Properties

Label 1200.4.f.r
Level $1200$
Weight $4$
Character orbit 1200.f
Analytic conductor $70.802$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 i q^{3} + 4 i q^{7} -9 q^{9} +O(q^{10})\) \( q + 3 i q^{3} + 4 i q^{7} -9 q^{9} + 48 q^{11} -2 i q^{13} -114 i q^{17} + 140 q^{19} -12 q^{21} + 72 i q^{23} -27 i q^{27} -210 q^{29} -272 q^{31} + 144 i q^{33} -334 i q^{37} + 6 q^{39} -198 q^{41} -268 i q^{43} -216 i q^{47} + 327 q^{49} + 342 q^{51} + 78 i q^{53} + 420 i q^{57} + 240 q^{59} + 302 q^{61} -36 i q^{63} -596 i q^{67} -216 q^{69} + 768 q^{71} + 478 i q^{73} + 192 i q^{77} -640 q^{79} + 81 q^{81} -348 i q^{83} -630 i q^{87} -210 q^{89} + 8 q^{91} -816 i q^{93} -1534 i q^{97} -432 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9} + O(q^{10}) \) \( 2 q - 18 q^{9} + 96 q^{11} + 280 q^{19} - 24 q^{21} - 420 q^{29} - 544 q^{31} + 12 q^{39} - 396 q^{41} + 654 q^{49} + 684 q^{51} + 480 q^{59} + 604 q^{61} - 432 q^{69} + 1536 q^{71} - 1280 q^{79} + 162 q^{81} - 420 q^{89} + 16 q^{91} - 864 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 3.00000i 0 0 0 4.00000i 0 −9.00000 0
49.2 0 3.00000i 0 0 0 4.00000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.f.r 2
4.b odd 2 1 150.4.c.c 2
5.b even 2 1 inner 1200.4.f.r 2
5.c odd 4 1 240.4.a.b 1
5.c odd 4 1 1200.4.a.ba 1
12.b even 2 1 450.4.c.j 2
15.e even 4 1 720.4.a.y 1
20.d odd 2 1 150.4.c.c 2
20.e even 4 1 30.4.a.b 1
20.e even 4 1 150.4.a.b 1
40.i odd 4 1 960.4.a.bg 1
40.k even 4 1 960.4.a.n 1
60.h even 2 1 450.4.c.j 2
60.l odd 4 1 90.4.a.c 1
60.l odd 4 1 450.4.a.r 1
140.j odd 4 1 1470.4.a.r 1
180.v odd 12 2 810.4.e.p 2
180.x even 12 2 810.4.e.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.4.a.b 1 20.e even 4 1
90.4.a.c 1 60.l odd 4 1
150.4.a.b 1 20.e even 4 1
150.4.c.c 2 4.b odd 2 1
150.4.c.c 2 20.d odd 2 1
240.4.a.b 1 5.c odd 4 1
450.4.a.r 1 60.l odd 4 1
450.4.c.j 2 12.b even 2 1
450.4.c.j 2 60.h even 2 1
720.4.a.y 1 15.e even 4 1
810.4.e.i 2 180.x even 12 2
810.4.e.p 2 180.v odd 12 2
960.4.a.n 1 40.k even 4 1
960.4.a.bg 1 40.i odd 4 1
1200.4.a.ba 1 5.c odd 4 1
1200.4.f.r 2 1.a even 1 1 trivial
1200.4.f.r 2 5.b even 2 1 inner
1470.4.a.r 1 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7}^{2} + 16 \)
\( T_{11} - 48 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 16 + T^{2} \)
$11$ \( ( -48 + T )^{2} \)
$13$ \( 4 + T^{2} \)
$17$ \( 12996 + T^{2} \)
$19$ \( ( -140 + T )^{2} \)
$23$ \( 5184 + T^{2} \)
$29$ \( ( 210 + T )^{2} \)
$31$ \( ( 272 + T )^{2} \)
$37$ \( 111556 + T^{2} \)
$41$ \( ( 198 + T )^{2} \)
$43$ \( 71824 + T^{2} \)
$47$ \( 46656 + T^{2} \)
$53$ \( 6084 + T^{2} \)
$59$ \( ( -240 + T )^{2} \)
$61$ \( ( -302 + T )^{2} \)
$67$ \( 355216 + T^{2} \)
$71$ \( ( -768 + T )^{2} \)
$73$ \( 228484 + T^{2} \)
$79$ \( ( 640 + T )^{2} \)
$83$ \( 121104 + T^{2} \)
$89$ \( ( 210 + T )^{2} \)
$97$ \( 2353156 + T^{2} \)
show more
show less