Properties

Label 1200.4.f.j
Level $1200$
Weight $4$
Character orbit 1200.f
Analytic conductor $70.802$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(49,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.8022920069\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 i q^{3} + 16 i q^{7} - 9 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - 3 i q^{3} + 16 i q^{7} - 9 q^{9} - 12 q^{11} - 38 i q^{13} - 126 i q^{17} + 20 q^{19} + 48 q^{21} + 168 i q^{23} + 27 i q^{27} - 30 q^{29} + 88 q^{31} + 36 i q^{33} + 254 i q^{37} - 114 q^{39} + 42 q^{41} - 52 i q^{43} + 96 i q^{47} + 87 q^{49} - 378 q^{51} - 198 i q^{53} - 60 i q^{57} - 660 q^{59} - 538 q^{61} - 144 i q^{63} - 884 i q^{67} + 504 q^{69} - 792 q^{71} - 218 i q^{73} - 192 i q^{77} - 520 q^{79} + 81 q^{81} - 492 i q^{83} + 90 i q^{87} - 810 q^{89} + 608 q^{91} - 264 i q^{93} + 1154 i q^{97} + 108 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 18 q^{9} - 24 q^{11} + 40 q^{19} + 96 q^{21} - 60 q^{29} + 176 q^{31} - 228 q^{39} + 84 q^{41} + 174 q^{49} - 756 q^{51} - 1320 q^{59} - 1076 q^{61} + 1008 q^{69} - 1584 q^{71} - 1040 q^{79} + 162 q^{81} - 1620 q^{89} + 1216 q^{91} + 216 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 3.00000i 0 0 0 16.0000i 0 −9.00000 0
49.2 0 3.00000i 0 0 0 16.0000i 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.f.j 2
4.b odd 2 1 150.4.c.d 2
5.b even 2 1 inner 1200.4.f.j 2
5.c odd 4 1 48.4.a.c 1
5.c odd 4 1 1200.4.a.b 1
12.b even 2 1 450.4.c.e 2
15.e even 4 1 144.4.a.c 1
20.d odd 2 1 150.4.c.d 2
20.e even 4 1 6.4.a.a 1
20.e even 4 1 150.4.a.i 1
35.f even 4 1 2352.4.a.e 1
40.i odd 4 1 192.4.a.c 1
40.k even 4 1 192.4.a.i 1
60.h even 2 1 450.4.c.e 2
60.l odd 4 1 18.4.a.a 1
60.l odd 4 1 450.4.a.h 1
80.i odd 4 1 768.4.d.c 2
80.j even 4 1 768.4.d.n 2
80.s even 4 1 768.4.d.n 2
80.t odd 4 1 768.4.d.c 2
120.q odd 4 1 576.4.a.q 1
120.w even 4 1 576.4.a.r 1
140.j odd 4 1 294.4.a.e 1
140.w even 12 2 294.4.e.h 2
140.x odd 12 2 294.4.e.g 2
180.v odd 12 2 162.4.c.c 2
180.x even 12 2 162.4.c.f 2
220.i odd 4 1 726.4.a.f 1
260.l odd 4 1 1014.4.b.d 2
260.p even 4 1 1014.4.a.g 1
260.s odd 4 1 1014.4.b.d 2
340.r even 4 1 1734.4.a.d 1
380.j odd 4 1 2166.4.a.i 1
420.w even 4 1 882.4.a.n 1
420.bp odd 12 2 882.4.g.i 2
420.br even 12 2 882.4.g.f 2
660.q even 4 1 2178.4.a.e 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.4.a.a 1 20.e even 4 1
18.4.a.a 1 60.l odd 4 1
48.4.a.c 1 5.c odd 4 1
144.4.a.c 1 15.e even 4 1
150.4.a.i 1 20.e even 4 1
150.4.c.d 2 4.b odd 2 1
150.4.c.d 2 20.d odd 2 1
162.4.c.c 2 180.v odd 12 2
162.4.c.f 2 180.x even 12 2
192.4.a.c 1 40.i odd 4 1
192.4.a.i 1 40.k even 4 1
294.4.a.e 1 140.j odd 4 1
294.4.e.g 2 140.x odd 12 2
294.4.e.h 2 140.w even 12 2
450.4.a.h 1 60.l odd 4 1
450.4.c.e 2 12.b even 2 1
450.4.c.e 2 60.h even 2 1
576.4.a.q 1 120.q odd 4 1
576.4.a.r 1 120.w even 4 1
726.4.a.f 1 220.i odd 4 1
768.4.d.c 2 80.i odd 4 1
768.4.d.c 2 80.t odd 4 1
768.4.d.n 2 80.j even 4 1
768.4.d.n 2 80.s even 4 1
882.4.a.n 1 420.w even 4 1
882.4.g.f 2 420.br even 12 2
882.4.g.i 2 420.bp odd 12 2
1014.4.a.g 1 260.p even 4 1
1014.4.b.d 2 260.l odd 4 1
1014.4.b.d 2 260.s odd 4 1
1200.4.a.b 1 5.c odd 4 1
1200.4.f.j 2 1.a even 1 1 trivial
1200.4.f.j 2 5.b even 2 1 inner
1734.4.a.d 1 340.r even 4 1
2166.4.a.i 1 380.j odd 4 1
2178.4.a.e 1 660.q even 4 1
2352.4.a.e 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7}^{2} + 256 \) Copy content Toggle raw display
\( T_{11} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 256 \) Copy content Toggle raw display
$11$ \( (T + 12)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1444 \) Copy content Toggle raw display
$17$ \( T^{2} + 15876 \) Copy content Toggle raw display
$19$ \( (T - 20)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 28224 \) Copy content Toggle raw display
$29$ \( (T + 30)^{2} \) Copy content Toggle raw display
$31$ \( (T - 88)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 64516 \) Copy content Toggle raw display
$41$ \( (T - 42)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 2704 \) Copy content Toggle raw display
$47$ \( T^{2} + 9216 \) Copy content Toggle raw display
$53$ \( T^{2} + 39204 \) Copy content Toggle raw display
$59$ \( (T + 660)^{2} \) Copy content Toggle raw display
$61$ \( (T + 538)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 781456 \) Copy content Toggle raw display
$71$ \( (T + 792)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 47524 \) Copy content Toggle raw display
$79$ \( (T + 520)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 242064 \) Copy content Toggle raw display
$89$ \( (T + 810)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 1331716 \) Copy content Toggle raw display
show more
show less