Properties

Label 1200.4.f.u.49.2
Level $1200$
Weight $4$
Character 1200.49
Analytic conductor $70.802$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(49,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1200.49
Dual form 1200.4.f.u.49.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{3} -32.0000i q^{7} -9.00000 q^{9} +60.0000 q^{11} +34.0000i q^{13} +42.0000i q^{17} -76.0000 q^{19} +96.0000 q^{21} -27.0000i q^{27} -6.00000 q^{29} +232.000 q^{31} +180.000i q^{33} +134.000i q^{37} -102.000 q^{39} +234.000 q^{41} -412.000i q^{43} +360.000i q^{47} -681.000 q^{49} -126.000 q^{51} -222.000i q^{53} -228.000i q^{57} +660.000 q^{59} -490.000 q^{61} +288.000i q^{63} -812.000i q^{67} -120.000 q^{71} -746.000i q^{73} -1920.00i q^{77} +152.000 q^{79} +81.0000 q^{81} -804.000i q^{83} -18.0000i q^{87} +678.000 q^{89} +1088.00 q^{91} +696.000i q^{93} +194.000i q^{97} -540.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9} + 120 q^{11} - 152 q^{19} + 192 q^{21} - 12 q^{29} + 464 q^{31} - 204 q^{39} + 468 q^{41} - 1362 q^{49} - 252 q^{51} + 1320 q^{59} - 980 q^{61} - 240 q^{71} + 304 q^{79} + 162 q^{81} + 1356 q^{89}+ \cdots - 1080 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000i 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 32.0000i − 1.72784i −0.503631 0.863919i \(-0.668003\pi\)
0.503631 0.863919i \(-0.331997\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 60.0000 1.64461 0.822304 0.569049i \(-0.192689\pi\)
0.822304 + 0.569049i \(0.192689\pi\)
\(12\) 0 0
\(13\) 34.0000i 0.725377i 0.931910 + 0.362689i \(0.118141\pi\)
−0.931910 + 0.362689i \(0.881859\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 42.0000i 0.599206i 0.954064 + 0.299603i \(0.0968542\pi\)
−0.954064 + 0.299603i \(0.903146\pi\)
\(18\) 0 0
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 96.0000 0.997567
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 27.0000i − 0.192450i
\(28\) 0 0
\(29\) −6.00000 −0.0384197 −0.0192099 0.999815i \(-0.506115\pi\)
−0.0192099 + 0.999815i \(0.506115\pi\)
\(30\) 0 0
\(31\) 232.000 1.34414 0.672071 0.740486i \(-0.265405\pi\)
0.672071 + 0.740486i \(0.265405\pi\)
\(32\) 0 0
\(33\) 180.000i 0.949514i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 134.000i 0.595391i 0.954661 + 0.297695i \(0.0962180\pi\)
−0.954661 + 0.297695i \(0.903782\pi\)
\(38\) 0 0
\(39\) −102.000 −0.418797
\(40\) 0 0
\(41\) 234.000 0.891333 0.445667 0.895199i \(-0.352967\pi\)
0.445667 + 0.895199i \(0.352967\pi\)
\(42\) 0 0
\(43\) − 412.000i − 1.46115i −0.682833 0.730575i \(-0.739252\pi\)
0.682833 0.730575i \(-0.260748\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 360.000i 1.11726i 0.829416 + 0.558632i \(0.188674\pi\)
−0.829416 + 0.558632i \(0.811326\pi\)
\(48\) 0 0
\(49\) −681.000 −1.98542
\(50\) 0 0
\(51\) −126.000 −0.345952
\(52\) 0 0
\(53\) − 222.000i − 0.575359i −0.957727 0.287680i \(-0.907116\pi\)
0.957727 0.287680i \(-0.0928838\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 228.000i − 0.529813i
\(58\) 0 0
\(59\) 660.000 1.45635 0.728175 0.685391i \(-0.240369\pi\)
0.728175 + 0.685391i \(0.240369\pi\)
\(60\) 0 0
\(61\) −490.000 −1.02849 −0.514246 0.857642i \(-0.671928\pi\)
−0.514246 + 0.857642i \(0.671928\pi\)
\(62\) 0 0
\(63\) 288.000i 0.575946i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 812.000i − 1.48062i −0.672265 0.740310i \(-0.734679\pi\)
0.672265 0.740310i \(-0.265321\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −120.000 −0.200583 −0.100291 0.994958i \(-0.531978\pi\)
−0.100291 + 0.994958i \(0.531978\pi\)
\(72\) 0 0
\(73\) − 746.000i − 1.19606i −0.801472 0.598032i \(-0.795949\pi\)
0.801472 0.598032i \(-0.204051\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1920.00i − 2.84161i
\(78\) 0 0
\(79\) 152.000 0.216473 0.108236 0.994125i \(-0.465480\pi\)
0.108236 + 0.994125i \(0.465480\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 804.000i − 1.06326i −0.846977 0.531629i \(-0.821580\pi\)
0.846977 0.531629i \(-0.178420\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 18.0000i − 0.0221816i
\(88\) 0 0
\(89\) 678.000 0.807504 0.403752 0.914868i \(-0.367706\pi\)
0.403752 + 0.914868i \(0.367706\pi\)
\(90\) 0 0
\(91\) 1088.00 1.25333
\(92\) 0 0
\(93\) 696.000i 0.776041i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 194.000i 0.203069i 0.994832 + 0.101535i \(0.0323753\pi\)
−0.994832 + 0.101535i \(0.967625\pi\)
\(98\) 0 0
\(99\) −540.000 −0.548202
\(100\) 0 0
\(101\) 798.000 0.786178 0.393089 0.919500i \(-0.371406\pi\)
0.393089 + 0.919500i \(0.371406\pi\)
\(102\) 0 0
\(103\) 1088.00i 1.04081i 0.853918 + 0.520407i \(0.174220\pi\)
−0.853918 + 0.520407i \(0.825780\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1716.00i − 1.55039i −0.631721 0.775196i \(-0.717651\pi\)
0.631721 0.775196i \(-0.282349\pi\)
\(108\) 0 0
\(109\) 970.000 0.852378 0.426189 0.904634i \(-0.359856\pi\)
0.426189 + 0.904634i \(0.359856\pi\)
\(110\) 0 0
\(111\) −402.000 −0.343749
\(112\) 0 0
\(113\) − 426.000i − 0.354643i −0.984153 0.177322i \(-0.943257\pi\)
0.984153 0.177322i \(-0.0567433\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 306.000i − 0.241792i
\(118\) 0 0
\(119\) 1344.00 1.03533
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) 0 0
\(123\) 702.000i 0.514611i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 200.000i − 0.139741i −0.997556 0.0698706i \(-0.977741\pi\)
0.997556 0.0698706i \(-0.0222586\pi\)
\(128\) 0 0
\(129\) 1236.00 0.843595
\(130\) 0 0
\(131\) −60.0000 −0.0400170 −0.0200085 0.999800i \(-0.506369\pi\)
−0.0200085 + 0.999800i \(0.506369\pi\)
\(132\) 0 0
\(133\) 2432.00i 1.58557i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 642.000i 0.400363i 0.979759 + 0.200182i \(0.0641532\pi\)
−0.979759 + 0.200182i \(0.935847\pi\)
\(138\) 0 0
\(139\) −2836.00 −1.73055 −0.865275 0.501298i \(-0.832856\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(140\) 0 0
\(141\) −1080.00 −0.645053
\(142\) 0 0
\(143\) 2040.00i 1.19296i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 2043.00i − 1.14628i
\(148\) 0 0
\(149\) 1554.00 0.854420 0.427210 0.904152i \(-0.359496\pi\)
0.427210 + 0.904152i \(0.359496\pi\)
\(150\) 0 0
\(151\) 2272.00 1.22446 0.612228 0.790682i \(-0.290274\pi\)
0.612228 + 0.790682i \(0.290274\pi\)
\(152\) 0 0
\(153\) − 378.000i − 0.199735i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1694.00i 0.861120i 0.902562 + 0.430560i \(0.141684\pi\)
−0.902562 + 0.430560i \(0.858316\pi\)
\(158\) 0 0
\(159\) 666.000 0.332184
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 52.0000i − 0.0249874i −0.999922 0.0124937i \(-0.996023\pi\)
0.999922 0.0124937i \(-0.00397698\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1200.00i 0.556041i 0.960575 + 0.278020i \(0.0896783\pi\)
−0.960575 + 0.278020i \(0.910322\pi\)
\(168\) 0 0
\(169\) 1041.00 0.473828
\(170\) 0 0
\(171\) 684.000 0.305888
\(172\) 0 0
\(173\) − 54.0000i − 0.0237315i −0.999930 0.0118657i \(-0.996223\pi\)
0.999930 0.0118657i \(-0.00377707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1980.00i 0.840824i
\(178\) 0 0
\(179\) 876.000 0.365784 0.182892 0.983133i \(-0.441454\pi\)
0.182892 + 0.983133i \(0.441454\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) 0 0
\(183\) − 1470.00i − 0.593801i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2520.00i 0.985458i
\(188\) 0 0
\(189\) −864.000 −0.332522
\(190\) 0 0
\(191\) 2784.00 1.05468 0.527338 0.849656i \(-0.323190\pi\)
0.527338 + 0.849656i \(0.323190\pi\)
\(192\) 0 0
\(193\) − 914.000i − 0.340887i −0.985367 0.170443i \(-0.945480\pi\)
0.985367 0.170443i \(-0.0545200\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5202.00i − 1.88136i −0.339300 0.940678i \(-0.610190\pi\)
0.339300 0.940678i \(-0.389810\pi\)
\(198\) 0 0
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) 0 0
\(201\) 2436.00 0.854837
\(202\) 0 0
\(203\) 192.000i 0.0663830i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4560.00 −1.50920
\(210\) 0 0
\(211\) −740.000 −0.241439 −0.120720 0.992687i \(-0.538520\pi\)
−0.120720 + 0.992687i \(0.538520\pi\)
\(212\) 0 0
\(213\) − 360.000i − 0.115807i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 7424.00i − 2.32246i
\(218\) 0 0
\(219\) 2238.00 0.690548
\(220\) 0 0
\(221\) −1428.00 −0.434650
\(222\) 0 0
\(223\) − 520.000i − 0.156151i −0.996947 0.0780757i \(-0.975122\pi\)
0.996947 0.0780757i \(-0.0248776\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 396.000i − 0.115786i −0.998323 0.0578930i \(-0.981562\pi\)
0.998323 0.0578930i \(-0.0184382\pi\)
\(228\) 0 0
\(229\) 1330.00 0.383794 0.191897 0.981415i \(-0.438536\pi\)
0.191897 + 0.981415i \(0.438536\pi\)
\(230\) 0 0
\(231\) 5760.00 1.64061
\(232\) 0 0
\(233\) − 4866.00i − 1.36816i −0.729405 0.684082i \(-0.760203\pi\)
0.729405 0.684082i \(-0.239797\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 456.000i 0.124981i
\(238\) 0 0
\(239\) −1824.00 −0.493660 −0.246830 0.969059i \(-0.579389\pi\)
−0.246830 + 0.969059i \(0.579389\pi\)
\(240\) 0 0
\(241\) 6482.00 1.73254 0.866270 0.499575i \(-0.166511\pi\)
0.866270 + 0.499575i \(0.166511\pi\)
\(242\) 0 0
\(243\) 243.000i 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 2584.00i − 0.665652i
\(248\) 0 0
\(249\) 2412.00 0.613873
\(250\) 0 0
\(251\) −1476.00 −0.371172 −0.185586 0.982628i \(-0.559418\pi\)
−0.185586 + 0.982628i \(0.559418\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4314.00i 1.04708i 0.852001 + 0.523541i \(0.175389\pi\)
−0.852001 + 0.523541i \(0.824611\pi\)
\(258\) 0 0
\(259\) 4288.00 1.02874
\(260\) 0 0
\(261\) 54.0000 0.0128066
\(262\) 0 0
\(263\) − 5280.00i − 1.23794i −0.785414 0.618971i \(-0.787550\pi\)
0.785414 0.618971i \(-0.212450\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2034.00i 0.466213i
\(268\) 0 0
\(269\) −5526.00 −1.25251 −0.626257 0.779617i \(-0.715414\pi\)
−0.626257 + 0.779617i \(0.715414\pi\)
\(270\) 0 0
\(271\) −2024.00 −0.453687 −0.226844 0.973931i \(-0.572841\pi\)
−0.226844 + 0.973931i \(0.572841\pi\)
\(272\) 0 0
\(273\) 3264.00i 0.723613i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2054.00i 0.445534i 0.974872 + 0.222767i \(0.0715089\pi\)
−0.974872 + 0.222767i \(0.928491\pi\)
\(278\) 0 0
\(279\) −2088.00 −0.448048
\(280\) 0 0
\(281\) −7302.00 −1.55018 −0.775090 0.631850i \(-0.782296\pi\)
−0.775090 + 0.631850i \(0.782296\pi\)
\(282\) 0 0
\(283\) − 3724.00i − 0.782222i −0.920344 0.391111i \(-0.872091\pi\)
0.920344 0.391111i \(-0.127909\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 7488.00i − 1.54008i
\(288\) 0 0
\(289\) 3149.00 0.640953
\(290\) 0 0
\(291\) −582.000 −0.117242
\(292\) 0 0
\(293\) 7218.00i 1.43918i 0.694399 + 0.719591i \(0.255670\pi\)
−0.694399 + 0.719591i \(0.744330\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1620.00i − 0.316505i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −13184.0 −2.52463
\(302\) 0 0
\(303\) 2394.00i 0.453900i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 2540.00i − 0.472200i −0.971729 0.236100i \(-0.924131\pi\)
0.971729 0.236100i \(-0.0758693\pi\)
\(308\) 0 0
\(309\) −3264.00 −0.600914
\(310\) 0 0
\(311\) −1560.00 −0.284436 −0.142218 0.989835i \(-0.545423\pi\)
−0.142218 + 0.989835i \(0.545423\pi\)
\(312\) 0 0
\(313\) 934.000i 0.168667i 0.996438 + 0.0843335i \(0.0268761\pi\)
−0.996438 + 0.0843335i \(0.973124\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1674.00i − 0.296597i −0.988943 0.148298i \(-0.952620\pi\)
0.988943 0.148298i \(-0.0473796\pi\)
\(318\) 0 0
\(319\) −360.000 −0.0631854
\(320\) 0 0
\(321\) 5148.00 0.895119
\(322\) 0 0
\(323\) − 3192.00i − 0.549869i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2910.00i 0.492120i
\(328\) 0 0
\(329\) 11520.0 1.93045
\(330\) 0 0
\(331\) 3988.00 0.662237 0.331118 0.943589i \(-0.392574\pi\)
0.331118 + 0.943589i \(0.392574\pi\)
\(332\) 0 0
\(333\) − 1206.00i − 0.198464i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2.00000i 0 0.000323285i 1.00000 0.000161642i \(5.14524e-5\pi\)
−1.00000 0.000161642i \(0.999949\pi\)
\(338\) 0 0
\(339\) 1278.00 0.204753
\(340\) 0 0
\(341\) 13920.0 2.21059
\(342\) 0 0
\(343\) 10816.0i 1.70265i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1764.00i − 0.272901i −0.990647 0.136450i \(-0.956431\pi\)
0.990647 0.136450i \(-0.0435694\pi\)
\(348\) 0 0
\(349\) −4310.00 −0.661057 −0.330529 0.943796i \(-0.607227\pi\)
−0.330529 + 0.943796i \(0.607227\pi\)
\(350\) 0 0
\(351\) 918.000 0.139599
\(352\) 0 0
\(353\) − 138.000i − 0.0208074i −0.999946 0.0104037i \(-0.996688\pi\)
0.999946 0.0104037i \(-0.00331165\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 4032.00i 0.597748i
\(358\) 0 0
\(359\) −11976.0 −1.76064 −0.880319 0.474382i \(-0.842672\pi\)
−0.880319 + 0.474382i \(0.842672\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) 0 0
\(363\) 6807.00i 0.984228i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 9704.00i − 1.38023i −0.723699 0.690115i \(-0.757560\pi\)
0.723699 0.690115i \(-0.242440\pi\)
\(368\) 0 0
\(369\) −2106.00 −0.297111
\(370\) 0 0
\(371\) −7104.00 −0.994128
\(372\) 0 0
\(373\) 8122.00i 1.12746i 0.825960 + 0.563728i \(0.190633\pi\)
−0.825960 + 0.563728i \(0.809367\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 204.000i − 0.0278688i
\(378\) 0 0
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) 0 0
\(381\) 600.000 0.0806796
\(382\) 0 0
\(383\) − 2520.00i − 0.336204i −0.985770 0.168102i \(-0.946236\pi\)
0.985770 0.168102i \(-0.0537637\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3708.00i 0.487050i
\(388\) 0 0
\(389\) −1566.00 −0.204111 −0.102056 0.994779i \(-0.532542\pi\)
−0.102056 + 0.994779i \(0.532542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) − 180.000i − 0.0231038i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4354.00i − 0.550431i −0.961383 0.275215i \(-0.911251\pi\)
0.961383 0.275215i \(-0.0887492\pi\)
\(398\) 0 0
\(399\) −7296.00 −0.915431
\(400\) 0 0
\(401\) −8046.00 −1.00199 −0.500995 0.865450i \(-0.667033\pi\)
−0.500995 + 0.865450i \(0.667033\pi\)
\(402\) 0 0
\(403\) 7888.00i 0.975011i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8040.00i 0.979184i
\(408\) 0 0
\(409\) 2806.00 0.339237 0.169618 0.985510i \(-0.445747\pi\)
0.169618 + 0.985510i \(0.445747\pi\)
\(410\) 0 0
\(411\) −1926.00 −0.231150
\(412\) 0 0
\(413\) − 21120.0i − 2.51634i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8508.00i − 0.999133i
\(418\) 0 0
\(419\) 11580.0 1.35017 0.675084 0.737741i \(-0.264108\pi\)
0.675084 + 0.737741i \(0.264108\pi\)
\(420\) 0 0
\(421\) −370.000 −0.0428330 −0.0214165 0.999771i \(-0.506818\pi\)
−0.0214165 + 0.999771i \(0.506818\pi\)
\(422\) 0 0
\(423\) − 3240.00i − 0.372421i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 15680.0i 1.77707i
\(428\) 0 0
\(429\) −6120.00 −0.688756
\(430\) 0 0
\(431\) −5040.00 −0.563267 −0.281634 0.959522i \(-0.590876\pi\)
−0.281634 + 0.959522i \(0.590876\pi\)
\(432\) 0 0
\(433\) 3742.00i 0.415310i 0.978202 + 0.207655i \(0.0665831\pi\)
−0.978202 + 0.207655i \(0.933417\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −6208.00 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(440\) 0 0
\(441\) 6129.00 0.661808
\(442\) 0 0
\(443\) − 15564.0i − 1.66923i −0.550835 0.834614i \(-0.685691\pi\)
0.550835 0.834614i \(-0.314309\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4662.00i 0.493300i
\(448\) 0 0
\(449\) 15774.0 1.65795 0.828977 0.559283i \(-0.188924\pi\)
0.828977 + 0.559283i \(0.188924\pi\)
\(450\) 0 0
\(451\) 14040.0 1.46589
\(452\) 0 0
\(453\) 6816.00i 0.706940i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 9722.00i 0.995133i 0.867426 + 0.497567i \(0.165773\pi\)
−0.867426 + 0.497567i \(0.834227\pi\)
\(458\) 0 0
\(459\) 1134.00 0.115317
\(460\) 0 0
\(461\) −10890.0 −1.10021 −0.550106 0.835095i \(-0.685413\pi\)
−0.550106 + 0.835095i \(0.685413\pi\)
\(462\) 0 0
\(463\) 15128.0i 1.51848i 0.650809 + 0.759242i \(0.274430\pi\)
−0.650809 + 0.759242i \(0.725570\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 10668.0i − 1.05708i −0.848909 0.528540i \(-0.822740\pi\)
0.848909 0.528540i \(-0.177260\pi\)
\(468\) 0 0
\(469\) −25984.0 −2.55827
\(470\) 0 0
\(471\) −5082.00 −0.497168
\(472\) 0 0
\(473\) − 24720.0i − 2.40302i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 1998.00i 0.191786i
\(478\) 0 0
\(479\) 15264.0 1.45601 0.728006 0.685571i \(-0.240447\pi\)
0.728006 + 0.685571i \(0.240447\pi\)
\(480\) 0 0
\(481\) −4556.00 −0.431883
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5776.00i 0.537445i 0.963218 + 0.268722i \(0.0866014\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(488\) 0 0
\(489\) 156.000 0.0144265
\(490\) 0 0
\(491\) −14244.0 −1.30921 −0.654606 0.755971i \(-0.727165\pi\)
−0.654606 + 0.755971i \(0.727165\pi\)
\(492\) 0 0
\(493\) − 252.000i − 0.0230213i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3840.00i 0.346575i
\(498\) 0 0
\(499\) −17116.0 −1.53551 −0.767753 0.640746i \(-0.778625\pi\)
−0.767753 + 0.640746i \(0.778625\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) 0 0
\(503\) − 16848.0i − 1.49347i −0.665122 0.746735i \(-0.731620\pi\)
0.665122 0.746735i \(-0.268380\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 3123.00i 0.273565i
\(508\) 0 0
\(509\) 3834.00 0.333868 0.166934 0.985968i \(-0.446613\pi\)
0.166934 + 0.985968i \(0.446613\pi\)
\(510\) 0 0
\(511\) −23872.0 −2.06660
\(512\) 0 0
\(513\) 2052.00i 0.176604i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 21600.0i 1.83746i
\(518\) 0 0
\(519\) 162.000 0.0137014
\(520\) 0 0
\(521\) −18822.0 −1.58274 −0.791369 0.611338i \(-0.790631\pi\)
−0.791369 + 0.611338i \(0.790631\pi\)
\(522\) 0 0
\(523\) − 15340.0i − 1.28255i −0.767313 0.641273i \(-0.778407\pi\)
0.767313 0.641273i \(-0.221593\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9744.00i 0.805418i
\(528\) 0 0
\(529\) 12167.0 1.00000
\(530\) 0 0
\(531\) −5940.00 −0.485450
\(532\) 0 0
\(533\) 7956.00i 0.646553i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 2628.00i 0.211185i
\(538\) 0 0
\(539\) −40860.0 −3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) 0 0
\(543\) 11562.0i 0.913762i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10036.0i 0.784476i 0.919864 + 0.392238i \(0.128299\pi\)
−0.919864 + 0.392238i \(0.871701\pi\)
\(548\) 0 0
\(549\) 4410.00 0.342831
\(550\) 0 0
\(551\) 456.000 0.0352564
\(552\) 0 0
\(553\) − 4864.00i − 0.374030i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 10326.0i 0.785506i 0.919644 + 0.392753i \(0.128477\pi\)
−0.919644 + 0.392753i \(0.871523\pi\)
\(558\) 0 0
\(559\) 14008.0 1.05988
\(560\) 0 0
\(561\) −7560.00 −0.568954
\(562\) 0 0
\(563\) 4524.00i 0.338657i 0.985560 + 0.169328i \(0.0541599\pi\)
−0.985560 + 0.169328i \(0.945840\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 2592.00i − 0.191982i
\(568\) 0 0
\(569\) −16362.0 −1.20550 −0.602751 0.797929i \(-0.705929\pi\)
−0.602751 + 0.797929i \(0.705929\pi\)
\(570\) 0 0
\(571\) −6620.00 −0.485181 −0.242591 0.970129i \(-0.577997\pi\)
−0.242591 + 0.970129i \(0.577997\pi\)
\(572\) 0 0
\(573\) 8352.00i 0.608918i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8834.00i 0.637373i 0.947860 + 0.318687i \(0.103242\pi\)
−0.947860 + 0.318687i \(0.896758\pi\)
\(578\) 0 0
\(579\) 2742.00 0.196811
\(580\) 0 0
\(581\) −25728.0 −1.83714
\(582\) 0 0
\(583\) − 13320.0i − 0.946240i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 3636.00i − 0.255662i −0.991796 0.127831i \(-0.959198\pi\)
0.991796 0.127831i \(-0.0408016\pi\)
\(588\) 0 0
\(589\) −17632.0 −1.23347
\(590\) 0 0
\(591\) 15606.0 1.08620
\(592\) 0 0
\(593\) − 6570.00i − 0.454971i −0.973782 0.227485i \(-0.926950\pi\)
0.973782 0.227485i \(-0.0730504\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9456.00i 0.648255i
\(598\) 0 0
\(599\) 16584.0 1.13123 0.565613 0.824671i \(-0.308640\pi\)
0.565613 + 0.824671i \(0.308640\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) 0 0
\(603\) 7308.00i 0.493540i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18568.0i 1.24160i 0.783969 + 0.620801i \(0.213192\pi\)
−0.783969 + 0.620801i \(0.786808\pi\)
\(608\) 0 0
\(609\) −576.000 −0.0383263
\(610\) 0 0
\(611\) −12240.0 −0.810438
\(612\) 0 0
\(613\) 13114.0i 0.864061i 0.901859 + 0.432031i \(0.142203\pi\)
−0.901859 + 0.432031i \(0.857797\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5250.00i 0.342556i 0.985223 + 0.171278i \(0.0547896\pi\)
−0.985223 + 0.171278i \(0.945210\pi\)
\(618\) 0 0
\(619\) −10804.0 −0.701534 −0.350767 0.936463i \(-0.614079\pi\)
−0.350767 + 0.936463i \(0.614079\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 21696.0i − 1.39524i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 13680.0i − 0.871334i
\(628\) 0 0
\(629\) −5628.00 −0.356762
\(630\) 0 0
\(631\) 27088.0 1.70896 0.854482 0.519481i \(-0.173875\pi\)
0.854482 + 0.519481i \(0.173875\pi\)
\(632\) 0 0
\(633\) − 2220.00i − 0.139395i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 23154.0i − 1.44018i
\(638\) 0 0
\(639\) 1080.00 0.0668609
\(640\) 0 0
\(641\) 18930.0 1.16644 0.583222 0.812313i \(-0.301792\pi\)
0.583222 + 0.812313i \(0.301792\pi\)
\(642\) 0 0
\(643\) 20108.0i 1.23325i 0.787256 + 0.616627i \(0.211501\pi\)
−0.787256 + 0.616627i \(0.788499\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7152.00i 0.434581i 0.976107 + 0.217291i \(0.0697219\pi\)
−0.976107 + 0.217291i \(0.930278\pi\)
\(648\) 0 0
\(649\) 39600.0 2.39512
\(650\) 0 0
\(651\) 22272.0 1.34087
\(652\) 0 0
\(653\) 31626.0i 1.89528i 0.319333 + 0.947642i \(0.396541\pi\)
−0.319333 + 0.947642i \(0.603459\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 6714.00i 0.398688i
\(658\) 0 0
\(659\) 28092.0 1.66056 0.830280 0.557347i \(-0.188181\pi\)
0.830280 + 0.557347i \(0.188181\pi\)
\(660\) 0 0
\(661\) −13186.0 −0.775909 −0.387955 0.921678i \(-0.626818\pi\)
−0.387955 + 0.921678i \(0.626818\pi\)
\(662\) 0 0
\(663\) − 4284.00i − 0.250945i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 1560.00 0.0901541
\(670\) 0 0
\(671\) −29400.0 −1.69147
\(672\) 0 0
\(673\) − 5138.00i − 0.294287i −0.989115 0.147144i \(-0.952992\pi\)
0.989115 0.147144i \(-0.0470080\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 6078.00i 0.345047i 0.985005 + 0.172523i \(0.0551920\pi\)
−0.985005 + 0.172523i \(0.944808\pi\)
\(678\) 0 0
\(679\) 6208.00 0.350871
\(680\) 0 0
\(681\) 1188.00 0.0668491
\(682\) 0 0
\(683\) 32244.0i 1.80642i 0.429203 + 0.903208i \(0.358795\pi\)
−0.429203 + 0.903208i \(0.641205\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3990.00i 0.221584i
\(688\) 0 0
\(689\) 7548.00 0.417353
\(690\) 0 0
\(691\) −4484.00 −0.246859 −0.123429 0.992353i \(-0.539389\pi\)
−0.123429 + 0.992353i \(0.539389\pi\)
\(692\) 0 0
\(693\) 17280.0i 0.947205i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9828.00i 0.534092i
\(698\) 0 0
\(699\) 14598.0 0.789910
\(700\) 0 0
\(701\) −30426.0 −1.63934 −0.819668 0.572839i \(-0.805842\pi\)
−0.819668 + 0.572839i \(0.805842\pi\)
\(702\) 0 0
\(703\) − 10184.0i − 0.546368i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 25536.0i − 1.35839i
\(708\) 0 0
\(709\) −13262.0 −0.702489 −0.351245 0.936284i \(-0.614241\pi\)
−0.351245 + 0.936284i \(0.614241\pi\)
\(710\) 0 0
\(711\) −1368.00 −0.0721575
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 5472.00i − 0.285015i
\(718\) 0 0
\(719\) 13920.0 0.722014 0.361007 0.932563i \(-0.382433\pi\)
0.361007 + 0.932563i \(0.382433\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) 0 0
\(723\) 19446.0i 1.00028i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 9376.00i 0.478317i 0.970981 + 0.239159i \(0.0768716\pi\)
−0.970981 + 0.239159i \(0.923128\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 17304.0 0.875529
\(732\) 0 0
\(733\) − 6014.00i − 0.303045i −0.988454 0.151523i \(-0.951582\pi\)
0.988454 0.151523i \(-0.0484176\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 48720.0i − 2.43504i
\(738\) 0 0
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) 0 0
\(741\) 7752.00 0.384314
\(742\) 0 0
\(743\) 31248.0i 1.54290i 0.636287 + 0.771452i \(0.280469\pi\)
−0.636287 + 0.771452i \(0.719531\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 7236.00i 0.354420i
\(748\) 0 0
\(749\) −54912.0 −2.67883
\(750\) 0 0
\(751\) −32840.0 −1.59567 −0.797835 0.602875i \(-0.794022\pi\)
−0.797835 + 0.602875i \(0.794022\pi\)
\(752\) 0 0
\(753\) − 4428.00i − 0.214297i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 19066.0i − 0.915410i −0.889104 0.457705i \(-0.848672\pi\)
0.889104 0.457705i \(-0.151328\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6858.00 0.326678 0.163339 0.986570i \(-0.447773\pi\)
0.163339 + 0.986570i \(0.447773\pi\)
\(762\) 0 0
\(763\) − 31040.0i − 1.47277i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22440.0i 1.05640i
\(768\) 0 0
\(769\) −22178.0 −1.04000 −0.519999 0.854167i \(-0.674068\pi\)
−0.519999 + 0.854167i \(0.674068\pi\)
\(770\) 0 0
\(771\) −12942.0 −0.604533
\(772\) 0 0
\(773\) − 14286.0i − 0.664724i −0.943152 0.332362i \(-0.892154\pi\)
0.943152 0.332362i \(-0.107846\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 12864.0i 0.593943i
\(778\) 0 0
\(779\) −17784.0 −0.817943
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) 162.000i 0.00739388i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18868.0i 0.854602i 0.904109 + 0.427301i \(0.140535\pi\)
−0.904109 + 0.427301i \(0.859465\pi\)
\(788\) 0 0
\(789\) 15840.0 0.714726
\(790\) 0 0
\(791\) −13632.0 −0.612766
\(792\) 0 0
\(793\) − 16660.0i − 0.746045i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 21690.0i − 0.963989i −0.876174 0.481994i \(-0.839913\pi\)
0.876174 0.481994i \(-0.160087\pi\)
\(798\) 0 0
\(799\) −15120.0 −0.669471
\(800\) 0 0
\(801\) −6102.00 −0.269168
\(802\) 0 0
\(803\) − 44760.0i − 1.96706i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 16578.0i − 0.723139i
\(808\) 0 0
\(809\) 24726.0 1.07456 0.537281 0.843404i \(-0.319452\pi\)
0.537281 + 0.843404i \(0.319452\pi\)
\(810\) 0 0
\(811\) 2644.00 0.114480 0.0572401 0.998360i \(-0.481770\pi\)
0.0572401 + 0.998360i \(0.481770\pi\)
\(812\) 0 0
\(813\) − 6072.00i − 0.261936i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 31312.0i 1.34084i
\(818\) 0 0
\(819\) −9792.00 −0.417778
\(820\) 0 0
\(821\) −37842.0 −1.60864 −0.804321 0.594195i \(-0.797471\pi\)
−0.804321 + 0.594195i \(0.797471\pi\)
\(822\) 0 0
\(823\) − 880.000i − 0.0372720i −0.999826 0.0186360i \(-0.994068\pi\)
0.999826 0.0186360i \(-0.00593237\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 12876.0i 0.541406i 0.962663 + 0.270703i \(0.0872561\pi\)
−0.962663 + 0.270703i \(0.912744\pi\)
\(828\) 0 0
\(829\) 25498.0 1.06825 0.534127 0.845404i \(-0.320641\pi\)
0.534127 + 0.845404i \(0.320641\pi\)
\(830\) 0 0
\(831\) −6162.00 −0.257229
\(832\) 0 0
\(833\) − 28602.0i − 1.18968i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 6264.00i − 0.258680i
\(838\) 0 0
\(839\) −40584.0 −1.66998 −0.834991 0.550263i \(-0.814527\pi\)
−0.834991 + 0.550263i \(0.814527\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) 0 0
\(843\) − 21906.0i − 0.894997i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 72608.0i − 2.94550i
\(848\) 0 0
\(849\) 11172.0 0.451616
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 25738.0i 1.03312i 0.856251 + 0.516561i \(0.172788\pi\)
−0.856251 + 0.516561i \(0.827212\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 13314.0i 0.530686i 0.964154 + 0.265343i \(0.0854851\pi\)
−0.964154 + 0.265343i \(0.914515\pi\)
\(858\) 0 0
\(859\) 24524.0 0.974096 0.487048 0.873375i \(-0.338074\pi\)
0.487048 + 0.873375i \(0.338074\pi\)
\(860\) 0 0
\(861\) 22464.0 0.889165
\(862\) 0 0
\(863\) 5592.00i 0.220572i 0.993900 + 0.110286i \(0.0351767\pi\)
−0.993900 + 0.110286i \(0.964823\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 9447.00i 0.370054i
\(868\) 0 0
\(869\) 9120.00 0.356012
\(870\) 0 0
\(871\) 27608.0 1.07401
\(872\) 0 0
\(873\) − 1746.00i − 0.0676897i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 14386.0i − 0.553912i −0.960883 0.276956i \(-0.910674\pi\)
0.960883 0.276956i \(-0.0893256\pi\)
\(878\) 0 0
\(879\) −21654.0 −0.830912
\(880\) 0 0
\(881\) 47106.0 1.80141 0.900705 0.434432i \(-0.143051\pi\)
0.900705 + 0.434432i \(0.143051\pi\)
\(882\) 0 0
\(883\) 51548.0i 1.96458i 0.187354 + 0.982292i \(0.440009\pi\)
−0.187354 + 0.982292i \(0.559991\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 34080.0i − 1.29007i −0.764152 0.645036i \(-0.776842\pi\)
0.764152 0.645036i \(-0.223158\pi\)
\(888\) 0 0
\(889\) −6400.00 −0.241450
\(890\) 0 0
\(891\) 4860.00 0.182734
\(892\) 0 0
\(893\) − 27360.0i − 1.02527i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1392.00 −0.0516416
\(900\) 0 0
\(901\) 9324.00 0.344759
\(902\) 0 0
\(903\) − 39552.0i − 1.45759i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 25748.0i − 0.942611i −0.881970 0.471306i \(-0.843783\pi\)
0.881970 0.471306i \(-0.156217\pi\)
\(908\) 0 0
\(909\) −7182.00 −0.262059
\(910\) 0 0
\(911\) 24768.0 0.900769 0.450384 0.892835i \(-0.351287\pi\)
0.450384 + 0.892835i \(0.351287\pi\)
\(912\) 0 0
\(913\) − 48240.0i − 1.74864i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1920.00i 0.0691428i
\(918\) 0 0
\(919\) −31264.0 −1.12220 −0.561101 0.827747i \(-0.689622\pi\)
−0.561101 + 0.827747i \(0.689622\pi\)
\(920\) 0 0
\(921\) 7620.00 0.272625
\(922\) 0 0
\(923\) − 4080.00i − 0.145498i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 9792.00i − 0.346938i
\(928\) 0 0
\(929\) 6174.00 0.218043 0.109022 0.994039i \(-0.465228\pi\)
0.109022 + 0.994039i \(0.465228\pi\)
\(930\) 0 0
\(931\) 51756.0 1.82195
\(932\) 0 0
\(933\) − 4680.00i − 0.164219i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 28922.0i 1.00837i 0.863596 + 0.504184i \(0.168207\pi\)
−0.863596 + 0.504184i \(0.831793\pi\)
\(938\) 0 0
\(939\) −2802.00 −0.0973800
\(940\) 0 0
\(941\) 29238.0 1.01289 0.506446 0.862272i \(-0.330959\pi\)
0.506446 + 0.862272i \(0.330959\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2868.00i 0.0984134i 0.998789 + 0.0492067i \(0.0156693\pi\)
−0.998789 + 0.0492067i \(0.984331\pi\)
\(948\) 0 0
\(949\) 25364.0 0.867598
\(950\) 0 0
\(951\) 5022.00 0.171240
\(952\) 0 0
\(953\) − 24018.0i − 0.816390i −0.912895 0.408195i \(-0.866158\pi\)
0.912895 0.408195i \(-0.133842\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 1080.00i − 0.0364801i
\(958\) 0 0
\(959\) 20544.0 0.691763
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) 0 0
\(963\) 15444.0i 0.516797i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 25712.0i − 0.855059i −0.904001 0.427530i \(-0.859384\pi\)
0.904001 0.427530i \(-0.140616\pi\)
\(968\) 0 0
\(969\) 9576.00 0.317467
\(970\) 0 0
\(971\) 12396.0 0.409688 0.204844 0.978795i \(-0.434331\pi\)
0.204844 + 0.978795i \(0.434331\pi\)
\(972\) 0 0
\(973\) 90752.0i 2.99011i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 46614.0i − 1.52642i −0.646150 0.763211i \(-0.723622\pi\)
0.646150 0.763211i \(-0.276378\pi\)
\(978\) 0 0
\(979\) 40680.0 1.32803
\(980\) 0 0
\(981\) −8730.00 −0.284126
\(982\) 0 0
\(983\) − 672.000i − 0.0218041i −0.999941 0.0109021i \(-0.996530\pi\)
0.999941 0.0109021i \(-0.00347031\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 34560.0i 1.11455i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 38776.0 1.24295 0.621473 0.783435i \(-0.286534\pi\)
0.621473 + 0.783435i \(0.286534\pi\)
\(992\) 0 0
\(993\) 11964.0i 0.382342i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 30422.0i 0.966374i 0.875517 + 0.483187i \(0.160521\pi\)
−0.875517 + 0.483187i \(0.839479\pi\)
\(998\) 0 0
\(999\) 3618.00 0.114583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.4.f.u.49.2 2
4.3 odd 2 150.4.c.a.49.1 2
5.2 odd 4 1200.4.a.bk.1.1 1
5.3 odd 4 240.4.a.c.1.1 1
5.4 even 2 inner 1200.4.f.u.49.1 2
12.11 even 2 450.4.c.k.199.2 2
15.8 even 4 720.4.a.b.1.1 1
20.3 even 4 30.4.a.a.1.1 1
20.7 even 4 150.4.a.e.1.1 1
20.19 odd 2 150.4.c.a.49.2 2
40.3 even 4 960.4.a.j.1.1 1
40.13 odd 4 960.4.a.s.1.1 1
60.23 odd 4 90.4.a.d.1.1 1
60.47 odd 4 450.4.a.b.1.1 1
60.59 even 2 450.4.c.k.199.1 2
140.83 odd 4 1470.4.a.a.1.1 1
180.23 odd 12 810.4.e.e.541.1 2
180.43 even 12 810.4.e.m.271.1 2
180.83 odd 12 810.4.e.e.271.1 2
180.103 even 12 810.4.e.m.541.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.a.1.1 1 20.3 even 4
90.4.a.d.1.1 1 60.23 odd 4
150.4.a.e.1.1 1 20.7 even 4
150.4.c.a.49.1 2 4.3 odd 2
150.4.c.a.49.2 2 20.19 odd 2
240.4.a.c.1.1 1 5.3 odd 4
450.4.a.b.1.1 1 60.47 odd 4
450.4.c.k.199.1 2 60.59 even 2
450.4.c.k.199.2 2 12.11 even 2
720.4.a.b.1.1 1 15.8 even 4
810.4.e.e.271.1 2 180.83 odd 12
810.4.e.e.541.1 2 180.23 odd 12
810.4.e.m.271.1 2 180.43 even 12
810.4.e.m.541.1 2 180.103 even 12
960.4.a.j.1.1 1 40.3 even 4
960.4.a.s.1.1 1 40.13 odd 4
1200.4.a.bk.1.1 1 5.2 odd 4
1200.4.f.u.49.1 2 5.4 even 2 inner
1200.4.f.u.49.2 2 1.1 even 1 trivial
1470.4.a.a.1.1 1 140.83 odd 4