Properties

Label 1200.4.v
Level $1200$
Weight $4$
Character orbit 1200.v
Rep. character $\chi_{1200}(257,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $212$
Sturm bound $960$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.v (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 15 \)
Character field: \(\Q(i)\)
Sturm bound: \(960\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1200, [\chi])\).

Total New Old
Modular forms 1512 220 1292
Cusp forms 1368 212 1156
Eisenstein series 144 8 136

Trace form

\( 212 q - 2 q^{3} - 4 q^{7} + O(q^{10}) \) \( 212 q - 2 q^{3} - 4 q^{7} + 4 q^{13} - 276 q^{21} - 446 q^{27} + 536 q^{31} - 52 q^{33} - 524 q^{37} - 436 q^{43} + 628 q^{51} + 796 q^{57} - 1832 q^{61} - 1008 q^{63} - 76 q^{67} - 980 q^{73} + 1228 q^{81} - 700 q^{87} - 640 q^{91} + 56 q^{93} + 748 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)