Properties

Label 1200.4.f
Level $1200$
Weight $4$
Character orbit 1200.f
Rep. character $\chi_{1200}(49,\cdot)$
Character field $\Q$
Dimension $54$
Newform subspaces $24$
Sturm bound $960$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(960\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1200, [\chi])\).

Total New Old
Modular forms 756 54 702
Cusp forms 684 54 630
Eisenstein series 72 0 72

Trace form

\( 54 q - 486 q^{9} + 252 q^{19} + 284 q^{29} + 636 q^{31} - 312 q^{39} - 356 q^{41} - 2030 q^{49} + 132 q^{51} + 1376 q^{59} + 756 q^{61} - 528 q^{69} - 224 q^{71} - 2240 q^{79} + 4374 q^{81} - 1932 q^{89}+ \cdots - 812 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1200.4.f.a 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+4 i q^{7}-9 q^{9}-72 q^{11}+\cdots\)
1200.4.f.b 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 15.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+24 i q^{7}-9 q^{9}-52 q^{11}+\cdots\)
1200.4.f.c 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 150.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+i q^{7}-9 q^{9}-42 q^{11}+\cdots\)
1200.4.f.d 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 12.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+8 i q^{7}-9 q^{9}-36 q^{11}+\cdots\)
1200.4.f.e 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 60.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+32 i q^{7}-9 q^{9}-36 q^{11}+\cdots\)
1200.4.f.f 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 600.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+19 i q^{7}-9 q^{9}-22 q^{11}+\cdots\)
1200.4.f.g 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+8 i q^{7}-9 q^{9}-20 q^{11}+\cdots\)
1200.4.f.h 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+20 i q^{7}-9 q^{9}-16 q^{11}+\cdots\)
1200.4.f.i 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 600.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+5 i q^{7}-9 q^{9}-14 q^{11}+\cdots\)
1200.4.f.j 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 6.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+16 i q^{7}-9 q^{9}-12 q^{11}+\cdots\)
1200.4.f.k 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 300.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+13 i q^{7}-9 q^{9}-6 q^{11}+\cdots\)
1200.4.f.l 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}-9 q^{9}-4 q^{11}+54 i q^{13}+\cdots\)
1200.4.f.m 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 15.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+20 i q^{7}-9 q^{9}+24 q^{11}+\cdots\)
1200.4.f.n 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 60.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+28 i q^{7}-9 q^{9}+24 q^{11}+\cdots\)
1200.4.f.o 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+16 i q^{7}-9 q^{9}+28 q^{11}+\cdots\)
1200.4.f.p 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 24.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+24 i q^{7}-9 q^{9}+28 q^{11}+\cdots\)
1200.4.f.q 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 150.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+23 i q^{7}-9 q^{9}+30 q^{11}+\cdots\)
1200.4.f.r 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 30.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+4 i q^{7}-9 q^{9}+48 q^{11}+\cdots\)
1200.4.f.s 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 300.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+7 i q^{7}-9 q^{9}+54 q^{11}+\cdots\)
1200.4.f.t 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 120.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}+20 i q^{7}-9 q^{9}+56 q^{11}+\cdots\)
1200.4.f.u 1200.f 5.b $2$ $70.802$ \(\Q(\sqrt{-1}) \) None 30.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3 i q^{3}+32 i q^{7}-9 q^{9}+60 q^{11}+\cdots\)
1200.4.f.v 1200.f 5.b $4$ $70.802$ \(\Q(i, \sqrt{19})\) None 75.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(-13\beta _{1}+\beta _{3})q^{7}-9q^{9}+\cdots\)
1200.4.f.w 1200.f 5.b $4$ $70.802$ \(\Q(i, \sqrt{181})\) None 600.4.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(-3\beta _{1}+\beta _{2})q^{7}-9q^{9}+\cdots\)
1200.4.f.x 1200.f 5.b $4$ $70.802$ \(\Q(i, \sqrt{109})\) None 600.4.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{7}-9q^{9}+(8+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 2}\)