Properties

Label 1200.4.a.r.1.1
Level $1200$
Weight $4$
Character 1200.1
Self dual yes
Analytic conductor $70.802$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(1,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.8022920069\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +23.0000 q^{7} +9.00000 q^{9} +30.0000 q^{11} -29.0000 q^{13} -78.0000 q^{17} -149.000 q^{19} -69.0000 q^{21} +150.000 q^{23} -27.0000 q^{27} -234.000 q^{29} +217.000 q^{31} -90.0000 q^{33} -146.000 q^{37} +87.0000 q^{39} -156.000 q^{41} -433.000 q^{43} +30.0000 q^{47} +186.000 q^{49} +234.000 q^{51} +552.000 q^{53} +447.000 q^{57} +270.000 q^{59} +275.000 q^{61} +207.000 q^{63} +803.000 q^{67} -450.000 q^{69} -660.000 q^{71} +646.000 q^{73} +690.000 q^{77} -992.000 q^{79} +81.0000 q^{81} -846.000 q^{83} +702.000 q^{87} -1488.00 q^{89} -667.000 q^{91} -651.000 q^{93} +319.000 q^{97} +270.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 23.0000 1.24188 0.620942 0.783857i \(-0.286750\pi\)
0.620942 + 0.783857i \(0.286750\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 30.0000 0.822304 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(12\) 0 0
\(13\) −29.0000 −0.618704 −0.309352 0.950948i \(-0.600112\pi\)
−0.309352 + 0.950948i \(0.600112\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −78.0000 −1.11281 −0.556405 0.830911i \(-0.687820\pi\)
−0.556405 + 0.830911i \(0.687820\pi\)
\(18\) 0 0
\(19\) −149.000 −1.79910 −0.899551 0.436815i \(-0.856106\pi\)
−0.899551 + 0.436815i \(0.856106\pi\)
\(20\) 0 0
\(21\) −69.0000 −0.717002
\(22\) 0 0
\(23\) 150.000 1.35988 0.679938 0.733269i \(-0.262007\pi\)
0.679938 + 0.733269i \(0.262007\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −234.000 −1.49837 −0.749185 0.662361i \(-0.769554\pi\)
−0.749185 + 0.662361i \(0.769554\pi\)
\(30\) 0 0
\(31\) 217.000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 0 0
\(33\) −90.0000 −0.474757
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −146.000 −0.648710 −0.324355 0.945936i \(-0.605147\pi\)
−0.324355 + 0.945936i \(0.605147\pi\)
\(38\) 0 0
\(39\) 87.0000 0.357209
\(40\) 0 0
\(41\) −156.000 −0.594222 −0.297111 0.954843i \(-0.596023\pi\)
−0.297111 + 0.954843i \(0.596023\pi\)
\(42\) 0 0
\(43\) −433.000 −1.53563 −0.767813 0.640675i \(-0.778655\pi\)
−0.767813 + 0.640675i \(0.778655\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 30.0000 0.0931053 0.0465527 0.998916i \(-0.485176\pi\)
0.0465527 + 0.998916i \(0.485176\pi\)
\(48\) 0 0
\(49\) 186.000 0.542274
\(50\) 0 0
\(51\) 234.000 0.642481
\(52\) 0 0
\(53\) 552.000 1.43062 0.715312 0.698806i \(-0.246285\pi\)
0.715312 + 0.698806i \(0.246285\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 447.000 1.03871
\(58\) 0 0
\(59\) 270.000 0.595780 0.297890 0.954600i \(-0.403717\pi\)
0.297890 + 0.954600i \(0.403717\pi\)
\(60\) 0 0
\(61\) 275.000 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(62\) 0 0
\(63\) 207.000 0.413961
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 803.000 1.46421 0.732105 0.681192i \(-0.238538\pi\)
0.732105 + 0.681192i \(0.238538\pi\)
\(68\) 0 0
\(69\) −450.000 −0.785125
\(70\) 0 0
\(71\) −660.000 −1.10321 −0.551603 0.834107i \(-0.685984\pi\)
−0.551603 + 0.834107i \(0.685984\pi\)
\(72\) 0 0
\(73\) 646.000 1.03573 0.517867 0.855461i \(-0.326726\pi\)
0.517867 + 0.855461i \(0.326726\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 690.000 1.02121
\(78\) 0 0
\(79\) −992.000 −1.41277 −0.706384 0.707829i \(-0.749675\pi\)
−0.706384 + 0.707829i \(0.749675\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −846.000 −1.11880 −0.559401 0.828897i \(-0.688969\pi\)
−0.559401 + 0.828897i \(0.688969\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 702.000 0.865084
\(88\) 0 0
\(89\) −1488.00 −1.77222 −0.886111 0.463474i \(-0.846603\pi\)
−0.886111 + 0.463474i \(0.846603\pi\)
\(90\) 0 0
\(91\) −667.000 −0.768358
\(92\) 0 0
\(93\) −651.000 −0.725866
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 319.000 0.333913 0.166956 0.985964i \(-0.446606\pi\)
0.166956 + 0.985964i \(0.446606\pi\)
\(98\) 0 0
\(99\) 270.000 0.274101
\(100\) 0 0
\(101\) −792.000 −0.780267 −0.390133 0.920758i \(-0.627571\pi\)
−0.390133 + 0.920758i \(0.627571\pi\)
\(102\) 0 0
\(103\) 812.000 0.776784 0.388392 0.921494i \(-0.373031\pi\)
0.388392 + 0.921494i \(0.373031\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1416.00 −1.27934 −0.639672 0.768648i \(-0.720930\pi\)
−0.639672 + 0.768648i \(0.720930\pi\)
\(108\) 0 0
\(109\) −55.0000 −0.0483307 −0.0241653 0.999708i \(-0.507693\pi\)
−0.0241653 + 0.999708i \(0.507693\pi\)
\(110\) 0 0
\(111\) 438.000 0.374533
\(112\) 0 0
\(113\) −1404.00 −1.16882 −0.584412 0.811457i \(-0.698675\pi\)
−0.584412 + 0.811457i \(0.698675\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −261.000 −0.206235
\(118\) 0 0
\(119\) −1794.00 −1.38198
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) 0 0
\(123\) 468.000 0.343074
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1280.00 0.894344 0.447172 0.894448i \(-0.352431\pi\)
0.447172 + 0.894448i \(0.352431\pi\)
\(128\) 0 0
\(129\) 1299.00 0.886594
\(130\) 0 0
\(131\) −480.000 −0.320136 −0.160068 0.987106i \(-0.551171\pi\)
−0.160068 + 0.987106i \(0.551171\pi\)
\(132\) 0 0
\(133\) −3427.00 −2.23428
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 282.000 0.175860 0.0879302 0.996127i \(-0.471975\pi\)
0.0879302 + 0.996127i \(0.471975\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) 0 0
\(143\) −870.000 −0.508763
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −558.000 −0.313082
\(148\) 0 0
\(149\) −774.000 −0.425561 −0.212780 0.977100i \(-0.568252\pi\)
−0.212780 + 0.977100i \(0.568252\pi\)
\(150\) 0 0
\(151\) −293.000 −0.157907 −0.0789536 0.996878i \(-0.525158\pi\)
−0.0789536 + 0.996878i \(0.525158\pi\)
\(152\) 0 0
\(153\) −702.000 −0.370937
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1729.00 0.878912 0.439456 0.898264i \(-0.355171\pi\)
0.439456 + 0.898264i \(0.355171\pi\)
\(158\) 0 0
\(159\) −1656.00 −0.825971
\(160\) 0 0
\(161\) 3450.00 1.68881
\(162\) 0 0
\(163\) −1123.00 −0.539633 −0.269816 0.962912i \(-0.586963\pi\)
−0.269816 + 0.962912i \(0.586963\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1200.00 0.556041 0.278020 0.960575i \(-0.410322\pi\)
0.278020 + 0.960575i \(0.410322\pi\)
\(168\) 0 0
\(169\) −1356.00 −0.617205
\(170\) 0 0
\(171\) −1341.00 −0.599701
\(172\) 0 0
\(173\) 1734.00 0.762044 0.381022 0.924566i \(-0.375572\pi\)
0.381022 + 0.924566i \(0.375572\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −810.000 −0.343974
\(178\) 0 0
\(179\) −2586.00 −1.07981 −0.539907 0.841725i \(-0.681541\pi\)
−0.539907 + 0.841725i \(0.681541\pi\)
\(180\) 0 0
\(181\) −3931.00 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(182\) 0 0
\(183\) −825.000 −0.333255
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2340.00 −0.915068
\(188\) 0 0
\(189\) −621.000 −0.239001
\(190\) 0 0
\(191\) −1566.00 −0.593255 −0.296628 0.954993i \(-0.595862\pi\)
−0.296628 + 0.954993i \(0.595862\pi\)
\(192\) 0 0
\(193\) −2291.00 −0.854455 −0.427227 0.904144i \(-0.640510\pi\)
−0.427227 + 0.904144i \(0.640510\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2142.00 −0.774676 −0.387338 0.921938i \(-0.626605\pi\)
−0.387338 + 0.921938i \(0.626605\pi\)
\(198\) 0 0
\(199\) 4903.00 1.74656 0.873278 0.487223i \(-0.161990\pi\)
0.873278 + 0.487223i \(0.161990\pi\)
\(200\) 0 0
\(201\) −2409.00 −0.845362
\(202\) 0 0
\(203\) −5382.00 −1.86080
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1350.00 0.453292
\(208\) 0 0
\(209\) −4470.00 −1.47941
\(210\) 0 0
\(211\) −605.000 −0.197393 −0.0986965 0.995118i \(-0.531467\pi\)
−0.0986965 + 0.995118i \(0.531467\pi\)
\(212\) 0 0
\(213\) 1980.00 0.636936
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4991.00 1.56134
\(218\) 0 0
\(219\) −1938.00 −0.597981
\(220\) 0 0
\(221\) 2262.00 0.688500
\(222\) 0 0
\(223\) −145.000 −0.0435422 −0.0217711 0.999763i \(-0.506931\pi\)
−0.0217711 + 0.999763i \(0.506931\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2964.00 0.866641 0.433321 0.901240i \(-0.357342\pi\)
0.433321 + 0.901240i \(0.357342\pi\)
\(228\) 0 0
\(229\) −5635.00 −1.62608 −0.813038 0.582211i \(-0.802188\pi\)
−0.813038 + 0.582211i \(0.802188\pi\)
\(230\) 0 0
\(231\) −2070.00 −0.589593
\(232\) 0 0
\(233\) −4164.00 −1.17078 −0.585392 0.810750i \(-0.699059\pi\)
−0.585392 + 0.810750i \(0.699059\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 2976.00 0.815662
\(238\) 0 0
\(239\) 1944.00 0.526138 0.263069 0.964777i \(-0.415265\pi\)
0.263069 + 0.964777i \(0.415265\pi\)
\(240\) 0 0
\(241\) 857.000 0.229063 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4321.00 1.11311
\(248\) 0 0
\(249\) 2538.00 0.645941
\(250\) 0 0
\(251\) 3924.00 0.986776 0.493388 0.869809i \(-0.335758\pi\)
0.493388 + 0.869809i \(0.335758\pi\)
\(252\) 0 0
\(253\) 4500.00 1.11823
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2844.00 0.690287 0.345144 0.938550i \(-0.387830\pi\)
0.345144 + 0.938550i \(0.387830\pi\)
\(258\) 0 0
\(259\) −3358.00 −0.805621
\(260\) 0 0
\(261\) −2106.00 −0.499456
\(262\) 0 0
\(263\) −6060.00 −1.42082 −0.710410 0.703788i \(-0.751490\pi\)
−0.710410 + 0.703788i \(0.751490\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 4464.00 1.02319
\(268\) 0 0
\(269\) 3906.00 0.885327 0.442664 0.896688i \(-0.354034\pi\)
0.442664 + 0.896688i \(0.354034\pi\)
\(270\) 0 0
\(271\) −2144.00 −0.480586 −0.240293 0.970700i \(-0.577243\pi\)
−0.240293 + 0.970700i \(0.577243\pi\)
\(272\) 0 0
\(273\) 2001.00 0.443612
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2321.00 −0.503449 −0.251725 0.967799i \(-0.580998\pi\)
−0.251725 + 0.967799i \(0.580998\pi\)
\(278\) 0 0
\(279\) 1953.00 0.419079
\(280\) 0 0
\(281\) −6822.00 −1.44828 −0.724140 0.689654i \(-0.757763\pi\)
−0.724140 + 0.689654i \(0.757763\pi\)
\(282\) 0 0
\(283\) 4049.00 0.850488 0.425244 0.905079i \(-0.360188\pi\)
0.425244 + 0.905079i \(0.360188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3588.00 −0.737955
\(288\) 0 0
\(289\) 1171.00 0.238347
\(290\) 0 0
\(291\) −957.000 −0.192785
\(292\) 0 0
\(293\) −2238.00 −0.446230 −0.223115 0.974792i \(-0.571623\pi\)
−0.223115 + 0.974792i \(0.571623\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −810.000 −0.158252
\(298\) 0 0
\(299\) −4350.00 −0.841361
\(300\) 0 0
\(301\) −9959.00 −1.90707
\(302\) 0 0
\(303\) 2376.00 0.450487
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1385.00 0.257479 0.128740 0.991678i \(-0.458907\pi\)
0.128740 + 0.991678i \(0.458907\pi\)
\(308\) 0 0
\(309\) −2436.00 −0.448476
\(310\) 0 0
\(311\) 5670.00 1.03381 0.516907 0.856042i \(-0.327083\pi\)
0.516907 + 0.856042i \(0.327083\pi\)
\(312\) 0 0
\(313\) 421.000 0.0760266 0.0380133 0.999277i \(-0.487897\pi\)
0.0380133 + 0.999277i \(0.487897\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9984.00 −1.76895 −0.884475 0.466587i \(-0.845483\pi\)
−0.884475 + 0.466587i \(0.845483\pi\)
\(318\) 0 0
\(319\) −7020.00 −1.23211
\(320\) 0 0
\(321\) 4248.00 0.738630
\(322\) 0 0
\(323\) 11622.0 2.00206
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 165.000 0.0279037
\(328\) 0 0
\(329\) 690.000 0.115626
\(330\) 0 0
\(331\) 4228.00 0.702090 0.351045 0.936359i \(-0.385826\pi\)
0.351045 + 0.936359i \(0.385826\pi\)
\(332\) 0 0
\(333\) −1314.00 −0.216237
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −5393.00 −0.871737 −0.435869 0.900010i \(-0.643559\pi\)
−0.435869 + 0.900010i \(0.643559\pi\)
\(338\) 0 0
\(339\) 4212.00 0.674821
\(340\) 0 0
\(341\) 6510.00 1.03383
\(342\) 0 0
\(343\) −3611.00 −0.568442
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7914.00 −1.22434 −0.612170 0.790726i \(-0.709703\pi\)
−0.612170 + 0.790726i \(0.709703\pi\)
\(348\) 0 0
\(349\) 1010.00 0.154911 0.0774557 0.996996i \(-0.475320\pi\)
0.0774557 + 0.996996i \(0.475320\pi\)
\(350\) 0 0
\(351\) 783.000 0.119070
\(352\) 0 0
\(353\) −4722.00 −0.711974 −0.355987 0.934491i \(-0.615855\pi\)
−0.355987 + 0.934491i \(0.615855\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5382.00 0.797887
\(358\) 0 0
\(359\) −6204.00 −0.912074 −0.456037 0.889961i \(-0.650732\pi\)
−0.456037 + 0.889961i \(0.650732\pi\)
\(360\) 0 0
\(361\) 15342.0 2.23677
\(362\) 0 0
\(363\) 1293.00 0.186956
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1361.00 0.193579 0.0967897 0.995305i \(-0.469143\pi\)
0.0967897 + 0.995305i \(0.469143\pi\)
\(368\) 0 0
\(369\) −1404.00 −0.198074
\(370\) 0 0
\(371\) 12696.0 1.77667
\(372\) 0 0
\(373\) 913.000 0.126738 0.0633691 0.997990i \(-0.479815\pi\)
0.0633691 + 0.997990i \(0.479815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6786.00 0.927047
\(378\) 0 0
\(379\) 8881.00 1.20366 0.601829 0.798625i \(-0.294439\pi\)
0.601829 + 0.798625i \(0.294439\pi\)
\(380\) 0 0
\(381\) −3840.00 −0.516350
\(382\) 0 0
\(383\) 5460.00 0.728441 0.364221 0.931313i \(-0.381335\pi\)
0.364221 + 0.931313i \(0.381335\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3897.00 −0.511875
\(388\) 0 0
\(389\) −13884.0 −1.80963 −0.904816 0.425803i \(-0.859992\pi\)
−0.904816 + 0.425803i \(0.859992\pi\)
\(390\) 0 0
\(391\) −11700.0 −1.51328
\(392\) 0 0
\(393\) 1440.00 0.184831
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3781.00 0.477992 0.238996 0.971021i \(-0.423182\pi\)
0.238996 + 0.971021i \(0.423182\pi\)
\(398\) 0 0
\(399\) 10281.0 1.28996
\(400\) 0 0
\(401\) 9024.00 1.12378 0.561892 0.827211i \(-0.310074\pi\)
0.561892 + 0.827211i \(0.310074\pi\)
\(402\) 0 0
\(403\) −6293.00 −0.777858
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4380.00 −0.533436
\(408\) 0 0
\(409\) 14789.0 1.78794 0.893972 0.448123i \(-0.147907\pi\)
0.893972 + 0.448123i \(0.147907\pi\)
\(410\) 0 0
\(411\) −846.000 −0.101533
\(412\) 0 0
\(413\) 6210.00 0.739889
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4812.00 0.565095
\(418\) 0 0
\(419\) −9840.00 −1.14729 −0.573646 0.819103i \(-0.694472\pi\)
−0.573646 + 0.819103i \(0.694472\pi\)
\(420\) 0 0
\(421\) 5510.00 0.637865 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(422\) 0 0
\(423\) 270.000 0.0310351
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 6325.00 0.716834
\(428\) 0 0
\(429\) 2610.00 0.293734
\(430\) 0 0
\(431\) −11070.0 −1.23718 −0.618588 0.785715i \(-0.712295\pi\)
−0.618588 + 0.785715i \(0.712295\pi\)
\(432\) 0 0
\(433\) 12133.0 1.34659 0.673297 0.739373i \(-0.264878\pi\)
0.673297 + 0.739373i \(0.264878\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −22350.0 −2.44656
\(438\) 0 0
\(439\) 1873.00 0.203630 0.101815 0.994803i \(-0.467535\pi\)
0.101815 + 0.994803i \(0.467535\pi\)
\(440\) 0 0
\(441\) 1674.00 0.180758
\(442\) 0 0
\(443\) −576.000 −0.0617756 −0.0308878 0.999523i \(-0.509833\pi\)
−0.0308878 + 0.999523i \(0.509833\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 2322.00 0.245698
\(448\) 0 0
\(449\) −4884.00 −0.513341 −0.256671 0.966499i \(-0.582626\pi\)
−0.256671 + 0.966499i \(0.582626\pi\)
\(450\) 0 0
\(451\) −4680.00 −0.488631
\(452\) 0 0
\(453\) 879.000 0.0911678
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15802.0 1.61748 0.808738 0.588169i \(-0.200151\pi\)
0.808738 + 0.588169i \(0.200151\pi\)
\(458\) 0 0
\(459\) 2106.00 0.214160
\(460\) 0 0
\(461\) −15360.0 −1.55181 −0.775907 0.630847i \(-0.782708\pi\)
−0.775907 + 0.630847i \(0.782708\pi\)
\(462\) 0 0
\(463\) 1712.00 0.171843 0.0859216 0.996302i \(-0.472617\pi\)
0.0859216 + 0.996302i \(0.472617\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16278.0 −1.61297 −0.806484 0.591256i \(-0.798632\pi\)
−0.806484 + 0.591256i \(0.798632\pi\)
\(468\) 0 0
\(469\) 18469.0 1.81838
\(470\) 0 0
\(471\) −5187.00 −0.507440
\(472\) 0 0
\(473\) −12990.0 −1.26275
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 4968.00 0.476874
\(478\) 0 0
\(479\) 14766.0 1.40851 0.704254 0.709948i \(-0.251281\pi\)
0.704254 + 0.709948i \(0.251281\pi\)
\(480\) 0 0
\(481\) 4234.00 0.401359
\(482\) 0 0
\(483\) −10350.0 −0.975034
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −3319.00 −0.308826 −0.154413 0.988006i \(-0.549349\pi\)
−0.154413 + 0.988006i \(0.549349\pi\)
\(488\) 0 0
\(489\) 3369.00 0.311557
\(490\) 0 0
\(491\) −11064.0 −1.01693 −0.508464 0.861083i \(-0.669786\pi\)
−0.508464 + 0.861083i \(0.669786\pi\)
\(492\) 0 0
\(493\) 18252.0 1.66740
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15180.0 −1.37005
\(498\) 0 0
\(499\) 14131.0 1.26772 0.633858 0.773449i \(-0.281470\pi\)
0.633858 + 0.773449i \(0.281470\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) 0 0
\(503\) 11988.0 1.06266 0.531331 0.847165i \(-0.321692\pi\)
0.531331 + 0.847165i \(0.321692\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4068.00 0.356344
\(508\) 0 0
\(509\) 10806.0 0.940997 0.470499 0.882401i \(-0.344074\pi\)
0.470499 + 0.882401i \(0.344074\pi\)
\(510\) 0 0
\(511\) 14858.0 1.28626
\(512\) 0 0
\(513\) 4023.00 0.346237
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 900.000 0.0765608
\(518\) 0 0
\(519\) −5202.00 −0.439966
\(520\) 0 0
\(521\) 22578.0 1.89858 0.949290 0.314402i \(-0.101804\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(522\) 0 0
\(523\) 12065.0 1.00873 0.504365 0.863491i \(-0.331727\pi\)
0.504365 + 0.863491i \(0.331727\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −16926.0 −1.39907
\(528\) 0 0
\(529\) 10333.0 0.849264
\(530\) 0 0
\(531\) 2430.00 0.198593
\(532\) 0 0
\(533\) 4524.00 0.367648
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 7758.00 0.623431
\(538\) 0 0
\(539\) 5580.00 0.445914
\(540\) 0 0
\(541\) −12055.0 −0.958013 −0.479006 0.877811i \(-0.659003\pi\)
−0.479006 + 0.877811i \(0.659003\pi\)
\(542\) 0 0
\(543\) 11793.0 0.932019
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6176.00 0.482754 0.241377 0.970431i \(-0.422401\pi\)
0.241377 + 0.970431i \(0.422401\pi\)
\(548\) 0 0
\(549\) 2475.00 0.192405
\(550\) 0 0
\(551\) 34866.0 2.69572
\(552\) 0 0
\(553\) −22816.0 −1.75449
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8274.00 −0.629409 −0.314704 0.949190i \(-0.601905\pi\)
−0.314704 + 0.949190i \(0.601905\pi\)
\(558\) 0 0
\(559\) 12557.0 0.950098
\(560\) 0 0
\(561\) 7020.00 0.528315
\(562\) 0 0
\(563\) 966.000 0.0723127 0.0361563 0.999346i \(-0.488489\pi\)
0.0361563 + 0.999346i \(0.488489\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1863.00 0.137987
\(568\) 0 0
\(569\) 19002.0 1.40001 0.700005 0.714138i \(-0.253181\pi\)
0.700005 + 0.714138i \(0.253181\pi\)
\(570\) 0 0
\(571\) −8645.00 −0.633594 −0.316797 0.948493i \(-0.602607\pi\)
−0.316797 + 0.948493i \(0.602607\pi\)
\(572\) 0 0
\(573\) 4698.00 0.342516
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −10931.0 −0.788672 −0.394336 0.918966i \(-0.629025\pi\)
−0.394336 + 0.918966i \(0.629025\pi\)
\(578\) 0 0
\(579\) 6873.00 0.493320
\(580\) 0 0
\(581\) −19458.0 −1.38942
\(582\) 0 0
\(583\) 16560.0 1.17641
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8904.00 0.626077 0.313039 0.949740i \(-0.398653\pi\)
0.313039 + 0.949740i \(0.398653\pi\)
\(588\) 0 0
\(589\) −32333.0 −2.26190
\(590\) 0 0
\(591\) 6426.00 0.447259
\(592\) 0 0
\(593\) −8820.00 −0.610782 −0.305391 0.952227i \(-0.598787\pi\)
−0.305391 + 0.952227i \(0.598787\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −14709.0 −1.00837
\(598\) 0 0
\(599\) −9804.00 −0.668749 −0.334374 0.942440i \(-0.608525\pi\)
−0.334374 + 0.942440i \(0.608525\pi\)
\(600\) 0 0
\(601\) −23437.0 −1.59071 −0.795354 0.606146i \(-0.792715\pi\)
−0.795354 + 0.606146i \(0.792715\pi\)
\(602\) 0 0
\(603\) 7227.00 0.488070
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 2648.00 0.177066 0.0885330 0.996073i \(-0.471782\pi\)
0.0885330 + 0.996073i \(0.471782\pi\)
\(608\) 0 0
\(609\) 16146.0 1.07433
\(610\) 0 0
\(611\) −870.000 −0.0576046
\(612\) 0 0
\(613\) −794.000 −0.0523154 −0.0261577 0.999658i \(-0.508327\pi\)
−0.0261577 + 0.999658i \(0.508327\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −18720.0 −1.22146 −0.610728 0.791840i \(-0.709123\pi\)
−0.610728 + 0.791840i \(0.709123\pi\)
\(618\) 0 0
\(619\) 8959.00 0.581733 0.290866 0.956764i \(-0.406056\pi\)
0.290866 + 0.956764i \(0.406056\pi\)
\(620\) 0 0
\(621\) −4050.00 −0.261708
\(622\) 0 0
\(623\) −34224.0 −2.20089
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 13410.0 0.854137
\(628\) 0 0
\(629\) 11388.0 0.721891
\(630\) 0 0
\(631\) 12373.0 0.780604 0.390302 0.920687i \(-0.372371\pi\)
0.390302 + 0.920687i \(0.372371\pi\)
\(632\) 0 0
\(633\) 1815.00 0.113965
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −5394.00 −0.335507
\(638\) 0 0
\(639\) −5940.00 −0.367735
\(640\) 0 0
\(641\) 24900.0 1.53431 0.767154 0.641463i \(-0.221672\pi\)
0.767154 + 0.641463i \(0.221672\pi\)
\(642\) 0 0
\(643\) −14668.0 −0.899610 −0.449805 0.893127i \(-0.648507\pi\)
−0.449805 + 0.893127i \(0.648507\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10788.0 −0.655518 −0.327759 0.944761i \(-0.606293\pi\)
−0.327759 + 0.944761i \(0.606293\pi\)
\(648\) 0 0
\(649\) 8100.00 0.489912
\(650\) 0 0
\(651\) −14973.0 −0.901441
\(652\) 0 0
\(653\) 14214.0 0.851817 0.425909 0.904766i \(-0.359954\pi\)
0.425909 + 0.904766i \(0.359954\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 5814.00 0.345245
\(658\) 0 0
\(659\) 588.000 0.0347576 0.0173788 0.999849i \(-0.494468\pi\)
0.0173788 + 0.999849i \(0.494468\pi\)
\(660\) 0 0
\(661\) −3166.00 −0.186298 −0.0931491 0.995652i \(-0.529693\pi\)
−0.0931491 + 0.995652i \(0.529693\pi\)
\(662\) 0 0
\(663\) −6786.00 −0.397506
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −35100.0 −2.03760
\(668\) 0 0
\(669\) 435.000 0.0251391
\(670\) 0 0
\(671\) 8250.00 0.474646
\(672\) 0 0
\(673\) −9182.00 −0.525914 −0.262957 0.964808i \(-0.584698\pi\)
−0.262957 + 0.964808i \(0.584698\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11742.0 −0.666590 −0.333295 0.942823i \(-0.608161\pi\)
−0.333295 + 0.942823i \(0.608161\pi\)
\(678\) 0 0
\(679\) 7337.00 0.414681
\(680\) 0 0
\(681\) −8892.00 −0.500356
\(682\) 0 0
\(683\) −6024.00 −0.337485 −0.168742 0.985660i \(-0.553971\pi\)
−0.168742 + 0.985660i \(0.553971\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 16905.0 0.938815
\(688\) 0 0
\(689\) −16008.0 −0.885132
\(690\) 0 0
\(691\) −9344.00 −0.514418 −0.257209 0.966356i \(-0.582803\pi\)
−0.257209 + 0.966356i \(0.582803\pi\)
\(692\) 0 0
\(693\) 6210.00 0.340402
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 12168.0 0.661257
\(698\) 0 0
\(699\) 12492.0 0.675953
\(700\) 0 0
\(701\) 21234.0 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(702\) 0 0
\(703\) 21754.0 1.16709
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18216.0 −0.969000
\(708\) 0 0
\(709\) −1723.00 −0.0912675 −0.0456337 0.998958i \(-0.514531\pi\)
−0.0456337 + 0.998958i \(0.514531\pi\)
\(710\) 0 0
\(711\) −8928.00 −0.470923
\(712\) 0 0
\(713\) 32550.0 1.70969
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −5832.00 −0.303766
\(718\) 0 0
\(719\) −18510.0 −0.960093 −0.480046 0.877243i \(-0.659380\pi\)
−0.480046 + 0.877243i \(0.659380\pi\)
\(720\) 0 0
\(721\) 18676.0 0.964675
\(722\) 0 0
\(723\) −2571.00 −0.132250
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −1009.00 −0.0514742 −0.0257371 0.999669i \(-0.508193\pi\)
−0.0257371 + 0.999669i \(0.508193\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 33774.0 1.70886
\(732\) 0 0
\(733\) 21994.0 1.10828 0.554138 0.832425i \(-0.313048\pi\)
0.554138 + 0.832425i \(0.313048\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 24090.0 1.20403
\(738\) 0 0
\(739\) 13948.0 0.694297 0.347148 0.937810i \(-0.387150\pi\)
0.347148 + 0.937810i \(0.387150\pi\)
\(740\) 0 0
\(741\) −12963.0 −0.642655
\(742\) 0 0
\(743\) −26508.0 −1.30886 −0.654431 0.756122i \(-0.727092\pi\)
−0.654431 + 0.756122i \(0.727092\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7614.00 −0.372934
\(748\) 0 0
\(749\) −32568.0 −1.58880
\(750\) 0 0
\(751\) 1600.00 0.0777428 0.0388714 0.999244i \(-0.487624\pi\)
0.0388714 + 0.999244i \(0.487624\pi\)
\(752\) 0 0
\(753\) −11772.0 −0.569715
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −30101.0 −1.44523 −0.722615 0.691250i \(-0.757060\pi\)
−0.722615 + 0.691250i \(0.757060\pi\)
\(758\) 0 0
\(759\) −13500.0 −0.645611
\(760\) 0 0
\(761\) 35628.0 1.69713 0.848564 0.529093i \(-0.177468\pi\)
0.848564 + 0.529093i \(0.177468\pi\)
\(762\) 0 0
\(763\) −1265.00 −0.0600211
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7830.00 −0.368611
\(768\) 0 0
\(769\) −12517.0 −0.586963 −0.293482 0.955965i \(-0.594814\pi\)
−0.293482 + 0.955965i \(0.594814\pi\)
\(770\) 0 0
\(771\) −8532.00 −0.398538
\(772\) 0 0
\(773\) −14124.0 −0.657186 −0.328593 0.944472i \(-0.606574\pi\)
−0.328593 + 0.944472i \(0.606574\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 10074.0 0.465126
\(778\) 0 0
\(779\) 23244.0 1.06907
\(780\) 0 0
\(781\) −19800.0 −0.907170
\(782\) 0 0
\(783\) 6318.00 0.288361
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 40433.0 1.83136 0.915680 0.401907i \(-0.131653\pi\)
0.915680 + 0.401907i \(0.131653\pi\)
\(788\) 0 0
\(789\) 18180.0 0.820311
\(790\) 0 0
\(791\) −32292.0 −1.45154
\(792\) 0 0
\(793\) −7975.00 −0.357126
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 27300.0 1.21332 0.606660 0.794962i \(-0.292509\pi\)
0.606660 + 0.794962i \(0.292509\pi\)
\(798\) 0 0
\(799\) −2340.00 −0.103609
\(800\) 0 0
\(801\) −13392.0 −0.590740
\(802\) 0 0
\(803\) 19380.0 0.851688
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11718.0 −0.511144
\(808\) 0 0
\(809\) −2856.00 −0.124118 −0.0620591 0.998072i \(-0.519767\pi\)
−0.0620591 + 0.998072i \(0.519767\pi\)
\(810\) 0 0
\(811\) 12619.0 0.546379 0.273189 0.961960i \(-0.411921\pi\)
0.273189 + 0.961960i \(0.411921\pi\)
\(812\) 0 0
\(813\) 6432.00 0.277466
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 64517.0 2.76275
\(818\) 0 0
\(819\) −6003.00 −0.256119
\(820\) 0 0
\(821\) −29082.0 −1.23626 −0.618130 0.786076i \(-0.712109\pi\)
−0.618130 + 0.786076i \(0.712109\pi\)
\(822\) 0 0
\(823\) 10235.0 0.433499 0.216749 0.976227i \(-0.430455\pi\)
0.216749 + 0.976227i \(0.430455\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26976.0 1.13428 0.567139 0.823622i \(-0.308050\pi\)
0.567139 + 0.823622i \(0.308050\pi\)
\(828\) 0 0
\(829\) 37802.0 1.58374 0.791868 0.610692i \(-0.209109\pi\)
0.791868 + 0.610692i \(0.209109\pi\)
\(830\) 0 0
\(831\) 6963.00 0.290666
\(832\) 0 0
\(833\) −14508.0 −0.603448
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5859.00 −0.241955
\(838\) 0 0
\(839\) 16974.0 0.698460 0.349230 0.937037i \(-0.386443\pi\)
0.349230 + 0.937037i \(0.386443\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) 0 0
\(843\) 20466.0 0.836164
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −9913.00 −0.402143
\(848\) 0 0
\(849\) −12147.0 −0.491029
\(850\) 0 0
\(851\) −21900.0 −0.882165
\(852\) 0 0
\(853\) 24937.0 1.00097 0.500485 0.865745i \(-0.333155\pi\)
0.500485 + 0.865745i \(0.333155\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −15756.0 −0.628022 −0.314011 0.949419i \(-0.601673\pi\)
−0.314011 + 0.949419i \(0.601673\pi\)
\(858\) 0 0
\(859\) −38144.0 −1.51508 −0.757542 0.652787i \(-0.773600\pi\)
−0.757542 + 0.652787i \(0.773600\pi\)
\(860\) 0 0
\(861\) 10764.0 0.426058
\(862\) 0 0
\(863\) 5448.00 0.214892 0.107446 0.994211i \(-0.465733\pi\)
0.107446 + 0.994211i \(0.465733\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −3513.00 −0.137610
\(868\) 0 0
\(869\) −29760.0 −1.16172
\(870\) 0 0
\(871\) −23287.0 −0.905913
\(872\) 0 0
\(873\) 2871.00 0.111304
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21191.0 −0.815928 −0.407964 0.912998i \(-0.633761\pi\)
−0.407964 + 0.912998i \(0.633761\pi\)
\(878\) 0 0
\(879\) 6714.00 0.257631
\(880\) 0 0
\(881\) 18216.0 0.696609 0.348305 0.937381i \(-0.386758\pi\)
0.348305 + 0.937381i \(0.386758\pi\)
\(882\) 0 0
\(883\) 12767.0 0.486573 0.243286 0.969955i \(-0.421775\pi\)
0.243286 + 0.969955i \(0.421775\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11010.0 0.416775 0.208388 0.978046i \(-0.433178\pi\)
0.208388 + 0.978046i \(0.433178\pi\)
\(888\) 0 0
\(889\) 29440.0 1.11067
\(890\) 0 0
\(891\) 2430.00 0.0913671
\(892\) 0 0
\(893\) −4470.00 −0.167506
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 13050.0 0.485760
\(898\) 0 0
\(899\) −50778.0 −1.88381
\(900\) 0 0
\(901\) −43056.0 −1.59201
\(902\) 0 0
\(903\) 29877.0 1.10105
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 22772.0 0.833662 0.416831 0.908984i \(-0.363141\pi\)
0.416831 + 0.908984i \(0.363141\pi\)
\(908\) 0 0
\(909\) −7128.00 −0.260089
\(910\) 0 0
\(911\) −29802.0 −1.08385 −0.541923 0.840428i \(-0.682304\pi\)
−0.541923 + 0.840428i \(0.682304\pi\)
\(912\) 0 0
\(913\) −25380.0 −0.919995
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −11040.0 −0.397571
\(918\) 0 0
\(919\) −48941.0 −1.75671 −0.878354 0.478011i \(-0.841358\pi\)
−0.878354 + 0.478011i \(0.841358\pi\)
\(920\) 0 0
\(921\) −4155.00 −0.148656
\(922\) 0 0
\(923\) 19140.0 0.682558
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 7308.00 0.258928
\(928\) 0 0
\(929\) 31026.0 1.09573 0.547863 0.836568i \(-0.315441\pi\)
0.547863 + 0.836568i \(0.315441\pi\)
\(930\) 0 0
\(931\) −27714.0 −0.975607
\(932\) 0 0
\(933\) −17010.0 −0.596873
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11183.0 −0.389896 −0.194948 0.980814i \(-0.562454\pi\)
−0.194948 + 0.980814i \(0.562454\pi\)
\(938\) 0 0
\(939\) −1263.00 −0.0438940
\(940\) 0 0
\(941\) −2562.00 −0.0887554 −0.0443777 0.999015i \(-0.514130\pi\)
−0.0443777 + 0.999015i \(0.514130\pi\)
\(942\) 0 0
\(943\) −23400.0 −0.808069
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7638.00 0.262093 0.131046 0.991376i \(-0.458166\pi\)
0.131046 + 0.991376i \(0.458166\pi\)
\(948\) 0 0
\(949\) −18734.0 −0.640813
\(950\) 0 0
\(951\) 29952.0 1.02130
\(952\) 0 0
\(953\) −51432.0 −1.74821 −0.874106 0.485735i \(-0.838552\pi\)
−0.874106 + 0.485735i \(0.838552\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 21060.0 0.711362
\(958\) 0 0
\(959\) 6486.00 0.218398
\(960\) 0 0
\(961\) 17298.0 0.580645
\(962\) 0 0
\(963\) −12744.0 −0.426448
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 39728.0 1.32116 0.660582 0.750754i \(-0.270309\pi\)
0.660582 + 0.750754i \(0.270309\pi\)
\(968\) 0 0
\(969\) −34866.0 −1.15589
\(970\) 0 0
\(971\) 47946.0 1.58461 0.792307 0.610123i \(-0.208880\pi\)
0.792307 + 0.610123i \(0.208880\pi\)
\(972\) 0 0
\(973\) −36892.0 −1.21552
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22326.0 0.731087 0.365544 0.930794i \(-0.380883\pi\)
0.365544 + 0.930794i \(0.380883\pi\)
\(978\) 0 0
\(979\) −44640.0 −1.45730
\(980\) 0 0
\(981\) −495.000 −0.0161102
\(982\) 0 0
\(983\) −48468.0 −1.57262 −0.786312 0.617830i \(-0.788012\pi\)
−0.786312 + 0.617830i \(0.788012\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2070.00 −0.0667567
\(988\) 0 0
\(989\) −64950.0 −2.08826
\(990\) 0 0
\(991\) 25141.0 0.805883 0.402942 0.915226i \(-0.367988\pi\)
0.402942 + 0.915226i \(0.367988\pi\)
\(992\) 0 0
\(993\) −12684.0 −0.405352
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 35422.0 1.12520 0.562601 0.826729i \(-0.309801\pi\)
0.562601 + 0.826729i \(0.309801\pi\)
\(998\) 0 0
\(999\) 3942.00 0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.4.a.r.1.1 1
4.3 odd 2 150.4.a.c.1.1 1
5.2 odd 4 1200.4.f.q.49.2 2
5.3 odd 4 1200.4.f.q.49.1 2
5.4 even 2 1200.4.a.v.1.1 1
12.11 even 2 450.4.a.l.1.1 1
20.3 even 4 150.4.c.b.49.2 2
20.7 even 4 150.4.c.b.49.1 2
20.19 odd 2 150.4.a.g.1.1 yes 1
60.23 odd 4 450.4.c.h.199.1 2
60.47 odd 4 450.4.c.h.199.2 2
60.59 even 2 450.4.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.c.1.1 1 4.3 odd 2
150.4.a.g.1.1 yes 1 20.19 odd 2
150.4.c.b.49.1 2 20.7 even 4
150.4.c.b.49.2 2 20.3 even 4
450.4.a.i.1.1 1 60.59 even 2
450.4.a.l.1.1 1 12.11 even 2
450.4.c.h.199.1 2 60.23 odd 4
450.4.c.h.199.2 2 60.47 odd 4
1200.4.a.r.1.1 1 1.1 even 1 trivial
1200.4.a.v.1.1 1 5.4 even 2
1200.4.f.q.49.1 2 5.3 odd 4
1200.4.f.q.49.2 2 5.2 odd 4