Properties

Label 1200.4.f.c.49.1
Level $1200$
Weight $4$
Character 1200.49
Analytic conductor $70.802$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(49,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1200.49
Dual form 1200.4.f.c.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{3} +1.00000i q^{7} -9.00000 q^{9} +O(q^{10})\) \(q-3.00000i q^{3} +1.00000i q^{7} -9.00000 q^{9} -42.0000 q^{11} +67.0000i q^{13} +54.0000i q^{17} -115.000 q^{19} +3.00000 q^{21} -162.000i q^{23} +27.0000i q^{27} +210.000 q^{29} +193.000 q^{31} +126.000i q^{33} -286.000i q^{37} +201.000 q^{39} +12.0000 q^{41} +263.000i q^{43} -414.000i q^{47} +342.000 q^{49} +162.000 q^{51} +192.000i q^{53} +345.000i q^{57} +690.000 q^{59} -733.000 q^{61} -9.00000i q^{63} -299.000i q^{67} -486.000 q^{69} +228.000 q^{71} -938.000i q^{73} -42.0000i q^{77} -160.000 q^{79} +81.0000 q^{81} -462.000i q^{83} -630.000i q^{87} +240.000 q^{89} -67.0000 q^{91} -579.000i q^{93} -511.000i q^{97} +378.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 18 q^{9} - 84 q^{11} - 230 q^{19} + 6 q^{21} + 420 q^{29} + 386 q^{31} + 402 q^{39} + 24 q^{41} + 684 q^{49} + 324 q^{51} + 1380 q^{59} - 1466 q^{61} - 972 q^{69} + 456 q^{71} - 320 q^{79} + 162 q^{81} + 480 q^{89} - 134 q^{91} + 756 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 3.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.00000i 0.0539949i 0.999636 + 0.0269975i \(0.00859460\pi\)
−0.999636 + 0.0269975i \(0.991405\pi\)
\(8\) 0 0
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −42.0000 −1.15123 −0.575613 0.817723i \(-0.695236\pi\)
−0.575613 + 0.817723i \(0.695236\pi\)
\(12\) 0 0
\(13\) 67.0000i 1.42942i 0.699421 + 0.714710i \(0.253441\pi\)
−0.699421 + 0.714710i \(0.746559\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 54.0000i 0.770407i 0.922832 + 0.385204i \(0.125869\pi\)
−0.922832 + 0.385204i \(0.874131\pi\)
\(18\) 0 0
\(19\) −115.000 −1.38857 −0.694284 0.719701i \(-0.744279\pi\)
−0.694284 + 0.719701i \(0.744279\pi\)
\(20\) 0 0
\(21\) 3.00000 0.0311740
\(22\) 0 0
\(23\) − 162.000i − 1.46867i −0.678789 0.734333i \(-0.737495\pi\)
0.678789 0.734333i \(-0.262505\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000i 0.192450i
\(28\) 0 0
\(29\) 210.000 1.34469 0.672345 0.740238i \(-0.265287\pi\)
0.672345 + 0.740238i \(0.265287\pi\)
\(30\) 0 0
\(31\) 193.000 1.11819 0.559094 0.829104i \(-0.311149\pi\)
0.559094 + 0.829104i \(0.311149\pi\)
\(32\) 0 0
\(33\) 126.000i 0.664660i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 286.000i − 1.27076i −0.772200 0.635380i \(-0.780844\pi\)
0.772200 0.635380i \(-0.219156\pi\)
\(38\) 0 0
\(39\) 201.000 0.825276
\(40\) 0 0
\(41\) 12.0000 0.0457094 0.0228547 0.999739i \(-0.492724\pi\)
0.0228547 + 0.999739i \(0.492724\pi\)
\(42\) 0 0
\(43\) 263.000i 0.932724i 0.884594 + 0.466362i \(0.154436\pi\)
−0.884594 + 0.466362i \(0.845564\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 414.000i − 1.28485i −0.766347 0.642427i \(-0.777928\pi\)
0.766347 0.642427i \(-0.222072\pi\)
\(48\) 0 0
\(49\) 342.000 0.997085
\(50\) 0 0
\(51\) 162.000 0.444795
\(52\) 0 0
\(53\) 192.000i 0.497608i 0.968554 + 0.248804i \(0.0800375\pi\)
−0.968554 + 0.248804i \(0.919962\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 345.000i 0.801691i
\(58\) 0 0
\(59\) 690.000 1.52255 0.761274 0.648430i \(-0.224574\pi\)
0.761274 + 0.648430i \(0.224574\pi\)
\(60\) 0 0
\(61\) −733.000 −1.53854 −0.769271 0.638923i \(-0.779380\pi\)
−0.769271 + 0.638923i \(0.779380\pi\)
\(62\) 0 0
\(63\) − 9.00000i − 0.0179983i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 299.000i − 0.545204i −0.962127 0.272602i \(-0.912116\pi\)
0.962127 0.272602i \(-0.0878842\pi\)
\(68\) 0 0
\(69\) −486.000 −0.847935
\(70\) 0 0
\(71\) 228.000 0.381107 0.190554 0.981677i \(-0.438972\pi\)
0.190554 + 0.981677i \(0.438972\pi\)
\(72\) 0 0
\(73\) − 938.000i − 1.50390i −0.659221 0.751949i \(-0.729114\pi\)
0.659221 0.751949i \(-0.270886\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 42.0000i − 0.0621603i
\(78\) 0 0
\(79\) −160.000 −0.227866 −0.113933 0.993488i \(-0.536345\pi\)
−0.113933 + 0.993488i \(0.536345\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) − 462.000i − 0.610977i −0.952196 0.305488i \(-0.901180\pi\)
0.952196 0.305488i \(-0.0988197\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 630.000i − 0.776357i
\(88\) 0 0
\(89\) 240.000 0.285842 0.142921 0.989734i \(-0.454350\pi\)
0.142921 + 0.989734i \(0.454350\pi\)
\(90\) 0 0
\(91\) −67.0000 −0.0771814
\(92\) 0 0
\(93\) − 579.000i − 0.645586i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 511.000i − 0.534889i −0.963573 0.267444i \(-0.913821\pi\)
0.963573 0.267444i \(-0.0861791\pi\)
\(98\) 0 0
\(99\) 378.000 0.383742
\(100\) 0 0
\(101\) 912.000 0.898489 0.449245 0.893409i \(-0.351693\pi\)
0.449245 + 0.893409i \(0.351693\pi\)
\(102\) 0 0
\(103\) 668.000i 0.639029i 0.947581 + 0.319515i \(0.103520\pi\)
−0.947581 + 0.319515i \(0.896480\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1296.00i 1.17093i 0.810699 + 0.585463i \(0.199087\pi\)
−0.810699 + 0.585463i \(0.800913\pi\)
\(108\) 0 0
\(109\) 1735.00 1.52461 0.762307 0.647216i \(-0.224067\pi\)
0.762307 + 0.647216i \(0.224067\pi\)
\(110\) 0 0
\(111\) −858.000 −0.733673
\(112\) 0 0
\(113\) 1092.00i 0.909086i 0.890725 + 0.454543i \(0.150197\pi\)
−0.890725 + 0.454543i \(0.849803\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 603.000i − 0.476473i
\(118\) 0 0
\(119\) −54.0000 −0.0415981
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 0 0
\(123\) − 36.0000i − 0.0263903i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 16.0000i 0.0111793i 0.999984 + 0.00558965i \(0.00177925\pi\)
−0.999984 + 0.00558965i \(0.998221\pi\)
\(128\) 0 0
\(129\) 789.000 0.538508
\(130\) 0 0
\(131\) −1992.00 −1.32856 −0.664282 0.747482i \(-0.731263\pi\)
−0.664282 + 0.747482i \(0.731263\pi\)
\(132\) 0 0
\(133\) − 115.000i − 0.0749757i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2346.00i − 1.46301i −0.681836 0.731505i \(-0.738818\pi\)
0.681836 0.731505i \(-0.261182\pi\)
\(138\) 0 0
\(139\) 2900.00 1.76960 0.884801 0.465968i \(-0.154294\pi\)
0.884801 + 0.465968i \(0.154294\pi\)
\(140\) 0 0
\(141\) −1242.00 −0.741810
\(142\) 0 0
\(143\) − 2814.00i − 1.64558i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 1026.00i − 0.575667i
\(148\) 0 0
\(149\) 2070.00 1.13813 0.569064 0.822293i \(-0.307306\pi\)
0.569064 + 0.822293i \(0.307306\pi\)
\(150\) 0 0
\(151\) −2237.00 −1.20559 −0.602796 0.797895i \(-0.705947\pi\)
−0.602796 + 0.797895i \(0.705947\pi\)
\(152\) 0 0
\(153\) − 486.000i − 0.256802i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 241.000i − 0.122509i −0.998122 0.0612544i \(-0.980490\pi\)
0.998122 0.0612544i \(-0.0195101\pi\)
\(158\) 0 0
\(159\) 576.000 0.287294
\(160\) 0 0
\(161\) 162.000 0.0793006
\(162\) 0 0
\(163\) − 3547.00i − 1.70443i −0.523190 0.852216i \(-0.675258\pi\)
0.523190 0.852216i \(-0.324742\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 984.000i − 0.455953i −0.973667 0.227977i \(-0.926789\pi\)
0.973667 0.227977i \(-0.0732110\pi\)
\(168\) 0 0
\(169\) −2292.00 −1.04324
\(170\) 0 0
\(171\) 1035.00 0.462856
\(172\) 0 0
\(173\) − 3618.00i − 1.59001i −0.606604 0.795004i \(-0.707469\pi\)
0.606604 0.795004i \(-0.292531\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) − 2070.00i − 0.879044i
\(178\) 0 0
\(179\) −150.000 −0.0626342 −0.0313171 0.999509i \(-0.509970\pi\)
−0.0313171 + 0.999509i \(0.509970\pi\)
\(180\) 0 0
\(181\) 197.000 0.0809000 0.0404500 0.999182i \(-0.487121\pi\)
0.0404500 + 0.999182i \(0.487121\pi\)
\(182\) 0 0
\(183\) 2199.00i 0.888277i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2268.00i − 0.886912i
\(188\) 0 0
\(189\) −27.0000 −0.0103913
\(190\) 0 0
\(191\) −1302.00 −0.493243 −0.246622 0.969112i \(-0.579320\pi\)
−0.246622 + 0.969112i \(0.579320\pi\)
\(192\) 0 0
\(193\) − 4163.00i − 1.55264i −0.630340 0.776319i \(-0.717084\pi\)
0.630340 0.776319i \(-0.282916\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3054.00i 1.10451i 0.833675 + 0.552255i \(0.186233\pi\)
−0.833675 + 0.552255i \(0.813767\pi\)
\(198\) 0 0
\(199\) 3425.00 1.22006 0.610030 0.792379i \(-0.291158\pi\)
0.610030 + 0.792379i \(0.291158\pi\)
\(200\) 0 0
\(201\) −897.000 −0.314774
\(202\) 0 0
\(203\) 210.000i 0.0726065i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1458.00i 0.489556i
\(208\) 0 0
\(209\) 4830.00 1.59856
\(210\) 0 0
\(211\) 2443.00 0.797076 0.398538 0.917152i \(-0.369518\pi\)
0.398538 + 0.917152i \(0.369518\pi\)
\(212\) 0 0
\(213\) − 684.000i − 0.220032i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 193.000i 0.0603765i
\(218\) 0 0
\(219\) −2814.00 −0.868276
\(220\) 0 0
\(221\) −3618.00 −1.10124
\(222\) 0 0
\(223\) 23.0000i 0.00690670i 0.999994 + 0.00345335i \(0.00109924\pi\)
−0.999994 + 0.00345335i \(0.998901\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1956.00i 0.571913i 0.958243 + 0.285957i \(0.0923113\pi\)
−0.958243 + 0.285957i \(0.907689\pi\)
\(228\) 0 0
\(229\) −1805.00 −0.520864 −0.260432 0.965492i \(-0.583865\pi\)
−0.260432 + 0.965492i \(0.583865\pi\)
\(230\) 0 0
\(231\) −126.000 −0.0358883
\(232\) 0 0
\(233\) − 3468.00i − 0.975091i −0.873098 0.487546i \(-0.837892\pi\)
0.873098 0.487546i \(-0.162108\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 480.000i 0.131558i
\(238\) 0 0
\(239\) 2640.00 0.714508 0.357254 0.934007i \(-0.383713\pi\)
0.357254 + 0.934007i \(0.383713\pi\)
\(240\) 0 0
\(241\) −5383.00 −1.43879 −0.719397 0.694599i \(-0.755582\pi\)
−0.719397 + 0.694599i \(0.755582\pi\)
\(242\) 0 0
\(243\) − 243.000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 7705.00i − 1.98485i
\(248\) 0 0
\(249\) −1386.00 −0.352748
\(250\) 0 0
\(251\) 5028.00 1.26440 0.632200 0.774805i \(-0.282152\pi\)
0.632200 + 0.774805i \(0.282152\pi\)
\(252\) 0 0
\(253\) 6804.00i 1.69077i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 564.000i 0.136892i 0.997655 + 0.0684462i \(0.0218042\pi\)
−0.997655 + 0.0684462i \(0.978196\pi\)
\(258\) 0 0
\(259\) 286.000 0.0686146
\(260\) 0 0
\(261\) −1890.00 −0.448230
\(262\) 0 0
\(263\) − 1812.00i − 0.424839i −0.977179 0.212420i \(-0.931866\pi\)
0.977179 0.212420i \(-0.0681344\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 720.000i − 0.165031i
\(268\) 0 0
\(269\) 5190.00 1.17636 0.588178 0.808731i \(-0.299845\pi\)
0.588178 + 0.808731i \(0.299845\pi\)
\(270\) 0 0
\(271\) −4592.00 −1.02931 −0.514657 0.857396i \(-0.672081\pi\)
−0.514657 + 0.857396i \(0.672081\pi\)
\(272\) 0 0
\(273\) 201.000i 0.0445607i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2191.00i − 0.475251i −0.971357 0.237625i \(-0.923631\pi\)
0.971357 0.237625i \(-0.0763690\pi\)
\(278\) 0 0
\(279\) −1737.00 −0.372729
\(280\) 0 0
\(281\) 7842.00 1.66482 0.832410 0.554160i \(-0.186960\pi\)
0.832410 + 0.554160i \(0.186960\pi\)
\(282\) 0 0
\(283\) − 247.000i − 0.0518821i −0.999663 0.0259410i \(-0.991742\pi\)
0.999663 0.0259410i \(-0.00825821\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 12.0000i 0.00246808i
\(288\) 0 0
\(289\) 1997.00 0.406473
\(290\) 0 0
\(291\) −1533.00 −0.308818
\(292\) 0 0
\(293\) 5442.00i 1.08507i 0.840034 + 0.542534i \(0.182535\pi\)
−0.840034 + 0.542534i \(0.817465\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 1134.00i − 0.221553i
\(298\) 0 0
\(299\) 10854.0 2.09934
\(300\) 0 0
\(301\) −263.000 −0.0503624
\(302\) 0 0
\(303\) − 2736.00i − 0.518743i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3871.00i 0.719641i 0.933022 + 0.359820i \(0.117162\pi\)
−0.933022 + 0.359820i \(0.882838\pi\)
\(308\) 0 0
\(309\) 2004.00 0.368944
\(310\) 0 0
\(311\) 5718.00 1.04257 0.521283 0.853384i \(-0.325454\pi\)
0.521283 + 0.853384i \(0.325454\pi\)
\(312\) 0 0
\(313\) 3637.00i 0.656790i 0.944540 + 0.328395i \(0.106508\pi\)
−0.944540 + 0.328395i \(0.893492\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1296.00i − 0.229623i −0.993387 0.114812i \(-0.963374\pi\)
0.993387 0.114812i \(-0.0366265\pi\)
\(318\) 0 0
\(319\) −8820.00 −1.54804
\(320\) 0 0
\(321\) 3888.00 0.676034
\(322\) 0 0
\(323\) − 6210.00i − 1.06976i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 5205.00i − 0.880236i
\(328\) 0 0
\(329\) 414.000 0.0693756
\(330\) 0 0
\(331\) −5132.00 −0.852206 −0.426103 0.904675i \(-0.640114\pi\)
−0.426103 + 0.904675i \(0.640114\pi\)
\(332\) 0 0
\(333\) 2574.00i 0.423587i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 6751.00i − 1.09125i −0.838030 0.545624i \(-0.816293\pi\)
0.838030 0.545624i \(-0.183707\pi\)
\(338\) 0 0
\(339\) 3276.00 0.524861
\(340\) 0 0
\(341\) −8106.00 −1.28729
\(342\) 0 0
\(343\) 685.000i 0.107832i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5226.00i 0.808491i 0.914651 + 0.404246i \(0.132466\pi\)
−0.914651 + 0.404246i \(0.867534\pi\)
\(348\) 0 0
\(349\) 6190.00 0.949407 0.474704 0.880146i \(-0.342555\pi\)
0.474704 + 0.880146i \(0.342555\pi\)
\(350\) 0 0
\(351\) −1809.00 −0.275092
\(352\) 0 0
\(353\) − 6618.00i − 0.997849i −0.866646 0.498924i \(-0.833729\pi\)
0.866646 0.498924i \(-0.166271\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 162.000i 0.0240167i
\(358\) 0 0
\(359\) −3420.00 −0.502787 −0.251394 0.967885i \(-0.580889\pi\)
−0.251394 + 0.967885i \(0.580889\pi\)
\(360\) 0 0
\(361\) 6366.00 0.928124
\(362\) 0 0
\(363\) − 1299.00i − 0.187823i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 871.000i 0.123885i 0.998080 + 0.0619425i \(0.0197296\pi\)
−0.998080 + 0.0619425i \(0.980270\pi\)
\(368\) 0 0
\(369\) −108.000 −0.0152365
\(370\) 0 0
\(371\) −192.000 −0.0268683
\(372\) 0 0
\(373\) − 6383.00i − 0.886057i −0.896508 0.443028i \(-0.853904\pi\)
0.896508 0.443028i \(-0.146096\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14070.0i 1.92213i
\(378\) 0 0
\(379\) −9865.00 −1.33702 −0.668511 0.743703i \(-0.733068\pi\)
−0.668511 + 0.743703i \(0.733068\pi\)
\(380\) 0 0
\(381\) 48.0000 0.00645437
\(382\) 0 0
\(383\) 9828.00i 1.31119i 0.755111 + 0.655597i \(0.227583\pi\)
−0.755111 + 0.655597i \(0.772417\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 2367.00i − 0.310908i
\(388\) 0 0
\(389\) −12540.0 −1.63446 −0.817228 0.576315i \(-0.804490\pi\)
−0.817228 + 0.576315i \(0.804490\pi\)
\(390\) 0 0
\(391\) 8748.00 1.13147
\(392\) 0 0
\(393\) 5976.00i 0.767047i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 1381.00i − 0.174585i −0.996183 0.0872927i \(-0.972178\pi\)
0.996183 0.0872927i \(-0.0278215\pi\)
\(398\) 0 0
\(399\) −345.000 −0.0432872
\(400\) 0 0
\(401\) 14232.0 1.77235 0.886175 0.463351i \(-0.153353\pi\)
0.886175 + 0.463351i \(0.153353\pi\)
\(402\) 0 0
\(403\) 12931.0i 1.59836i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 12012.0i 1.46293i
\(408\) 0 0
\(409\) −2645.00 −0.319772 −0.159886 0.987135i \(-0.551113\pi\)
−0.159886 + 0.987135i \(0.551113\pi\)
\(410\) 0 0
\(411\) −7038.00 −0.844669
\(412\) 0 0
\(413\) 690.000i 0.0822099i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 8700.00i − 1.02168i
\(418\) 0 0
\(419\) 3000.00 0.349784 0.174892 0.984588i \(-0.444042\pi\)
0.174892 + 0.984588i \(0.444042\pi\)
\(420\) 0 0
\(421\) −11338.0 −1.31254 −0.656271 0.754525i \(-0.727867\pi\)
−0.656271 + 0.754525i \(0.727867\pi\)
\(422\) 0 0
\(423\) 3726.00i 0.428284i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 733.000i − 0.0830734i
\(428\) 0 0
\(429\) −8442.00 −0.950078
\(430\) 0 0
\(431\) 3258.00 0.364112 0.182056 0.983288i \(-0.441725\pi\)
0.182056 + 0.983288i \(0.441725\pi\)
\(432\) 0 0
\(433\) − 1163.00i − 0.129077i −0.997915 0.0645384i \(-0.979443\pi\)
0.997915 0.0645384i \(-0.0205575\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18630.0i 2.03934i
\(438\) 0 0
\(439\) 6695.00 0.727870 0.363935 0.931424i \(-0.381433\pi\)
0.363935 + 0.931424i \(0.381433\pi\)
\(440\) 0 0
\(441\) −3078.00 −0.332362
\(442\) 0 0
\(443\) 16368.0i 1.75546i 0.479159 + 0.877728i \(0.340942\pi\)
−0.479159 + 0.877728i \(0.659058\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 6210.00i − 0.657098i
\(448\) 0 0
\(449\) −16380.0 −1.72165 −0.860824 0.508903i \(-0.830051\pi\)
−0.860824 + 0.508903i \(0.830051\pi\)
\(450\) 0 0
\(451\) −504.000 −0.0526218
\(452\) 0 0
\(453\) 6711.00i 0.696049i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 13786.0i − 1.41112i −0.708650 0.705560i \(-0.750696\pi\)
0.708650 0.705560i \(-0.249304\pi\)
\(458\) 0 0
\(459\) −1458.00 −0.148265
\(460\) 0 0
\(461\) 11832.0 1.19538 0.597691 0.801726i \(-0.296085\pi\)
0.597691 + 0.801726i \(0.296085\pi\)
\(462\) 0 0
\(463\) 3008.00i 0.301930i 0.988539 + 0.150965i \(0.0482381\pi\)
−0.988539 + 0.150965i \(0.951762\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4434.00i − 0.439360i −0.975572 0.219680i \(-0.929499\pi\)
0.975572 0.219680i \(-0.0705013\pi\)
\(468\) 0 0
\(469\) 299.000 0.0294382
\(470\) 0 0
\(471\) −723.000 −0.0707305
\(472\) 0 0
\(473\) − 11046.0i − 1.07378i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1728.00i − 0.165869i
\(478\) 0 0
\(479\) 7410.00 0.706830 0.353415 0.935467i \(-0.385020\pi\)
0.353415 + 0.935467i \(0.385020\pi\)
\(480\) 0 0
\(481\) 19162.0 1.81645
\(482\) 0 0
\(483\) − 486.000i − 0.0457842i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 8671.00i 0.806818i 0.915020 + 0.403409i \(0.132175\pi\)
−0.915020 + 0.403409i \(0.867825\pi\)
\(488\) 0 0
\(489\) −10641.0 −0.984055
\(490\) 0 0
\(491\) 19368.0 1.78017 0.890087 0.455790i \(-0.150643\pi\)
0.890087 + 0.455790i \(0.150643\pi\)
\(492\) 0 0
\(493\) 11340.0i 1.03596i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 228.000i 0.0205779i
\(498\) 0 0
\(499\) −8875.00 −0.796192 −0.398096 0.917344i \(-0.630329\pi\)
−0.398096 + 0.917344i \(0.630329\pi\)
\(500\) 0 0
\(501\) −2952.00 −0.263245
\(502\) 0 0
\(503\) − 10452.0i − 0.926504i −0.886227 0.463252i \(-0.846682\pi\)
0.886227 0.463252i \(-0.153318\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 6876.00i 0.602315i
\(508\) 0 0
\(509\) 19770.0 1.72159 0.860796 0.508951i \(-0.169967\pi\)
0.860796 + 0.508951i \(0.169967\pi\)
\(510\) 0 0
\(511\) 938.000 0.0812029
\(512\) 0 0
\(513\) − 3105.00i − 0.267230i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 17388.0i 1.47916i
\(518\) 0 0
\(519\) −10854.0 −0.917992
\(520\) 0 0
\(521\) −11238.0 −0.945001 −0.472501 0.881330i \(-0.656649\pi\)
−0.472501 + 0.881330i \(0.656649\pi\)
\(522\) 0 0
\(523\) − 7447.00i − 0.622628i −0.950307 0.311314i \(-0.899231\pi\)
0.950307 0.311314i \(-0.100769\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10422.0i 0.861460i
\(528\) 0 0
\(529\) −14077.0 −1.15698
\(530\) 0 0
\(531\) −6210.00 −0.507516
\(532\) 0 0
\(533\) 804.000i 0.0653379i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 450.000i 0.0361619i
\(538\) 0 0
\(539\) −14364.0 −1.14787
\(540\) 0 0
\(541\) −17623.0 −1.40050 −0.700251 0.713896i \(-0.746929\pi\)
−0.700251 + 0.713896i \(0.746929\pi\)
\(542\) 0 0
\(543\) − 591.000i − 0.0467076i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 10096.0i 0.789166i 0.918860 + 0.394583i \(0.129111\pi\)
−0.918860 + 0.394583i \(0.870889\pi\)
\(548\) 0 0
\(549\) 6597.00 0.512847
\(550\) 0 0
\(551\) −24150.0 −1.86720
\(552\) 0 0
\(553\) − 160.000i − 0.0123036i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14514.0i 1.10409i 0.833814 + 0.552045i \(0.186152\pi\)
−0.833814 + 0.552045i \(0.813848\pi\)
\(558\) 0 0
\(559\) −17621.0 −1.33325
\(560\) 0 0
\(561\) −6804.00 −0.512059
\(562\) 0 0
\(563\) − 10242.0i − 0.766694i −0.923604 0.383347i \(-0.874771\pi\)
0.923604 0.383347i \(-0.125229\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 81.0000i 0.00599944i
\(568\) 0 0
\(569\) 6750.00 0.497319 0.248660 0.968591i \(-0.420010\pi\)
0.248660 + 0.968591i \(0.420010\pi\)
\(570\) 0 0
\(571\) −17117.0 −1.25451 −0.627254 0.778815i \(-0.715821\pi\)
−0.627254 + 0.778815i \(0.715821\pi\)
\(572\) 0 0
\(573\) 3906.00i 0.284774i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 301.000i − 0.0217171i −0.999941 0.0108586i \(-0.996544\pi\)
0.999941 0.0108586i \(-0.00345646\pi\)
\(578\) 0 0
\(579\) −12489.0 −0.896416
\(580\) 0 0
\(581\) 462.000 0.0329897
\(582\) 0 0
\(583\) − 8064.00i − 0.572859i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 15456.0i 1.08678i 0.839482 + 0.543388i \(0.182859\pi\)
−0.839482 + 0.543388i \(0.817141\pi\)
\(588\) 0 0
\(589\) −22195.0 −1.55268
\(590\) 0 0
\(591\) 9162.00 0.637689
\(592\) 0 0
\(593\) 9492.00i 0.657318i 0.944449 + 0.328659i \(0.106597\pi\)
−0.944449 + 0.328659i \(0.893403\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 10275.0i − 0.704402i
\(598\) 0 0
\(599\) 1500.00 0.102318 0.0511589 0.998691i \(-0.483709\pi\)
0.0511589 + 0.998691i \(0.483709\pi\)
\(600\) 0 0
\(601\) 14627.0 0.992758 0.496379 0.868106i \(-0.334663\pi\)
0.496379 + 0.868106i \(0.334663\pi\)
\(602\) 0 0
\(603\) 2691.00i 0.181735i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 16184.0i − 1.08219i −0.840962 0.541094i \(-0.818010\pi\)
0.840962 0.541094i \(-0.181990\pi\)
\(608\) 0 0
\(609\) 630.000 0.0419194
\(610\) 0 0
\(611\) 27738.0 1.83659
\(612\) 0 0
\(613\) 18502.0i 1.21907i 0.792760 + 0.609534i \(0.208643\pi\)
−0.792760 + 0.609534i \(0.791357\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 13896.0i − 0.906697i −0.891333 0.453348i \(-0.850229\pi\)
0.891333 0.453348i \(-0.149771\pi\)
\(618\) 0 0
\(619\) −9895.00 −0.642510 −0.321255 0.946993i \(-0.604105\pi\)
−0.321255 + 0.946993i \(0.604105\pi\)
\(620\) 0 0
\(621\) 4374.00 0.282645
\(622\) 0 0
\(623\) 240.000i 0.0154340i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 14490.0i − 0.922926i
\(628\) 0 0
\(629\) 15444.0 0.979003
\(630\) 0 0
\(631\) −467.000 −0.0294627 −0.0147314 0.999891i \(-0.504689\pi\)
−0.0147314 + 0.999891i \(0.504689\pi\)
\(632\) 0 0
\(633\) − 7329.00i − 0.460192i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 22914.0i 1.42525i
\(638\) 0 0
\(639\) −2052.00 −0.127036
\(640\) 0 0
\(641\) 30612.0 1.88627 0.943137 0.332405i \(-0.107860\pi\)
0.943137 + 0.332405i \(0.107860\pi\)
\(642\) 0 0
\(643\) − 1852.00i − 0.113586i −0.998386 0.0567930i \(-0.981913\pi\)
0.998386 0.0567930i \(-0.0180875\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21156.0i 1.28551i 0.766070 + 0.642757i \(0.222210\pi\)
−0.766070 + 0.642757i \(0.777790\pi\)
\(648\) 0 0
\(649\) −28980.0 −1.75280
\(650\) 0 0
\(651\) 579.000 0.0348584
\(652\) 0 0
\(653\) 9702.00i 0.581422i 0.956811 + 0.290711i \(0.0938918\pi\)
−0.956811 + 0.290711i \(0.906108\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8442.00i 0.501300i
\(658\) 0 0
\(659\) 1980.00 0.117041 0.0585204 0.998286i \(-0.481362\pi\)
0.0585204 + 0.998286i \(0.481362\pi\)
\(660\) 0 0
\(661\) −20158.0 −1.18617 −0.593083 0.805142i \(-0.702089\pi\)
−0.593083 + 0.805142i \(0.702089\pi\)
\(662\) 0 0
\(663\) 10854.0i 0.635799i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 34020.0i − 1.97490i
\(668\) 0 0
\(669\) 69.0000 0.00398758
\(670\) 0 0
\(671\) 30786.0 1.77121
\(672\) 0 0
\(673\) 16882.0i 0.966944i 0.875360 + 0.483472i \(0.160624\pi\)
−0.875360 + 0.483472i \(0.839376\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20934.0i 1.18842i 0.804311 + 0.594209i \(0.202535\pi\)
−0.804311 + 0.594209i \(0.797465\pi\)
\(678\) 0 0
\(679\) 511.000 0.0288813
\(680\) 0 0
\(681\) 5868.00 0.330194
\(682\) 0 0
\(683\) − 8712.00i − 0.488075i −0.969766 0.244038i \(-0.921528\pi\)
0.969766 0.244038i \(-0.0784720\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 5415.00i 0.300721i
\(688\) 0 0
\(689\) −12864.0 −0.711291
\(690\) 0 0
\(691\) 14128.0 0.777792 0.388896 0.921282i \(-0.372856\pi\)
0.388896 + 0.921282i \(0.372856\pi\)
\(692\) 0 0
\(693\) 378.000i 0.0207201i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 648.000i 0.0352148i
\(698\) 0 0
\(699\) −10404.0 −0.562969
\(700\) 0 0
\(701\) −28278.0 −1.52360 −0.761801 0.647811i \(-0.775685\pi\)
−0.761801 + 0.647811i \(0.775685\pi\)
\(702\) 0 0
\(703\) 32890.0i 1.76454i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 912.000i 0.0485138i
\(708\) 0 0
\(709\) −8885.00 −0.470639 −0.235320 0.971918i \(-0.575614\pi\)
−0.235320 + 0.971918i \(0.575614\pi\)
\(710\) 0 0
\(711\) 1440.00 0.0759553
\(712\) 0 0
\(713\) − 31266.0i − 1.64225i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 7920.00i − 0.412521i
\(718\) 0 0
\(719\) −7530.00 −0.390572 −0.195286 0.980746i \(-0.562564\pi\)
−0.195286 + 0.980746i \(0.562564\pi\)
\(720\) 0 0
\(721\) −668.000 −0.0345043
\(722\) 0 0
\(723\) 16149.0i 0.830688i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 1801.00i 0.0918781i 0.998944 + 0.0459391i \(0.0146280\pi\)
−0.998944 + 0.0459391i \(0.985372\pi\)
\(728\) 0 0
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −14202.0 −0.718577
\(732\) 0 0
\(733\) 7882.00i 0.397174i 0.980083 + 0.198587i \(0.0636352\pi\)
−0.980083 + 0.198587i \(0.936365\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12558.0i 0.627652i
\(738\) 0 0
\(739\) 33860.0 1.68547 0.842734 0.538331i \(-0.180945\pi\)
0.842734 + 0.538331i \(0.180945\pi\)
\(740\) 0 0
\(741\) −23115.0 −1.14595
\(742\) 0 0
\(743\) − 20652.0i − 1.01972i −0.860259 0.509858i \(-0.829698\pi\)
0.860259 0.509858i \(-0.170302\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 4158.00i 0.203659i
\(748\) 0 0
\(749\) −1296.00 −0.0632240
\(750\) 0 0
\(751\) −7472.00 −0.363059 −0.181529 0.983386i \(-0.558105\pi\)
−0.181529 + 0.983386i \(0.558105\pi\)
\(752\) 0 0
\(753\) − 15084.0i − 0.730002i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 32251.0i − 1.54846i −0.632906 0.774229i \(-0.718138\pi\)
0.632906 0.774229i \(-0.281862\pi\)
\(758\) 0 0
\(759\) 20412.0 0.976164
\(760\) 0 0
\(761\) 16812.0 0.800834 0.400417 0.916333i \(-0.368865\pi\)
0.400417 + 0.916333i \(0.368865\pi\)
\(762\) 0 0
\(763\) 1735.00i 0.0823214i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46230.0i 2.17636i
\(768\) 0 0
\(769\) 34645.0 1.62462 0.812309 0.583228i \(-0.198211\pi\)
0.812309 + 0.583228i \(0.198211\pi\)
\(770\) 0 0
\(771\) 1692.00 0.0790349
\(772\) 0 0
\(773\) 8412.00i 0.391408i 0.980663 + 0.195704i \(0.0626992\pi\)
−0.980663 + 0.195704i \(0.937301\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 858.000i − 0.0396146i
\(778\) 0 0
\(779\) −1380.00 −0.0634706
\(780\) 0 0
\(781\) −9576.00 −0.438740
\(782\) 0 0
\(783\) 5670.00i 0.258786i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 18329.0i − 0.830188i −0.909778 0.415094i \(-0.863749\pi\)
0.909778 0.415094i \(-0.136251\pi\)
\(788\) 0 0
\(789\) −5436.00 −0.245281
\(790\) 0 0
\(791\) −1092.00 −0.0490860
\(792\) 0 0
\(793\) − 49111.0i − 2.19922i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16044.0i 0.713059i 0.934284 + 0.356529i \(0.116040\pi\)
−0.934284 + 0.356529i \(0.883960\pi\)
\(798\) 0 0
\(799\) 22356.0 0.989860
\(800\) 0 0
\(801\) −2160.00 −0.0952807
\(802\) 0 0
\(803\) 39396.0i 1.73133i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 15570.0i − 0.679170i
\(808\) 0 0
\(809\) 24000.0 1.04301 0.521505 0.853248i \(-0.325371\pi\)
0.521505 + 0.853248i \(0.325371\pi\)
\(810\) 0 0
\(811\) −5117.00 −0.221556 −0.110778 0.993845i \(-0.535334\pi\)
−0.110778 + 0.993845i \(0.535334\pi\)
\(812\) 0 0
\(813\) 13776.0i 0.594275i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 30245.0i − 1.29515i
\(818\) 0 0
\(819\) 603.000 0.0257271
\(820\) 0 0
\(821\) 13542.0 0.575663 0.287831 0.957681i \(-0.407066\pi\)
0.287831 + 0.957681i \(0.407066\pi\)
\(822\) 0 0
\(823\) 1283.00i 0.0543409i 0.999631 + 0.0271705i \(0.00864969\pi\)
−0.999631 + 0.0271705i \(0.991350\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 16344.0i − 0.687227i −0.939111 0.343613i \(-0.888349\pi\)
0.939111 0.343613i \(-0.111651\pi\)
\(828\) 0 0
\(829\) 790.000 0.0330975 0.0165488 0.999863i \(-0.494732\pi\)
0.0165488 + 0.999863i \(0.494732\pi\)
\(830\) 0 0
\(831\) −6573.00 −0.274386
\(832\) 0 0
\(833\) 18468.0i 0.768161i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 5211.00i 0.215195i
\(838\) 0 0
\(839\) −9990.00 −0.411076 −0.205538 0.978649i \(-0.565894\pi\)
−0.205538 + 0.978649i \(0.565894\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 0 0
\(843\) − 23526.0i − 0.961184i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 433.000i 0.0175656i
\(848\) 0 0
\(849\) −741.000 −0.0299541
\(850\) 0 0
\(851\) −46332.0 −1.86632
\(852\) 0 0
\(853\) − 24743.0i − 0.993182i −0.867985 0.496591i \(-0.834585\pi\)
0.867985 0.496591i \(-0.165415\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 23556.0i − 0.938924i −0.882953 0.469462i \(-0.844448\pi\)
0.882953 0.469462i \(-0.155552\pi\)
\(858\) 0 0
\(859\) −34000.0 −1.35048 −0.675242 0.737597i \(-0.735961\pi\)
−0.675242 + 0.737597i \(0.735961\pi\)
\(860\) 0 0
\(861\) 36.0000 0.00142494
\(862\) 0 0
\(863\) − 37032.0i − 1.46070i −0.683073 0.730350i \(-0.739357\pi\)
0.683073 0.730350i \(-0.260643\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 5991.00i − 0.234677i
\(868\) 0 0
\(869\) 6720.00 0.262325
\(870\) 0 0
\(871\) 20033.0 0.779325
\(872\) 0 0
\(873\) 4599.00i 0.178296i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 2519.00i 0.0969904i 0.998823 + 0.0484952i \(0.0154426\pi\)
−0.998823 + 0.0484952i \(0.984557\pi\)
\(878\) 0 0
\(879\) 16326.0 0.626465
\(880\) 0 0
\(881\) 43992.0 1.68232 0.841162 0.540783i \(-0.181872\pi\)
0.841162 + 0.540783i \(0.181872\pi\)
\(882\) 0 0
\(883\) − 19177.0i − 0.730869i −0.930837 0.365435i \(-0.880920\pi\)
0.930837 0.365435i \(-0.119080\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 44994.0i − 1.70321i −0.524181 0.851607i \(-0.675628\pi\)
0.524181 0.851607i \(-0.324372\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.000603625 0
\(890\) 0 0
\(891\) −3402.00 −0.127914
\(892\) 0 0
\(893\) 47610.0i 1.78411i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 32562.0i − 1.21206i
\(898\) 0 0
\(899\) 40530.0 1.50362
\(900\) 0 0
\(901\) −10368.0 −0.383361
\(902\) 0 0
\(903\) 789.000i 0.0290767i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 52396.0i 1.91817i 0.283117 + 0.959085i \(0.408631\pi\)
−0.283117 + 0.959085i \(0.591369\pi\)
\(908\) 0 0
\(909\) −8208.00 −0.299496
\(910\) 0 0
\(911\) −7242.00 −0.263379 −0.131689 0.991291i \(-0.542040\pi\)
−0.131689 + 0.991291i \(0.542040\pi\)
\(912\) 0 0
\(913\) 19404.0i 0.703372i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1992.00i − 0.0717357i
\(918\) 0 0
\(919\) 4085.00 0.146629 0.0733143 0.997309i \(-0.476642\pi\)
0.0733143 + 0.997309i \(0.476642\pi\)
\(920\) 0 0
\(921\) 11613.0 0.415485
\(922\) 0 0
\(923\) 15276.0i 0.544762i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 6012.00i − 0.213010i
\(928\) 0 0
\(929\) 3030.00 0.107009 0.0535043 0.998568i \(-0.482961\pi\)
0.0535043 + 0.998568i \(0.482961\pi\)
\(930\) 0 0
\(931\) −39330.0 −1.38452
\(932\) 0 0
\(933\) − 17154.0i − 0.601926i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 5759.00i 0.200788i 0.994948 + 0.100394i \(0.0320103\pi\)
−0.994948 + 0.100394i \(0.967990\pi\)
\(938\) 0 0
\(939\) 10911.0 0.379198
\(940\) 0 0
\(941\) −258.000 −0.00893790 −0.00446895 0.999990i \(-0.501423\pi\)
−0.00446895 + 0.999990i \(0.501423\pi\)
\(942\) 0 0
\(943\) − 1944.00i − 0.0671319i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1374.00i − 0.0471478i −0.999722 0.0235739i \(-0.992495\pi\)
0.999722 0.0235739i \(-0.00750451\pi\)
\(948\) 0 0
\(949\) 62846.0 2.14970
\(950\) 0 0
\(951\) −3888.00 −0.132573
\(952\) 0 0
\(953\) − 9288.00i − 0.315706i −0.987463 0.157853i \(-0.949543\pi\)
0.987463 0.157853i \(-0.0504572\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 26460.0i 0.893762i
\(958\) 0 0
\(959\) 2346.00 0.0789951
\(960\) 0 0
\(961\) 7458.00 0.250344
\(962\) 0 0
\(963\) − 11664.0i − 0.390309i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 21616.0i 0.718846i 0.933175 + 0.359423i \(0.117026\pi\)
−0.933175 + 0.359423i \(0.882974\pi\)
\(968\) 0 0
\(969\) −18630.0 −0.617628
\(970\) 0 0
\(971\) 19098.0 0.631188 0.315594 0.948894i \(-0.397796\pi\)
0.315594 + 0.948894i \(0.397796\pi\)
\(972\) 0 0
\(973\) 2900.00i 0.0955496i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 18246.0i − 0.597483i −0.954334 0.298742i \(-0.903433\pi\)
0.954334 0.298742i \(-0.0965669\pi\)
\(978\) 0 0
\(979\) −10080.0 −0.329069
\(980\) 0 0
\(981\) −15615.0 −0.508204
\(982\) 0 0
\(983\) − 38772.0i − 1.25802i −0.777397 0.629011i \(-0.783460\pi\)
0.777397 0.629011i \(-0.216540\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 1242.00i − 0.0400540i
\(988\) 0 0
\(989\) 42606.0 1.36986
\(990\) 0 0
\(991\) 23053.0 0.738953 0.369477 0.929240i \(-0.379537\pi\)
0.369477 + 0.929240i \(0.379537\pi\)
\(992\) 0 0
\(993\) 15396.0i 0.492021i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 10366.0i − 0.329282i −0.986354 0.164641i \(-0.947353\pi\)
0.986354 0.164641i \(-0.0526466\pi\)
\(998\) 0 0
\(999\) 7722.00 0.244558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.4.f.c.49.1 2
4.3 odd 2 150.4.c.e.49.1 2
5.2 odd 4 1200.4.a.i.1.1 1
5.3 odd 4 1200.4.a.bb.1.1 1
5.4 even 2 inner 1200.4.f.c.49.2 2
12.11 even 2 450.4.c.a.199.2 2
20.3 even 4 150.4.a.a.1.1 1
20.7 even 4 150.4.a.h.1.1 yes 1
20.19 odd 2 150.4.c.e.49.2 2
60.23 odd 4 450.4.a.o.1.1 1
60.47 odd 4 450.4.a.f.1.1 1
60.59 even 2 450.4.c.a.199.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.a.1.1 1 20.3 even 4
150.4.a.h.1.1 yes 1 20.7 even 4
150.4.c.e.49.1 2 4.3 odd 2
150.4.c.e.49.2 2 20.19 odd 2
450.4.a.f.1.1 1 60.47 odd 4
450.4.a.o.1.1 1 60.23 odd 4
450.4.c.a.199.1 2 60.59 even 2
450.4.c.a.199.2 2 12.11 even 2
1200.4.a.i.1.1 1 5.2 odd 4
1200.4.a.bb.1.1 1 5.3 odd 4
1200.4.f.c.49.1 2 1.1 even 1 trivial
1200.4.f.c.49.2 2 5.4 even 2 inner