Defining parameters
Level: | \( N \) | \(=\) | \( 121 = 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 121.c (of order \(5\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 11 \) |
Character field: | \(\Q(\zeta_{5})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(22\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(121, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 68 | 52 | 16 |
Cusp forms | 20 | 20 | 0 |
Eisenstein series | 48 | 32 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(121, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
121.2.c.a | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | None | \(-2\) | \(1\) | \(-1\) | \(-2\) | \(q+(-2+2\zeta_{10}-2\zeta_{10}^{2}+2\zeta_{10}^{3})q^{2}+\cdots\) |
121.2.c.b | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | None | \(-1\) | \(-2\) | \(-1\) | \(2\) | \(q+(-1+\zeta_{10}-\zeta_{10}^{2}+\zeta_{10}^{3})q^{2}+\cdots\) |
121.2.c.c | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(1\) | \(3\) | \(0\) | \(q-\zeta_{10}^{2}q^{3}+2\zeta_{10}^{3}q^{4}+3\zeta_{10}q^{5}+\cdots\) |
121.2.c.d | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | None | \(1\) | \(-2\) | \(-1\) | \(-2\) | \(q+(1-\zeta_{10}+\zeta_{10}^{2}-\zeta_{10}^{3})q^{2}+2\zeta_{10}^{2}q^{3}+\cdots\) |
121.2.c.e | $4$ | $0.966$ | \(\Q(\zeta_{10})\) | None | \(2\) | \(1\) | \(-1\) | \(2\) | \(q+(2-2\zeta_{10}+2\zeta_{10}^{2}-2\zeta_{10}^{3})q^{2}+\cdots\) |