(552\) 9.70820 7.05342i 0.413209 0.300214i
\(553\) 6.18034 + 19.0211i 0.262815 + 0.808861i
\(554\) 0.309017 0.951057i 0.0131289 0.0404065i
\(555\) 4.85410 + 3.52671i 0.206045 + 0.149701i
\(556\) −1.61803 1.17557i −0.0686199 0.0498553i
\(557\) −0.618034 + 1.90211i −0.0261869 + 0.0805951i −0.963296 0.268442i \(-0.913491\pi\)
0.937109 + 0.349037i \(0.113491\pi\)
\(558\) −0.618034 1.90211i −0.0261635 0.0805229i
\(559\) 0 0
\(560\) 2.00000 0.0845154
\(561\) 0 0
\(562\) 6.00000 0.253095
\(563\) −27.5066 + 19.9847i −1.15926 + 0.842255i −0.989685 0.143262i \(-0.954241\pi\)
−0.169579 + 0.985517i \(0.554241\pi\)
\(564\) −1.23607 3.80423i −0.0520479 0.160187i
\(565\) −2.78115 + 8.55951i −0.117004 + 0.360101i
\(566\) −22.6525 16.4580i −0.952155 0.691781i
\(567\) −17.7984 12.9313i −0.747461 0.543063i
\(568\) −11.1246 + 34.2380i −0.466778 + 1.43660i
\(569\) 1.85410 + 5.70634i 0.0777280 + 0.239222i 0.982369 0.186952i \(-0.0598610\pi\)
−0.904641 + 0.426174i \(0.859861\pi\)
\(570\) −9.70820 + 7.05342i −0.406632 + 0.295435i
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) −8.09017 + 5.87785i −0.337677 + 0.245337i
\(575\) −2.47214 7.60845i −0.103095 0.317294i
\(576\) 2.16312 6.65740i 0.0901300 0.277391i
\(577\) 16.9894 + 12.3435i 0.707276 + 0.513866i 0.882294 0.470699i \(-0.155998\pi\)
−0.175018 + 0.984565i \(0.555998\pi\)
\(578\) −6.47214 4.70228i −0.269205 0.195589i
\(579\) −3.09017 + 9.51057i −0.128423 + 0.395246i
\(580\) −2.78115 8.55951i −0.115481 0.355414i
\(581\) 9.70820 7.05342i 0.402764 0.292625i
\(582\) −26.0000 −1.07773
\(583\) 0 0
\(584\) 6.00000 0.248282
\(585\) −0.809017 + 0.587785i −0.0334487 + 0.0243019i
\(586\) 2.78115 + 8.55951i 0.114888 + 0.353590i
\(587\) −4.32624 + 13.3148i −0.178563 + 0.549560i −0.999778 0.0210582i \(-0.993296\pi\)
0.821215 + 0.570618i \(0.193296\pi\)
\(588\) −4.85410 3.52671i −0.200180 0.145439i
\(589\) 9.70820 + 7.05342i 0.400020 + 0.290631i
\(590\) 2.47214 7.60845i 0.101776 0.313235i
\(591\) −6.79837 20.9232i −0.279648 0.860667i
\(592\) −2.42705 + 1.76336i −0.0997512 + 0.0724735i
\(593\) 11.0000 0.451716 0.225858 0.974160i \(-0.427481\pi\)
0.225858 + 0.974160i \(0.427481\pi\)
\(594\) 0 0
\(595\) 10.0000 0.409960
\(596\) 13.7533 9.99235i 0.563357 0.409303i
\(597\) 14.8328 + 45.6507i 0.607067 + 1.86836i
\(598\) 0.618034 1.90211i 0.0252733 0.0777832i
\(599\) −27.5066 19.9847i −1.12389 0.816553i −0.139094 0.990279i \(-0.544419\pi\)
−0.984794 + 0.173726i \(0.944419\pi\)
\(600\) −19.4164 14.1068i −0.792672 0.575910i
\(601\) −4.01722 + 12.3637i −0.163866 + 0.504327i −0.998951 0.0457936i \(-0.985418\pi\)
0.835085 + 0.550121i \(0.185418\pi\)
\(602\) 0 0
\(603\) −1.61803 + 1.17557i −0.0658914 + 0.0478729i
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) −20.0000 −0.812444
\(607\) 8.09017 5.87785i 0.328370 0.238575i −0.411369 0.911469i \(-0.634949\pi\)
0.739739 + 0.672894i \(0.234949\pi\)
\(608\) 9.27051 + 28.5317i 0.375969 + 1.15711i
\(609\) −11.1246 + 34.2380i −0.450792 + 1.38740i
\(610\) −4.85410 3.52671i −0.196537 0.142792i
\(611\) −1.61803 1.17557i −0.0654586 0.0475585i
\(612\) 1.54508 4.75528i 0.0624564 0.192221i
\(613\) 5.25329 + 16.1680i 0.212178 + 0.653018i 0.999342 + 0.0362735i \(0.0115487\pi\)
−0.787164 + 0.616744i \(0.788451\pi\)
\(614\) 17.7984 12.9313i 0.718284 0.521864i
\(615\) −10.0000 −0.403239
\(616\) 0 0
\(617\) −9.00000 −0.362326 −0.181163 0.983453i \(-0.557986\pi\)
−0.181163 + 0.983453i \(0.557986\pi\)
\(618\) −12.9443 + 9.40456i −0.520695 + 0.378307i
\(619\) 0.618034 + 1.90211i 0.0248409 + 0.0764524i 0.962708 0.270541i \(-0.0872026\pi\)
−0.937868 + 0.346993i \(0.887203\pi\)
\(620\) 0.618034 1.90211i 0.0248208 0.0763907i
\(621\) 6.47214 + 4.70228i 0.259718 + 0.188696i
\(622\) −19.4164 14.1068i −0.778527 0.565633i
\(623\) 5.56231 17.1190i 0.222849 0.685859i
\(624\) −0.618034 1.90211i −0.0247412 0.0761455i
\(625\) −8.89919 + 6.46564i −0.355967 + 0.258626i
\(626\) 23.0000 0.919265
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) −12.1353 + 8.81678i −0.483864 + 0.351548i
\(630\) −0.618034 1.90211i −0.0246231 0.0757820i
\(631\) −4.32624 + 13.3148i −0.172225 + 0.530053i −0.999496 0.0317495i \(-0.989892\pi\)
0.827271 + 0.561803i \(0.189892\pi\)
\(632\) −24.2705 17.6336i −0.965429 0.701425i
\(633\) −19.4164 14.1068i −0.771733 0.560697i
\(634\) −0.618034 + 1.90211i −0.0245453 + 0.0755426i
\(635\) −4.94427 15.2169i −0.196207 0.603864i
\(636\) 14.5623 10.5801i 0.577433 0.419530i
\(637\) −3.00000 −0.118864
\(638\) 0 0
\(639\) 12.0000 0.474713
\(640\) 2.42705 1.76336i 0.0959376 0.0697028i
\(641\) −2.78115 8.55951i −0.109849 0.338080i 0.880989 0.473137i \(-0.156878\pi\)
−0.990838 + 0.135057i \(0.956878\pi\)
\(642\) 3.70820 11.4127i 0.146351 0.450422i
\(643\) 8.09017 + 5.87785i 0.319045 + 0.231800i 0.735768 0.677234i \(-0.236821\pi\)
−0.416723 + 0.909034i \(0.636821\pi\)
\(644\) −3.23607 2.35114i −0.127519 0.0926479i
\(645\) 0 0
\(646\) −9.27051 28.5317i −0.364743 1.12256i
\(647\) −16.1803 + 11.7557i −0.636115 + 0.462164i −0.858513 0.512791i \(-0.828611\pi\)
0.222398 + 0.974956i \(0.428611\pi\)
\(648\) 33.0000 1.29636
\(649\) 0 0
\(650\) −4.00000 −0.156893
\(651\) −6.47214 + 4.70228i −0.253663 + 0.184297i
\(652\) 0.618034 + 1.90211i 0.0242041 + 0.0744925i
\(653\) −4.32624 + 13.3148i −0.169299 + 0.521048i −0.999327 0.0366729i \(-0.988324\pi\)
0.830029 + 0.557721i \(0.188324\pi\)
\(654\) 17.7984 + 12.9313i 0.695971 + 0.505653i
\(655\) 0 0
\(656\) 1.54508 4.75528i 0.0603254 0.185663i
\(657\) −0.618034 1.90211i −0.0241118 0.0742085i
\(658\) 3.23607 2.35114i 0.126155 0.0916570i
\(659\) 22.0000 0.856998 0.428499 0.903542i \(-0.359042\pi\)
0.428499 + 0.903542i \(0.359042\pi\)
\(660\) 0 0
\(661\) 13.0000 0.505641 0.252821 0.967513i \(-0.418642\pi\)
0.252821 + 0.967513i \(0.418642\pi\)
\(662\) 16.1803 11.7557i 0.628867 0.456898i
\(663\) −3.09017 9.51057i −0.120012 0.369360i
\(664\) −5.56231 + 17.1190i −0.215859 + 0.664347i
\(665\) 9.70820 + 7.05342i 0.376468 + 0.273520i
\(666\) 2.42705 + 1.76336i 0.0940463 + 0.0683286i
\(667\) 5.56231 17.1190i 0.215373 0.662851i
\(668\) −3.70820 11.4127i −0.143475 0.441570i
\(669\) 32.3607 23.5114i 1.25114 0.909004i
\(670\) 2.00000 0.0772667
\(671\) 0 0
\(672\) −20.0000 −0.771517
\(673\) 8.09017 5.87785i 0.311853 0.226575i −0.420838 0.907136i \(-0.638264\pi\)
0.732691 + 0.680561i \(0.238264\pi\)
\(674\) −4.01722 12.3637i −0.154738 0.476233i
\(675\) 4.94427 15.2169i 0.190305 0.585699i
\(676\) −9.70820 7.05342i −0.373392 0.271286i
\(677\) 21.8435 + 15.8702i 0.839512 + 0.609941i 0.922234 0.386631i \(-0.126361\pi\)
−0.0827221 + 0.996573i \(0.526361\pi\)
\(678\) −5.56231 + 17.1190i −0.213619 + 0.657452i
\(679\) 8.03444 + 24.7275i 0.308334 + 0.948953i
\(680\) −12.1353 + 8.81678i −0.465366 + 0.338108i
\(681\) −48.0000 −1.83936
\(682\) 0 0
\(683\) 2.00000 0.0765279 0.0382639 0.999268i \(-0.487817\pi\)
0.0382639 + 0.999268i \(0.487817\pi\)
\(684\) 4.85410 3.52671i 0.185601 0.134847i
\(685\) −3.09017 9.51057i −0.118069 0.363380i
\(686\) 6.18034 19.0211i 0.235966 0.726230i
\(687\) −14.5623 10.5801i −0.555587 0.403657i
\(688\) 0 0
\(689\) 2.78115 8.55951i 0.105953 0.326091i
\(690\) 1.23607 + 3.80423i 0.0470563 + 0.144824i
\(691\) −16.1803 + 11.7557i −0.615529 + 0.447208i −0.851357 0.524587i \(-0.824220\pi\)
0.235828 + 0.971795i \(0.424220\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) 28.0000 1.06287
\(695\) 1.61803 1.17557i 0.0613755 0.0445919i
\(696\) −16.6869 51.3571i −0.632516 1.94668i
\(697\) 7.72542 23.7764i 0.292621 0.900596i
\(698\) 21.8435 + 15.8702i 0.826787 + 0.600696i
\(699\) 33.9787 + 24.6870i 1.28519 + 0.933747i
\(700\) −2.47214 + 7.60845i −0.0934380 + 0.287572i
\(701\) 5.25329 + 16.1680i 0.198414 + 0.610655i 0.999920 + 0.0126684i \(0.00403259\pi\)
−0.801506 + 0.597987i \(0.795967\pi\)
\(702\) 3.23607 2.35114i 0.122138 0.0887381i
\(703\) −18.0000 −0.678883
\(704\) 0 0
\(705\) 4.00000 0.150649
\(706\) 7.28115 5.29007i 0.274030 0.199094i
\(707\) 6.18034 + 19.0211i 0.232436 + 0.715363i
\(708\) −4.94427 + 15.2169i −0.185817 + 0.571886i
\(709\) 8.09017 + 5.87785i 0.303833 + 0.220747i 0.729246 0.684252i \(-0.239871\pi\)
−0.425413 + 0.904999i \(0.639871\pi\)
\(710\) −9.70820 7.05342i −0.364342 0.264710i
\(711\) −3.09017 + 9.51057i −0.115890 + 0.356674i
\(712\) 8.34346 + 25.6785i 0.312684 + 0.962343i
\(713\) 3.23607 2.35114i 0.121192 0.0880509i
\(714\) 20.0000 0.748481
\(715\) 0 0
\(716\) −24.0000 −0.896922
\(717\) −9.70820 + 7.05342i −0.362560 + 0.263415i
\(718\) −0.618034 1.90211i −0.0230648 0.0709862i
\(719\) 9.27051 28.5317i 0.345732 1.06405i −0.615459 0.788169i \(-0.711029\pi\)
0.961191 0.275884i \(-0.0889706\pi\)
\(720\) 0.809017 + 0.587785i 0.0301503 + 0.0219055i
\(721\) 12.9443 + 9.40456i 0.482070 + 0.350244i
\(722\) 5.25329 16.1680i 0.195507 0.601709i
\(723\) 13.5967 + 41.8465i 0.505668 + 1.55629i
\(724\) 0.809017 0.587785i 0.0300669 0.0218449i
\(725\) −36.0000 −1.33701
\(726\) 0 0
\(727\) −42.0000 −1.55769 −0.778847 0.627214i \(-0.784195\pi\)
−0.778847 + 0.627214i \(0.784195\pi\)
\(728\) −4.85410 + 3.52671i −0.179905 + 0.130709i
\(729\) 4.01722 + 12.3637i 0.148786 + 0.457916i
\(730\) −0.618034 + 1.90211i −0.0228745 + 0.0704004i
\(731\) 0 0
\(732\) 9.70820 + 7.05342i 0.358826 + 0.260702i
\(733\) 2.78115 8.55951i 0.102724 0.316153i −0.886465 0.462795i \(-0.846847\pi\)
0.989190 + 0.146642i \(0.0468466\pi\)
\(734\) −4.32624 13.3148i −0.159684 0.491458i
\(735\) 4.85410 3.52671i 0.179046 0.130085i
\(736\) 10.0000 0.368605
\(737\) 0 0
\(738\) −5.00000 −0.184053
\(739\) 8.09017 5.87785i 0.297602 0.216220i −0.428957 0.903325i \(-0.641119\pi\)
0.726558 + 0.687105i \(0.241119\pi\)
\(740\) 0.927051 + 2.85317i 0.0340791 + 0.104885i
\(741\) 3.70820 11.4127i 0.136224 0.419255i
\(742\) 14.5623 + 10.5801i 0.534599 + 0.388409i
\(743\) 30.7426 + 22.3358i 1.12784 + 0.819422i 0.985379 0.170378i \(-0.0544989\pi\)
0.142460 + 0.989801i \(0.454499\pi\)
\(744\) 3.70820 11.4127i 0.135949 0.418409i
\(745\) 5.25329 + 16.1680i 0.192466 + 0.592348i
\(746\) −17.7984 + 12.9313i −0.651645 + 0.473448i
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 14.5623 10.5801i 0.531740 0.386332i
\(751\) −6.18034 19.0211i −0.225524 0.694091i −0.998238 0.0593368i \(-0.981101\pi\)
0.772714 0.634754i \(-0.218899\pi\)
\(752\) −0.618034 + 1.90211i −0.0225374 + 0.0693629i
\(753\) 3.23607 + 2.35114i 0.117929 + 0.0856803i
\(754\) −7.28115 5.29007i −0.265164 0.192653i
\(755\) −4.94427 + 15.2169i −0.179940 + 0.553800i
\(756\) −2.47214 7.60845i −0.0899107 0.276717i
\(757\) −42.8779 + 31.1526i −1.55842 + 1.13226i −0.621137 + 0.783702i \(0.713329\pi\)
−0.937287 + 0.348559i \(0.886671\pi\)
\(758\) −32.0000 −1.16229
\(759\) 0 0
\(760\) −18.0000 −0.652929
\(761\) 16.9894 12.3435i 0.615864 0.447451i −0.235611 0.971848i \(-0.575709\pi\)
0.851474 + 0.524396i \(0.175709\pi\)
\(762\) −9.88854 30.4338i −0.358224 1.10250i
\(763\) 6.79837 20.9232i 0.246118 0.757472i
\(764\) 6.47214 + 4.70228i 0.234154 + 0.170123i
\(765\) 4.04508 + 2.93893i 0.146250 + 0.106257i
\(766\) 6.18034 19.0211i 0.223305 0.687261i
\(767\) 2.47214 + 7.60845i 0.0892637 + 0.274725i
\(768\) 27.5066 19.9847i 0.992558 0.721136i
\(769\) 11.0000 0.396670 0.198335 0.980134i \(-0.436447\pi\)
0.198335 + 0.980134i \(0.436447\pi\)
\(770\) 0 0
\(771\) 38.0000 1.36854
\(772\) −4.04508 + 2.93893i −0.145586 + 0.105774i
\(773\) −12.9787 39.9444i −0.466812 1.43670i −0.856689 0.515833i \(-0.827483\pi\)
0.389878 0.920867i \(-0.372517\pi\)
\(774\) 0 0
\(775\) −6.47214 4.70228i −0.232486 0.168911i
\(776\) −31.5517 22.9236i −1.13264 0.822910i
\(777\) 3.70820 11.4127i 0.133031 0.409428i
\(778\) −0.927051 2.85317i −0.0332364 0.102291i
\(779\) 24.2705 17.6336i 0.869581 0.631788i
\(780\) −2.00000 −0.0716115
\(781\) 0 0
\(782\) −10.0000 −0.357599
\(783\) 29.1246 21.1603i 1.04083 0.756206i
\(784\) 0.927051 + 2.85317i 0.0331090 + 0.101899i
\(785\) 0.618034 1.90211i 0.0220586 0.0678893i
\(786\) 0 0
\(787\) −22.6525 16.4580i −0.807474 0.586664i 0.105623 0.994406i \(-0.466316\pi\)
−0.913097 + 0.407742i \(0.866316\pi\)
\(788\) 3.39919 10.4616i 0.121091 0.372680i
\(789\) −13.5967 41.8465i −0.484057 1.48977i
\(790\) 8.09017 5.87785i 0.287835 0.209125i
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) 6.00000 0.213066
\(794\) −10.5172 + 7.64121i −0.373242 + 0.271176i
\(795\) 5.56231 + 17.1190i 0.197275 + 0.607149i
\(796\) −7.41641 + 22.8254i −0.262868 + 0.809023i
\(797\) 8.09017 + 5.87785i 0.286569 + 0.208204i 0.721777 0.692125i \(-0.243325\pi\)
−0.435209 + 0.900330i \(0.643325\pi\)
\(798\) 19.4164 + 14.1068i 0.687333 + 0.499377i
\(799\) −3.09017 + 9.51057i −0.109322 + 0.336460i
\(800\) −6.18034 19.0211i −0.218508 0.672499i
\(801\) 7.28115 5.29007i 0.257267 0.186915i
\(802\) 23.0000 0.812158
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) 3.23607 2.35114i 0.114056 0.0828668i
\(806\) −0.618034 1.90211i −0.0217693 0.0669991i
\(807\) 0.618034 1.90211i 0.0217558 0.0669575i
\(808\) −24.2705 17.6336i −0.853834 0.620346i
\(809\) −4.85410 3.52671i −0.170661 0.123993i 0.499176 0.866501i \(-0.333636\pi\)
−0.669837 + 0.742508i \(0.733636\pi\)
\(810\) −3.39919 + 10.4616i −0.119435 + 0.367584i
\(811\) 8.65248 + 26.6296i 0.303830 + 0.935091i 0.980111 + 0.198448i \(0.0635901\pi\)
−0.676282 + 0.736643i \(0.736410\pi\)
\(812\) −14.5623 + 10.5801i −0.511037 + 0.371290i
\(813\) 40.0000 1.40286
\(814\) 0 0
\(815\) −2.00000 −0.0700569
\(816\) −8.09017 + 5.87785i −0.283213 + 0.205766i
\(817\) 0 0
\(818\) −6.48936 + 19.9722i −0.226895 + 0.698311i
\(819\) 1.61803 + 1.17557i 0.0565387 + 0.0410778i
\(820\) −4.04508 2.93893i −0.141260 0.102632i
\(821\) −0.618034 + 1.90211i −0.0215695 + 0.0663842i −0.961262 0.275637i \(-0.911111\pi\)
0.939692 + 0.342021i \(0.111111\pi\)
\(822\) −6.18034 19.0211i −0.215564 0.663438i
\(823\) 19.4164 14.1068i 0.676813 0.491734i −0.195486 0.980707i \(-0.562628\pi\)
0.872299 + 0.488973i \(0.162628\pi\)
\(824\) −24.0000 −0.836080
\(825\) 0 0
\(826\) −16.0000 −0.556711
\(827\) 8.09017 5.87785i 0.281323 0.204393i −0.438171 0.898891i \(-0.644374\pi\)
0.719494 + 0.694498i \(0.244374\pi\)
\(828\) −0.618034 1.90211i −0.0214782 0.0661030i
\(829\) −14.5238 + 44.6997i −0.504432 + 1.55248i 0.297290 + 0.954787i \(0.403917\pi\)
−0.801723 + 0.597696i \(0.796083\pi\)
\(830\) −4.85410 3.52671i −0.168488 0.122414i
\(831\) −1.61803 1.17557i −0.0561290 0.0407801i
\(832\) 2.16312 6.65740i 0.0749927 0.230804i
\(833\) 4.63525 + 14.2658i 0.160602 + 0.494282i
\(834\) 3.23607 2.35114i 0.112056 0.0814134i
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) −1.61803 + 1.17557i −0.0558941 + 0.0406094i
\(839\) 14.2148 + 43.7486i 0.490749 + 1.51037i 0.823479 + 0.567347i \(0.192030\pi\)
−0.332730 + 0.943022i \(0.607970\pi\)
\(840\) 3.70820 11.4127i 0.127945 0.393775i
\(841\) −42.0689 30.5648i −1.45065 1.05396i
\(842\) −10.5172 7.64121i −0.362447 0.263333i
\(843\) 3.70820 11.4127i 0.127717 0.393074i
\(844\) −3.70820 11.4127i −0.127642 0.392841i
\(845\) 9.70820 7.05342i 0.333972 0.242645i
\(846\) 2.00000 0.0687614
\(847\) 0 0
\(848\) −9.00000 −0.309061
\(849\) −45.3050 + 32.9160i −1.55486 + 1.12967i
\(850\) 6.18034 + 19.0211i 0.211984 + 0.652419i
\(851\) −1.85410 + 5.70634i −0.0635578 + 0.195611i
\(852\) 19.4164 + 14.1068i 0.665195 + 0.483293i
\(853\) −13.7533 9.99235i −0.470904 0.342132i 0.326890 0.945062i \(-0.393999\pi\)
−0.797793 + 0.602931i \(0.793999\pi\)
\(854\) −3.70820 + 11.4127i −0.126892 + 0.390534i
\(855\) 1.85410 + 5.70634i 0.0634089 + 0.195153i
\(856\) 14.5623 10.5801i 0.497729 0.361622i
\(857\) −22.0000 −0.751506 −0.375753 0.926720i \(-0.622616\pi\)
−0.375753 + 0.926720i \(0.622616\pi\)
\(858\) 0 0
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 0 0
\(861\) 6.18034 + 19.0211i 0.210625 + 0.648238i
\(862\) 3.70820 11.4127i 0.126302 0.388717i
\(863\) 43.6869 + 31.7404i 1.48712 + 1.08046i 0.975174 + 0.221438i \(0.0710750\pi\)
0.511946 + 0.859018i \(0.328925\pi\)
\(864\) 16.1803 + 11.7557i 0.550466 + 0.399937i
\(865\) 1.85410 5.70634i 0.0630414 0.194021i
\(866\) 5.87132 + 18.0701i 0.199516 + 0.614046i
\(867\) −12.9443 + 9.40456i −0.439611 + 0.319396i
\(868\) −4.00000 −0.135769
\(869\) 0 0
\(870\) 18.0000 0.610257
\(871\) −1.61803 + 1.17557i −0.0548250 + 0.0398327i
\(872\) 10.1976 + 31.3849i 0.345333 + 1.06283i
\(873\) −4.01722 + 12.3637i −0.135962 + 0.418449i
\(874\) −9.70820 7.05342i −0.328385 0.238586i
\(875\) −14.5623 10.5801i −0.492296 0.357674i
\(876\) 1.23607 3.80423i 0.0417629 0.128533i
\(877\) −8.34346 25.6785i −0.281739 0.867102i −0.987357 0.158510i \(-0.949331\pi\)
0.705619 0.708592i \(-0.250669\pi\)
\(878\) −17.7984 + 12.9313i −0.600666 + 0.436409i
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) 35.0000 1.17918 0.589590 0.807703i \(-0.299289\pi\)
0.589590 + 0.807703i \(0.299289\pi\)
\(882\) 2.42705 1.76336i 0.0817231 0.0593753i
\(883\) −6.18034 19.0211i −0.207985 0.640112i −0.999578 0.0290628i \(-0.990748\pi\)
0.791593 0.611049i \(-0.209252\pi\)
\(884\) 1.54508 4.75528i 0.0519668 0.159937i
\(885\) −12.9443 9.40456i −0.435117 0.316131i
\(886\) 16.1803 + 11.7557i 0.543589 + 0.394941i
\(887\) −14.2148 + 43.7486i −0.477286 + 1.46893i 0.365565 + 0.930786i \(0.380876\pi\)
−0.842850 + 0.538148i \(0.819124\pi\)
\(888\) 5.56231 + 17.1190i 0.186659 + 0.574477i
\(889\) −25.8885 + 18.8091i −0.868274 + 0.630838i
\(890\) −9.00000 −0.301681
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) −9.70820 + 7.05342i −0.324873 + 0.236034i
\(894\) 10.5066 + 32.3359i 0.351393 + 1.08147i
\(895\) 7.41641 22.8254i 0.247903 0.762968i
\(896\) −4.85410 3.52671i −0.162164 0.117819i
\(897\) −3.23607 2.35114i −0.108049 0.0785023i
\(898\) −4.01722 + 12.3637i −0.134056 + 0.412583i
\(899\) −5.56231 17.1190i −0.185513 0.570951i
\(900\) −3.23607 + 2.35114i −0.107869 + 0.0783714i
\(901\) −45.0000 −1.49917
\(902\) 0 0
\(903\) 0 0
\(904\) −21.8435 + 15.8702i −0.726503 + 0.527835i
\(905\) 0.309017 + 0.951057i 0.0102721 + 0.0316142i
\(906\) −9.88854 + 30.4338i −0.328525 + 1.01110i
\(907\) −9.70820 7.05342i −0.322356 0.234205i 0.414824 0.909902i \(-0.363843\pi\)
−0.737180 + 0.675696i \(0.763843\pi\)
\(908\) −19.4164 14.1068i −0.644356 0.468152i
\(909\) −3.09017 + 9.51057i −0.102494 + 0.315446i
\(910\) −0.618034 1.90211i −0.0204876 0.0630544i
\(911\) 19.4164 14.1068i 0.643294 0.467381i −0.217686 0.976019i \(-0.569851\pi\)
0.860980 + 0.508638i \(0.169851\pi\)
\(912\) −12.0000 −0.397360
\(913\) 0 0
\(914\) 39.0000 1.29001
\(915\) −9.70820 + 7.05342i −0.320943 + 0.233179i
\(916\) −2.78115 8.55951i −0.0918919 0.282814i
\(917\) 0 0
\(918\) −16.1803 11.7557i −0.534031 0.387996i
\(919\) −22.6525 16.4580i −0.747236 0.542899i 0.147733 0.989027i \(-0.452802\pi\)
−0.894969 + 0.446128i \(0.852802\pi\)
\(920\) −1.85410 + 5.70634i −0.0611279 + 0.188132i
\(921\) −13.5967 41.8465i −0.448028 1.37889i
\(922\) −26.6976 + 19.3969i −0.879237 + 0.638803i
\(923\) 12.0000 0.394985
\(924\) 0 0
\(925\) 12.0000 0.394558
\(926\) 16.1803 11.7557i 0.531719 0.386316i
\(927\) 2.47214 + 7.60845i 0.0811956 + 0.249894i
\(928\) 13.9058 42.7975i 0.456479 1.40490i
\(929\) 16.9894 + 12.3435i 0.557403 + 0.404977i 0.830507 0.557008i \(-0.188051\pi\)
−0.273105 + 0.961984i \(0.588051\pi\)
\(930\) 3.23607 + 2.35114i 0.106115 + 0.0770970i
\(931\) −5.56231 + 17.1190i −0.182297 + 0.561053i
\(932\) 6.48936 + 19.9722i 0.212566 + 0.654211i
\(933\) −38.8328 + 28.2137i −1.27133 + 0.923675i
\(934\) 12.0000 0.392652
\(935\) 0 0
\(936\) −3.00000 −0.0980581
\(937\) −18.6074 + 13.5191i −0.607877 + 0.441648i −0.848666 0.528929i \(-0.822594\pi\)
0.240789 + 0.970577i \(0.422594\pi\)
\(938\) −1.23607 3.80423i −0.0403591 0.124212i
\(939\) 14.2148 43.7486i 0.463882 1.42768i
\(940\) 1.61803 + 1.17557i 0.0527744 + 0.0383429i
\(941\) 21.8435 + 15.8702i 0.712076 + 0.517354i 0.883843 0.467784i \(-0.154947\pi\)
−0.171766 + 0.985138i \(0.554947\pi\)
\(942\) 1.23607 3.80423i 0.0402733 0.123948i
\(943\) −3.09017 9.51057i −0.100630 0.309707i
\(944\) 6.47214 4.70228i 0.210650 0.153046i
\(945\) 8.00000 0.260240
\(946\) 0 0
\(947\) −42.0000 −1.36482 −0.682408 0.730971i \(-0.739067\pi\)
−0.682408 + 0.730971i \(0.739067\pi\)
\(948\) −16.1803 + 11.7557i −0.525513 + 0.381808i
\(949\) −0.618034 1.90211i −0.0200622 0.0617452i
\(950\) −7.41641 + 22.8254i −0.240620 + 0.740552i
\(951\) 3.23607 + 2.35114i 0.104937 + 0.0762410i
\(952\) 24.2705 + 17.6336i 0.786612 + 0.571507i
\(953\) 9.57953 29.4828i 0.310311 0.955040i −0.667330 0.744762i \(-0.732563\pi\)
0.977642 0.210278i \(-0.0674370\pi\)
\(954\) 2.78115 + 8.55951i 0.0900432 + 0.277124i
\(955\) −6.47214 + 4.70228i −0.209433 + 0.152162i
\(956\) −6.00000 −0.194054
\(957\) 0 0
\(958\) −16.0000 −0.516937
\(959\) −16.1803 + 11.7557i −0.522490 + 0.379612i
\(960\) 4.32624 + 13.3148i 0.139629 + 0.429733i
\(961\) −8.34346 + 25.6785i −0.269144 + 0.828340i
\(962\) 2.42705 + 1.76336i 0.0782513 + 0.0568529i
\(963\) −4.85410 3.52671i −0.156421 0.113647i
\(964\) −6.79837 + 20.9232i −0.218961 + 0.673892i
\(965\) −1.54508 4.75528i −0.0497380 0.153078i
\(966\) 6.47214 4.70228i 0.208238 0.151293i
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 0 0
\(969\) −60.0000 −1.92748
\(970\) 10.5172 7.64121i 0.337688 0.245344i
\(971\) 0.618034 + 1.90211i 0.0198337 + 0.0610417i 0.960483 0.278337i \(-0.0897832\pi\)
−0.940650 + 0.339379i \(0.889783\pi\)
\(972\) 3.09017 9.51057i 0.0991172 0.305052i
\(973\) −3.23607 2.35114i −0.103744 0.0753741i
\(974\) −1.61803 1.17557i −0.0518452 0.0376677i
\(975\) −2.47214 + 7.60845i −0.0791717 + 0.243665i
\(976\) −1.85410 5.70634i −0.0593484 0.182655i
\(977\) 46.1140 33.5038i 1.47532 1.07188i 0.496288 0.868158i \(-0.334696\pi\)
0.979029 0.203722i \(-0.0653039\pi\)
\(978\) −4.00000 −0.127906
\(979\) 0 0
\(980\) 3.00000 0.0958315
\(981\) 8.89919 6.46564i 0.284129 0.206432i
\(982\) −0.618034 1.90211i −0.0197223 0.0606989i
\(983\) −11.1246 + 34.2380i −0.354820 + 1.09202i 0.601294 + 0.799028i \(0.294652\pi\)
−0.956114 + 0.292996i \(0.905348\pi\)
\(984\) −24.2705 17.6336i −0.773716 0.562137i
\(985\) 8.89919 + 6.46564i 0.283552 + 0.206012i
\(986\) −13.9058 + 42.7975i −0.442850 + 1.36295i
\(987\) −2.47214 7.60845i −0.0786890 0.242180i
\(988\) 4.85410 3.52671i 0.154430 0.112200i
\(989\) 0 0
\(990\) 0 0
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 8.09017 5.87785i 0.256863 0.186622i
\(993\) −12.3607 38.0423i −0.392254 1.20723i
\(994\) −7.41641 + 22.8254i −0.235234 + 0.723976i
\(995\) −19.4164 14.1068i −0.615542 0.447217i
\(996\) 9.70820 + 7.05342i 0.307616 + 0.223496i
\(997\) 16.3779 50.4060i 0.518693 1.59637i −0.257767 0.966207i \(-0.582987\pi\)
0.776460 0.630167i \(-0.217013\pi\)
\(998\) 2.47214 + 7.60845i 0.0782541 + 0.240841i
\(999\) −9.70820 + 7.05342i −0.307154 + 0.223160i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 121.2.c.b.3.1 4
11.2 odd 10 121.2.a.a.1.1 1
11.3 even 5 inner 121.2.c.b.27.1 4
11.4 even 5 inner 121.2.c.b.81.1 4
11.5 even 5 inner 121.2.c.b.9.1 4
11.6 odd 10 121.2.c.d.9.1 4
11.7 odd 10 121.2.c.d.81.1 4
11.8 odd 10 121.2.c.d.27.1 4
11.9 even 5 121.2.a.c.1.1 yes 1
11.10 odd 2 121.2.c.d.3.1 4
33.2 even 10 1089.2.a.i.1.1 1
33.20 odd 10 1089.2.a.c.1.1 1
44.31 odd 10 1936.2.a.b.1.1 1
44.35 even 10 1936.2.a.a.1.1 1
55.9 even 10 3025.2.a.b.1.1 1
55.24 odd 10 3025.2.a.e.1.1 1
77.13 even 10 5929.2.a.a.1.1 1
77.20 odd 10 5929.2.a.g.1.1 1
88.13 odd 10 7744.2.a.f.1.1 1
88.35 even 10 7744.2.a.be.1.1 1
88.53 even 10 7744.2.a.c.1.1 1
88.75 odd 10 7744.2.a.bf.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
121.2.a.a.1.1 1 11.2 odd 10
121.2.a.c.1.1 yes 1 11.9 even 5
121.2.c.b.3.1 4 1.1 even 1 trivial
121.2.c.b.9.1 4 11.5 even 5 inner
121.2.c.b.27.1 4 11.3 even 5 inner
121.2.c.b.81.1 4 11.4 even 5 inner
121.2.c.d.3.1 4 11.10 odd 2
121.2.c.d.9.1 4 11.6 odd 10
121.2.c.d.27.1 4 11.8 odd 10
121.2.c.d.81.1 4 11.7 odd 10
1089.2.a.c.1.1 1 33.20 odd 10
1089.2.a.i.1.1 1 33.2 even 10
1936.2.a.a.1.1 1 44.35 even 10
1936.2.a.b.1.1 1 44.31 odd 10
3025.2.a.b.1.1 1 55.9 even 10
3025.2.a.e.1.1 1 55.24 odd 10
5929.2.a.a.1.1 1 77.13 even 10
5929.2.a.g.1.1 1 77.20 odd 10
7744.2.a.c.1.1 1 88.53 even 10
7744.2.a.f.1.1 1 88.13 odd 10
7744.2.a.be.1.1 1 88.35 even 10
7744.2.a.bf.1.1 1 88.75 odd 10