Properties

Label 1200.4.a.bq.1.1
Level $1200$
Weight $4$
Character 1200.1
Self dual yes
Analytic conductor $70.802$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(1,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{129}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 120)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(6.17891\) of defining polynomial
Character \(\chi\) \(=\) 1200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -35.0735 q^{7} +9.00000 q^{9} -25.6422 q^{11} -37.6422 q^{13} +95.7891 q^{17} -50.8625 q^{19} -105.220 q^{21} +110.863 q^{23} +27.0000 q^{27} -54.5047 q^{29} -198.441 q^{31} -76.9265 q^{33} -266.945 q^{37} -112.927 q^{39} +103.853 q^{41} +108.000 q^{43} +597.009 q^{47} +887.147 q^{49} +287.367 q^{51} +305.642 q^{53} -152.588 q^{57} +223.533 q^{59} +485.450 q^{61} -315.661 q^{63} -876.166 q^{67} +332.588 q^{69} -585.597 q^{71} +1137.60 q^{73} +899.360 q^{77} -685.009 q^{79} +81.0000 q^{81} +305.725 q^{83} -163.514 q^{87} +887.175 q^{89} +1320.24 q^{91} -595.322 q^{93} +556.550 q^{97} -230.780 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} - 2 q^{7} + 18 q^{9} - 74 q^{11} - 98 q^{13} + 78 q^{17} + 80 q^{19} - 6 q^{21} + 40 q^{23} + 54 q^{27} + 50 q^{29} + 12 q^{31} - 222 q^{33} + 34 q^{37} - 294 q^{39} + 344 q^{41} + 216 q^{43}+ \cdots - 666 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.00000 0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −35.0735 −1.89379 −0.946894 0.321545i \(-0.895798\pi\)
−0.946894 + 0.321545i \(0.895798\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −25.6422 −0.702855 −0.351428 0.936215i \(-0.614304\pi\)
−0.351428 + 0.936215i \(0.614304\pi\)
\(12\) 0 0
\(13\) −37.6422 −0.803082 −0.401541 0.915841i \(-0.631525\pi\)
−0.401541 + 0.915841i \(0.631525\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 95.7891 1.36660 0.683302 0.730136i \(-0.260543\pi\)
0.683302 + 0.730136i \(0.260543\pi\)
\(18\) 0 0
\(19\) −50.8625 −0.614140 −0.307070 0.951687i \(-0.599349\pi\)
−0.307070 + 0.951687i \(0.599349\pi\)
\(20\) 0 0
\(21\) −105.220 −1.09338
\(22\) 0 0
\(23\) 110.863 1.00506 0.502531 0.864559i \(-0.332402\pi\)
0.502531 + 0.864559i \(0.332402\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 0 0
\(29\) −54.5047 −0.349009 −0.174505 0.984656i \(-0.555832\pi\)
−0.174505 + 0.984656i \(0.555832\pi\)
\(30\) 0 0
\(31\) −198.441 −1.14971 −0.574855 0.818255i \(-0.694941\pi\)
−0.574855 + 0.818255i \(0.694941\pi\)
\(32\) 0 0
\(33\) −76.9265 −0.405794
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −266.945 −1.18610 −0.593048 0.805167i \(-0.702076\pi\)
−0.593048 + 0.805167i \(0.702076\pi\)
\(38\) 0 0
\(39\) −112.927 −0.463659
\(40\) 0 0
\(41\) 103.853 0.395589 0.197794 0.980244i \(-0.436622\pi\)
0.197794 + 0.980244i \(0.436622\pi\)
\(42\) 0 0
\(43\) 108.000 0.383020 0.191510 0.981491i \(-0.438662\pi\)
0.191510 + 0.981491i \(0.438662\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 597.009 1.85283 0.926413 0.376510i \(-0.122876\pi\)
0.926413 + 0.376510i \(0.122876\pi\)
\(48\) 0 0
\(49\) 887.147 2.58643
\(50\) 0 0
\(51\) 287.367 0.789009
\(52\) 0 0
\(53\) 305.642 0.792136 0.396068 0.918221i \(-0.370375\pi\)
0.396068 + 0.918221i \(0.370375\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −152.588 −0.354574
\(58\) 0 0
\(59\) 223.533 0.493246 0.246623 0.969111i \(-0.420679\pi\)
0.246623 + 0.969111i \(0.420679\pi\)
\(60\) 0 0
\(61\) 485.450 1.01894 0.509471 0.860488i \(-0.329841\pi\)
0.509471 + 0.860488i \(0.329841\pi\)
\(62\) 0 0
\(63\) −315.661 −0.631263
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −876.166 −1.59762 −0.798811 0.601582i \(-0.794537\pi\)
−0.798811 + 0.601582i \(0.794537\pi\)
\(68\) 0 0
\(69\) 332.588 0.580273
\(70\) 0 0
\(71\) −585.597 −0.978839 −0.489420 0.872048i \(-0.662791\pi\)
−0.489420 + 0.872048i \(0.662791\pi\)
\(72\) 0 0
\(73\) 1137.60 1.82391 0.911957 0.410287i \(-0.134571\pi\)
0.911957 + 0.410287i \(0.134571\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 899.360 1.33106
\(78\) 0 0
\(79\) −685.009 −0.975564 −0.487782 0.872965i \(-0.662194\pi\)
−0.487782 + 0.872965i \(0.662194\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 305.725 0.404309 0.202155 0.979354i \(-0.435206\pi\)
0.202155 + 0.979354i \(0.435206\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −163.514 −0.201501
\(88\) 0 0
\(89\) 887.175 1.05663 0.528317 0.849047i \(-0.322823\pi\)
0.528317 + 0.849047i \(0.322823\pi\)
\(90\) 0 0
\(91\) 1320.24 1.52087
\(92\) 0 0
\(93\) −595.322 −0.663785
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 556.550 0.582568 0.291284 0.956637i \(-0.405918\pi\)
0.291284 + 0.956637i \(0.405918\pi\)
\(98\) 0 0
\(99\) −230.780 −0.234285
\(100\) 0 0
\(101\) 1591.09 1.56752 0.783760 0.621063i \(-0.213299\pi\)
0.783760 + 0.621063i \(0.213299\pi\)
\(102\) 0 0
\(103\) 1350.95 1.29236 0.646178 0.763187i \(-0.276366\pi\)
0.646178 + 0.763187i \(0.276366\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1333.51 1.20481 0.602406 0.798190i \(-0.294209\pi\)
0.602406 + 0.798190i \(0.294209\pi\)
\(108\) 0 0
\(109\) −609.910 −0.535952 −0.267976 0.963426i \(-0.586355\pi\)
−0.267976 + 0.963426i \(0.586355\pi\)
\(110\) 0 0
\(111\) −800.836 −0.684793
\(112\) 0 0
\(113\) −241.808 −0.201304 −0.100652 0.994922i \(-0.532093\pi\)
−0.100652 + 0.994922i \(0.532093\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −338.780 −0.267694
\(118\) 0 0
\(119\) −3359.65 −2.58806
\(120\) 0 0
\(121\) −673.478 −0.505994
\(122\) 0 0
\(123\) 311.559 0.228393
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −1045.94 −0.730802 −0.365401 0.930850i \(-0.619068\pi\)
−0.365401 + 0.930850i \(0.619068\pi\)
\(128\) 0 0
\(129\) 324.000 0.221137
\(130\) 0 0
\(131\) 886.524 0.591267 0.295633 0.955301i \(-0.404469\pi\)
0.295633 + 0.955301i \(0.404469\pi\)
\(132\) 0 0
\(133\) 1783.92 1.16305
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 160.723 0.100230 0.0501150 0.998743i \(-0.484041\pi\)
0.0501150 + 0.998743i \(0.484041\pi\)
\(138\) 0 0
\(139\) 57.2655 0.0349439 0.0174719 0.999847i \(-0.494438\pi\)
0.0174719 + 0.999847i \(0.494438\pi\)
\(140\) 0 0
\(141\) 1791.03 1.06973
\(142\) 0 0
\(143\) 965.228 0.564450
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2661.44 1.49328
\(148\) 0 0
\(149\) −1105.15 −0.607633 −0.303817 0.952731i \(-0.598261\pi\)
−0.303817 + 0.952731i \(0.598261\pi\)
\(150\) 0 0
\(151\) −2289.63 −1.23396 −0.616980 0.786979i \(-0.711644\pi\)
−0.616980 + 0.786979i \(0.711644\pi\)
\(152\) 0 0
\(153\) 862.102 0.455535
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 161.514 0.0821034 0.0410517 0.999157i \(-0.486929\pi\)
0.0410517 + 0.999157i \(0.486929\pi\)
\(158\) 0 0
\(159\) 916.927 0.457340
\(160\) 0 0
\(161\) −3888.33 −1.90338
\(162\) 0 0
\(163\) 1594.15 0.766032 0.383016 0.923742i \(-0.374885\pi\)
0.383016 + 0.923742i \(0.374885\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1017.39 0.471427 0.235713 0.971823i \(-0.424257\pi\)
0.235713 + 0.971823i \(0.424257\pi\)
\(168\) 0 0
\(169\) −780.066 −0.355060
\(170\) 0 0
\(171\) −457.763 −0.204713
\(172\) 0 0
\(173\) 2444.49 1.07428 0.537142 0.843492i \(-0.319504\pi\)
0.537142 + 0.843492i \(0.319504\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 670.599 0.284776
\(178\) 0 0
\(179\) −222.780 −0.0930242 −0.0465121 0.998918i \(-0.514811\pi\)
−0.0465121 + 0.998918i \(0.514811\pi\)
\(180\) 0 0
\(181\) −100.034 −0.0410798 −0.0205399 0.999789i \(-0.506539\pi\)
−0.0205399 + 0.999789i \(0.506539\pi\)
\(182\) 0 0
\(183\) 1456.35 0.588287
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2456.24 −0.960525
\(188\) 0 0
\(189\) −946.983 −0.364460
\(190\) 0 0
\(191\) −702.403 −0.266095 −0.133047 0.991110i \(-0.542476\pi\)
−0.133047 + 0.991110i \(0.542476\pi\)
\(192\) 0 0
\(193\) 4126.63 1.53907 0.769537 0.638602i \(-0.220487\pi\)
0.769537 + 0.638602i \(0.220487\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −3104.45 −1.12276 −0.561378 0.827559i \(-0.689729\pi\)
−0.561378 + 0.827559i \(0.689729\pi\)
\(198\) 0 0
\(199\) 367.616 0.130953 0.0654764 0.997854i \(-0.479143\pi\)
0.0654764 + 0.997854i \(0.479143\pi\)
\(200\) 0 0
\(201\) −2628.50 −0.922388
\(202\) 0 0
\(203\) 1911.67 0.660950
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 997.763 0.335021
\(208\) 0 0
\(209\) 1304.23 0.431652
\(210\) 0 0
\(211\) −2594.85 −0.846619 −0.423310 0.905985i \(-0.639132\pi\)
−0.423310 + 0.905985i \(0.639132\pi\)
\(212\) 0 0
\(213\) −1756.79 −0.565133
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 6960.00 2.17731
\(218\) 0 0
\(219\) 3412.79 1.05304
\(220\) 0 0
\(221\) −3605.71 −1.09749
\(222\) 0 0
\(223\) −1834.41 −0.550857 −0.275429 0.961321i \(-0.588820\pi\)
−0.275429 + 0.961321i \(0.588820\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 175.811 0.0514053 0.0257027 0.999670i \(-0.491818\pi\)
0.0257027 + 0.999670i \(0.491818\pi\)
\(228\) 0 0
\(229\) 1622.35 0.468158 0.234079 0.972218i \(-0.424793\pi\)
0.234079 + 0.972218i \(0.424793\pi\)
\(230\) 0 0
\(231\) 2698.08 0.768487
\(232\) 0 0
\(233\) −3965.65 −1.11501 −0.557507 0.830172i \(-0.688242\pi\)
−0.557507 + 0.830172i \(0.688242\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2055.03 −0.563242
\(238\) 0 0
\(239\) 6323.25 1.71137 0.855685 0.517497i \(-0.173136\pi\)
0.855685 + 0.517497i \(0.173136\pi\)
\(240\) 0 0
\(241\) 3407.51 0.910775 0.455388 0.890293i \(-0.349501\pi\)
0.455388 + 0.890293i \(0.349501\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1914.58 0.493205
\(248\) 0 0
\(249\) 917.175 0.233428
\(250\) 0 0
\(251\) −1345.81 −0.338433 −0.169216 0.985579i \(-0.554124\pi\)
−0.169216 + 0.985579i \(0.554124\pi\)
\(252\) 0 0
\(253\) −2842.76 −0.706414
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4697.19 −1.14009 −0.570044 0.821614i \(-0.693074\pi\)
−0.570044 + 0.821614i \(0.693074\pi\)
\(258\) 0 0
\(259\) 9362.70 2.24621
\(260\) 0 0
\(261\) −490.542 −0.116336
\(262\) 0 0
\(263\) 4700.66 1.10211 0.551056 0.834468i \(-0.314225\pi\)
0.551056 + 0.834468i \(0.314225\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 2661.53 0.610048
\(268\) 0 0
\(269\) −7962.67 −1.80481 −0.902403 0.430894i \(-0.858198\pi\)
−0.902403 + 0.430894i \(0.858198\pi\)
\(270\) 0 0
\(271\) 6122.73 1.37243 0.686217 0.727397i \(-0.259270\pi\)
0.686217 + 0.727397i \(0.259270\pi\)
\(272\) 0 0
\(273\) 3960.72 0.878073
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8417.57 1.82586 0.912930 0.408117i \(-0.133814\pi\)
0.912930 + 0.408117i \(0.133814\pi\)
\(278\) 0 0
\(279\) −1785.97 −0.383237
\(280\) 0 0
\(281\) 3030.99 0.643466 0.321733 0.946830i \(-0.395735\pi\)
0.321733 + 0.946830i \(0.395735\pi\)
\(282\) 0 0
\(283\) 2890.81 0.607211 0.303606 0.952798i \(-0.401809\pi\)
0.303606 + 0.952798i \(0.401809\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −3642.49 −0.749161
\(288\) 0 0
\(289\) 4262.55 0.867606
\(290\) 0 0
\(291\) 1669.65 0.336346
\(292\) 0 0
\(293\) 8966.75 1.78786 0.893930 0.448206i \(-0.147937\pi\)
0.893930 + 0.448206i \(0.147937\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −692.339 −0.135265
\(298\) 0 0
\(299\) −4173.11 −0.807147
\(300\) 0 0
\(301\) −3787.93 −0.725358
\(302\) 0 0
\(303\) 4773.28 0.905009
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −3298.42 −0.613194 −0.306597 0.951839i \(-0.599190\pi\)
−0.306597 + 0.951839i \(0.599190\pi\)
\(308\) 0 0
\(309\) 4052.84 0.746142
\(310\) 0 0
\(311\) 3394.92 0.618998 0.309499 0.950900i \(-0.399839\pi\)
0.309499 + 0.950900i \(0.399839\pi\)
\(312\) 0 0
\(313\) 5946.95 1.07393 0.536967 0.843603i \(-0.319570\pi\)
0.536967 + 0.843603i \(0.319570\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2520.83 −0.446637 −0.223318 0.974746i \(-0.571689\pi\)
−0.223318 + 0.974746i \(0.571689\pi\)
\(318\) 0 0
\(319\) 1397.62 0.245303
\(320\) 0 0
\(321\) 4000.52 0.695599
\(322\) 0 0
\(323\) −4872.08 −0.839286
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −1829.73 −0.309432
\(328\) 0 0
\(329\) −20939.2 −3.50886
\(330\) 0 0
\(331\) 4586.86 0.761682 0.380841 0.924641i \(-0.375635\pi\)
0.380841 + 0.924641i \(0.375635\pi\)
\(332\) 0 0
\(333\) −2402.51 −0.395365
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 8582.12 1.38723 0.693617 0.720344i \(-0.256016\pi\)
0.693617 + 0.720344i \(0.256016\pi\)
\(338\) 0 0
\(339\) −725.424 −0.116223
\(340\) 0 0
\(341\) 5088.45 0.808080
\(342\) 0 0
\(343\) −19085.1 −3.00437
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2539.38 0.392857 0.196428 0.980518i \(-0.437066\pi\)
0.196428 + 0.980518i \(0.437066\pi\)
\(348\) 0 0
\(349\) −9002.82 −1.38083 −0.690415 0.723413i \(-0.742572\pi\)
−0.690415 + 0.723413i \(0.742572\pi\)
\(350\) 0 0
\(351\) −1016.34 −0.154553
\(352\) 0 0
\(353\) −3928.08 −0.592267 −0.296134 0.955146i \(-0.595697\pi\)
−0.296134 + 0.955146i \(0.595697\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −10079.0 −1.49422
\(358\) 0 0
\(359\) −10001.7 −1.47039 −0.735197 0.677854i \(-0.762910\pi\)
−0.735197 + 0.677854i \(0.762910\pi\)
\(360\) 0 0
\(361\) −4272.00 −0.622832
\(362\) 0 0
\(363\) −2020.44 −0.292136
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 5967.79 0.848818 0.424409 0.905471i \(-0.360482\pi\)
0.424409 + 0.905471i \(0.360482\pi\)
\(368\) 0 0
\(369\) 934.678 0.131863
\(370\) 0 0
\(371\) −10719.9 −1.50014
\(372\) 0 0
\(373\) −6931.55 −0.962204 −0.481102 0.876665i \(-0.659763\pi\)
−0.481102 + 0.876665i \(0.659763\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2051.68 0.280283
\(378\) 0 0
\(379\) −9711.70 −1.31624 −0.658122 0.752911i \(-0.728649\pi\)
−0.658122 + 0.752911i \(0.728649\pi\)
\(380\) 0 0
\(381\) −3137.81 −0.421929
\(382\) 0 0
\(383\) 5664.84 0.755769 0.377885 0.925853i \(-0.376652\pi\)
0.377885 + 0.925853i \(0.376652\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 972.000 0.127673
\(388\) 0 0
\(389\) 8918.17 1.16239 0.581195 0.813765i \(-0.302586\pi\)
0.581195 + 0.813765i \(0.302586\pi\)
\(390\) 0 0
\(391\) 10619.4 1.37352
\(392\) 0 0
\(393\) 2659.57 0.341368
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12849.9 −1.62448 −0.812242 0.583321i \(-0.801753\pi\)
−0.812242 + 0.583321i \(0.801753\pi\)
\(398\) 0 0
\(399\) 5351.77 0.671488
\(400\) 0 0
\(401\) 3563.08 0.443721 0.221860 0.975078i \(-0.428787\pi\)
0.221860 + 0.975078i \(0.428787\pi\)
\(402\) 0 0
\(403\) 7469.74 0.923311
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 6845.06 0.833654
\(408\) 0 0
\(409\) −2026.69 −0.245020 −0.122510 0.992467i \(-0.539094\pi\)
−0.122510 + 0.992467i \(0.539094\pi\)
\(410\) 0 0
\(411\) 482.169 0.0578678
\(412\) 0 0
\(413\) −7840.07 −0.934104
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 171.796 0.0201748
\(418\) 0 0
\(419\) 1670.39 0.194759 0.0973793 0.995247i \(-0.468954\pi\)
0.0973793 + 0.995247i \(0.468954\pi\)
\(420\) 0 0
\(421\) 6079.66 0.703812 0.351906 0.936035i \(-0.385534\pi\)
0.351906 + 0.936035i \(0.385534\pi\)
\(422\) 0 0
\(423\) 5373.08 0.617608
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −17026.4 −1.92966
\(428\) 0 0
\(429\) 2895.68 0.325886
\(430\) 0 0
\(431\) −1719.37 −0.192155 −0.0960777 0.995374i \(-0.530630\pi\)
−0.0960777 + 0.995374i \(0.530630\pi\)
\(432\) 0 0
\(433\) −12024.9 −1.33459 −0.667296 0.744792i \(-0.732549\pi\)
−0.667296 + 0.744792i \(0.732549\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5638.75 −0.617249
\(438\) 0 0
\(439\) 7542.97 0.820060 0.410030 0.912072i \(-0.365518\pi\)
0.410030 + 0.912072i \(0.365518\pi\)
\(440\) 0 0
\(441\) 7984.32 0.862145
\(442\) 0 0
\(443\) −4578.13 −0.491001 −0.245501 0.969396i \(-0.578952\pi\)
−0.245501 + 0.969396i \(0.578952\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3315.45 −0.350817
\(448\) 0 0
\(449\) 6875.21 0.722630 0.361315 0.932444i \(-0.382328\pi\)
0.361315 + 0.932444i \(0.382328\pi\)
\(450\) 0 0
\(451\) −2663.02 −0.278042
\(452\) 0 0
\(453\) −6868.90 −0.712427
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 7351.97 0.752540 0.376270 0.926510i \(-0.377207\pi\)
0.376270 + 0.926510i \(0.377207\pi\)
\(458\) 0 0
\(459\) 2586.31 0.263003
\(460\) 0 0
\(461\) −15614.5 −1.57752 −0.788762 0.614698i \(-0.789278\pi\)
−0.788762 + 0.614698i \(0.789278\pi\)
\(462\) 0 0
\(463\) −1684.73 −0.169106 −0.0845530 0.996419i \(-0.526946\pi\)
−0.0845530 + 0.996419i \(0.526946\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10235.2 1.01420 0.507099 0.861888i \(-0.330718\pi\)
0.507099 + 0.861888i \(0.330718\pi\)
\(468\) 0 0
\(469\) 30730.2 3.02556
\(470\) 0 0
\(471\) 484.542 0.0474024
\(472\) 0 0
\(473\) −2769.36 −0.269207
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2750.78 0.264045
\(478\) 0 0
\(479\) −12247.2 −1.16825 −0.584123 0.811665i \(-0.698561\pi\)
−0.584123 + 0.811665i \(0.698561\pi\)
\(480\) 0 0
\(481\) 10048.4 0.952532
\(482\) 0 0
\(483\) −11665.0 −1.09891
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −7895.91 −0.734698 −0.367349 0.930083i \(-0.619735\pi\)
−0.367349 + 0.930083i \(0.619735\pi\)
\(488\) 0 0
\(489\) 4782.44 0.442269
\(490\) 0 0
\(491\) 7625.48 0.700882 0.350441 0.936585i \(-0.386032\pi\)
0.350441 + 0.936585i \(0.386032\pi\)
\(492\) 0 0
\(493\) −5220.96 −0.476958
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 20538.9 1.85371
\(498\) 0 0
\(499\) 8655.23 0.776476 0.388238 0.921559i \(-0.373084\pi\)
0.388238 + 0.921559i \(0.373084\pi\)
\(500\) 0 0
\(501\) 3052.18 0.272178
\(502\) 0 0
\(503\) 118.441 0.0104990 0.00524951 0.999986i \(-0.498329\pi\)
0.00524951 + 0.999986i \(0.498329\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2340.20 −0.204994
\(508\) 0 0
\(509\) 5359.43 0.466704 0.233352 0.972392i \(-0.425030\pi\)
0.233352 + 0.972392i \(0.425030\pi\)
\(510\) 0 0
\(511\) −39899.5 −3.45411
\(512\) 0 0
\(513\) −1373.29 −0.118191
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −15308.6 −1.30227
\(518\) 0 0
\(519\) 7333.47 0.620238
\(520\) 0 0
\(521\) −10862.4 −0.913414 −0.456707 0.889617i \(-0.650971\pi\)
−0.456707 + 0.889617i \(0.650971\pi\)
\(522\) 0 0
\(523\) −9553.39 −0.798740 −0.399370 0.916790i \(-0.630771\pi\)
−0.399370 + 0.916790i \(0.630771\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −19008.5 −1.57120
\(528\) 0 0
\(529\) 123.501 0.0101505
\(530\) 0 0
\(531\) 2011.80 0.164415
\(532\) 0 0
\(533\) −3909.26 −0.317690
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −668.339 −0.0537076
\(538\) 0 0
\(539\) −22748.4 −1.81789
\(540\) 0 0
\(541\) −6132.47 −0.487348 −0.243674 0.969857i \(-0.578353\pi\)
−0.243674 + 0.969857i \(0.578353\pi\)
\(542\) 0 0
\(543\) −300.101 −0.0237174
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −2853.85 −0.223075 −0.111537 0.993760i \(-0.535578\pi\)
−0.111537 + 0.993760i \(0.535578\pi\)
\(548\) 0 0
\(549\) 4369.05 0.339648
\(550\) 0 0
\(551\) 2772.25 0.214341
\(552\) 0 0
\(553\) 24025.6 1.84751
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −5192.60 −0.395005 −0.197502 0.980302i \(-0.563283\pi\)
−0.197502 + 0.980302i \(0.563283\pi\)
\(558\) 0 0
\(559\) −4065.36 −0.307596
\(560\) 0 0
\(561\) −7368.72 −0.554559
\(562\) 0 0
\(563\) −10907.2 −0.816492 −0.408246 0.912872i \(-0.633859\pi\)
−0.408246 + 0.912872i \(0.633859\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2840.95 −0.210421
\(568\) 0 0
\(569\) −155.257 −0.0114389 −0.00571945 0.999984i \(-0.501821\pi\)
−0.00571945 + 0.999984i \(0.501821\pi\)
\(570\) 0 0
\(571\) 4925.15 0.360965 0.180483 0.983578i \(-0.442234\pi\)
0.180483 + 0.983578i \(0.442234\pi\)
\(572\) 0 0
\(573\) −2107.21 −0.153630
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −5292.05 −0.381822 −0.190911 0.981607i \(-0.561144\pi\)
−0.190911 + 0.981607i \(0.561144\pi\)
\(578\) 0 0
\(579\) 12379.9 0.888585
\(580\) 0 0
\(581\) −10722.8 −0.765677
\(582\) 0 0
\(583\) −7837.33 −0.556757
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 19658.5 1.38227 0.691134 0.722727i \(-0.257112\pi\)
0.691134 + 0.722727i \(0.257112\pi\)
\(588\) 0 0
\(589\) 10093.2 0.706083
\(590\) 0 0
\(591\) −9313.36 −0.648224
\(592\) 0 0
\(593\) 6578.08 0.455530 0.227765 0.973716i \(-0.426858\pi\)
0.227765 + 0.973716i \(0.426858\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1102.85 0.0756056
\(598\) 0 0
\(599\) −16915.9 −1.15386 −0.576931 0.816793i \(-0.695750\pi\)
−0.576931 + 0.816793i \(0.695750\pi\)
\(600\) 0 0
\(601\) 19801.4 1.34395 0.671977 0.740572i \(-0.265445\pi\)
0.671977 + 0.740572i \(0.265445\pi\)
\(602\) 0 0
\(603\) −7885.49 −0.532541
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 22498.4 1.50442 0.752208 0.658926i \(-0.228989\pi\)
0.752208 + 0.658926i \(0.228989\pi\)
\(608\) 0 0
\(609\) 5735.01 0.381600
\(610\) 0 0
\(611\) −22472.7 −1.48797
\(612\) 0 0
\(613\) −23829.3 −1.57008 −0.785039 0.619446i \(-0.787357\pi\)
−0.785039 + 0.619446i \(0.787357\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4277.52 −0.279103 −0.139551 0.990215i \(-0.544566\pi\)
−0.139551 + 0.990215i \(0.544566\pi\)
\(618\) 0 0
\(619\) −4995.99 −0.324404 −0.162202 0.986758i \(-0.551860\pi\)
−0.162202 + 0.986758i \(0.551860\pi\)
\(620\) 0 0
\(621\) 2993.29 0.193424
\(622\) 0 0
\(623\) −31116.3 −2.00104
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 3912.68 0.249214
\(628\) 0 0
\(629\) −25570.5 −1.62092
\(630\) 0 0
\(631\) 11328.0 0.714675 0.357337 0.933975i \(-0.383685\pi\)
0.357337 + 0.933975i \(0.383685\pi\)
\(632\) 0 0
\(633\) −7784.54 −0.488796
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −33394.1 −2.07712
\(638\) 0 0
\(639\) −5270.37 −0.326280
\(640\) 0 0
\(641\) 5955.35 0.366961 0.183481 0.983023i \(-0.441264\pi\)
0.183481 + 0.983023i \(0.441264\pi\)
\(642\) 0 0
\(643\) 15727.7 0.964605 0.482302 0.876005i \(-0.339801\pi\)
0.482302 + 0.876005i \(0.339801\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9582.24 −0.582252 −0.291126 0.956685i \(-0.594030\pi\)
−0.291126 + 0.956685i \(0.594030\pi\)
\(648\) 0 0
\(649\) −5731.87 −0.346681
\(650\) 0 0
\(651\) 20880.0 1.25707
\(652\) 0 0
\(653\) −8313.70 −0.498224 −0.249112 0.968475i \(-0.580139\pi\)
−0.249112 + 0.968475i \(0.580139\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 10238.4 0.607971
\(658\) 0 0
\(659\) −15095.5 −0.892317 −0.446158 0.894954i \(-0.647208\pi\)
−0.446158 + 0.894954i \(0.647208\pi\)
\(660\) 0 0
\(661\) 8266.98 0.486457 0.243229 0.969969i \(-0.421793\pi\)
0.243229 + 0.969969i \(0.421793\pi\)
\(662\) 0 0
\(663\) −10817.1 −0.633639
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6042.53 −0.350776
\(668\) 0 0
\(669\) −5503.23 −0.318038
\(670\) 0 0
\(671\) −12448.0 −0.716170
\(672\) 0 0
\(673\) −11186.7 −0.640735 −0.320367 0.947293i \(-0.603806\pi\)
−0.320367 + 0.947293i \(0.603806\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7675.84 −0.435756 −0.217878 0.975976i \(-0.569913\pi\)
−0.217878 + 0.975976i \(0.569913\pi\)
\(678\) 0 0
\(679\) −19520.1 −1.10326
\(680\) 0 0
\(681\) 527.434 0.0296789
\(682\) 0 0
\(683\) 10550.9 0.591099 0.295549 0.955327i \(-0.404497\pi\)
0.295549 + 0.955327i \(0.404497\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 4867.06 0.270291
\(688\) 0 0
\(689\) −11505.0 −0.636150
\(690\) 0 0
\(691\) 26950.9 1.48373 0.741867 0.670547i \(-0.233940\pi\)
0.741867 + 0.670547i \(0.233940\pi\)
\(692\) 0 0
\(693\) 8094.24 0.443686
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9947.99 0.540613
\(698\) 0 0
\(699\) −11897.0 −0.643754
\(700\) 0 0
\(701\) 12791.6 0.689204 0.344602 0.938749i \(-0.388014\pi\)
0.344602 + 0.938749i \(0.388014\pi\)
\(702\) 0 0
\(703\) 13577.5 0.728429
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −55805.1 −2.96855
\(708\) 0 0
\(709\) −16238.3 −0.860142 −0.430071 0.902795i \(-0.641511\pi\)
−0.430071 + 0.902795i \(0.641511\pi\)
\(710\) 0 0
\(711\) −6165.08 −0.325188
\(712\) 0 0
\(713\) −21999.6 −1.15553
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 18969.8 0.988060
\(718\) 0 0
\(719\) 24285.8 1.25968 0.629839 0.776726i \(-0.283121\pi\)
0.629839 + 0.776726i \(0.283121\pi\)
\(720\) 0 0
\(721\) −47382.3 −2.44745
\(722\) 0 0
\(723\) 10222.5 0.525836
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 4466.82 0.227875 0.113937 0.993488i \(-0.463654\pi\)
0.113937 + 0.993488i \(0.463654\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 10345.2 0.523436
\(732\) 0 0
\(733\) 30802.1 1.55212 0.776059 0.630661i \(-0.217216\pi\)
0.776059 + 0.630661i \(0.217216\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 22466.8 1.12290
\(738\) 0 0
\(739\) 12920.5 0.643151 0.321576 0.946884i \(-0.395788\pi\)
0.321576 + 0.946884i \(0.395788\pi\)
\(740\) 0 0
\(741\) 5743.73 0.284752
\(742\) 0 0
\(743\) 2571.29 0.126960 0.0634802 0.997983i \(-0.479780\pi\)
0.0634802 + 0.997983i \(0.479780\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2751.53 0.134770
\(748\) 0 0
\(749\) −46770.7 −2.28166
\(750\) 0 0
\(751\) 13427.4 0.652426 0.326213 0.945296i \(-0.394227\pi\)
0.326213 + 0.945296i \(0.394227\pi\)
\(752\) 0 0
\(753\) −4037.42 −0.195394
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7103.66 −0.341066 −0.170533 0.985352i \(-0.554549\pi\)
−0.170533 + 0.985352i \(0.554549\pi\)
\(758\) 0 0
\(759\) −8528.27 −0.407848
\(760\) 0 0
\(761\) 19205.2 0.914831 0.457416 0.889253i \(-0.348775\pi\)
0.457416 + 0.889253i \(0.348775\pi\)
\(762\) 0 0
\(763\) 21391.6 1.01498
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8414.27 −0.396117
\(768\) 0 0
\(769\) 19508.1 0.914799 0.457399 0.889261i \(-0.348781\pi\)
0.457399 + 0.889261i \(0.348781\pi\)
\(770\) 0 0
\(771\) −14091.6 −0.658230
\(772\) 0 0
\(773\) −38852.5 −1.80780 −0.903899 0.427746i \(-0.859308\pi\)
−0.903899 + 0.427746i \(0.859308\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 28088.1 1.29685
\(778\) 0 0
\(779\) −5282.23 −0.242947
\(780\) 0 0
\(781\) 15016.0 0.687982
\(782\) 0 0
\(783\) −1471.63 −0.0671669
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 24851.1 1.12560 0.562799 0.826594i \(-0.309725\pi\)
0.562799 + 0.826594i \(0.309725\pi\)
\(788\) 0 0
\(789\) 14102.0 0.636304
\(790\) 0 0
\(791\) 8481.04 0.381228
\(792\) 0 0
\(793\) −18273.4 −0.818295
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33040.1 −1.46843 −0.734216 0.678916i \(-0.762450\pi\)
−0.734216 + 0.678916i \(0.762450\pi\)
\(798\) 0 0
\(799\) 57187.0 2.53208
\(800\) 0 0
\(801\) 7984.58 0.352211
\(802\) 0 0
\(803\) −29170.5 −1.28195
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −23888.0 −1.04200
\(808\) 0 0
\(809\) 10756.6 0.467467 0.233734 0.972301i \(-0.424906\pi\)
0.233734 + 0.972301i \(0.424906\pi\)
\(810\) 0 0
\(811\) 5985.48 0.259160 0.129580 0.991569i \(-0.458637\pi\)
0.129580 + 0.991569i \(0.458637\pi\)
\(812\) 0 0
\(813\) 18368.2 0.792375
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5493.15 −0.235228
\(818\) 0 0
\(819\) 11882.2 0.506956
\(820\) 0 0
\(821\) 16426.4 0.698276 0.349138 0.937071i \(-0.386474\pi\)
0.349138 + 0.937071i \(0.386474\pi\)
\(822\) 0 0
\(823\) 27124.3 1.14884 0.574419 0.818561i \(-0.305228\pi\)
0.574419 + 0.818561i \(0.305228\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32759.9 1.37748 0.688738 0.725011i \(-0.258165\pi\)
0.688738 + 0.725011i \(0.258165\pi\)
\(828\) 0 0
\(829\) −18211.8 −0.762995 −0.381498 0.924370i \(-0.624592\pi\)
−0.381498 + 0.924370i \(0.624592\pi\)
\(830\) 0 0
\(831\) 25252.7 1.05416
\(832\) 0 0
\(833\) 84979.0 3.53463
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −5357.90 −0.221262
\(838\) 0 0
\(839\) 37500.6 1.54310 0.771552 0.636166i \(-0.219481\pi\)
0.771552 + 0.636166i \(0.219481\pi\)
\(840\) 0 0
\(841\) −21418.2 −0.878192
\(842\) 0 0
\(843\) 9092.98 0.371505
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 23621.2 0.958246
\(848\) 0 0
\(849\) 8672.43 0.350574
\(850\) 0 0
\(851\) −29594.2 −1.19210
\(852\) 0 0
\(853\) 2421.81 0.0972112 0.0486056 0.998818i \(-0.484522\pi\)
0.0486056 + 0.998818i \(0.484522\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37700.0 1.50269 0.751346 0.659908i \(-0.229405\pi\)
0.751346 + 0.659908i \(0.229405\pi\)
\(858\) 0 0
\(859\) 14709.0 0.584242 0.292121 0.956381i \(-0.405639\pi\)
0.292121 + 0.956381i \(0.405639\pi\)
\(860\) 0 0
\(861\) −10927.5 −0.432528
\(862\) 0 0
\(863\) 28950.4 1.14193 0.570963 0.820975i \(-0.306570\pi\)
0.570963 + 0.820975i \(0.306570\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 12787.6 0.500913
\(868\) 0 0
\(869\) 17565.1 0.685681
\(870\) 0 0
\(871\) 32980.8 1.28302
\(872\) 0 0
\(873\) 5008.95 0.194189
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −17501.3 −0.673860 −0.336930 0.941530i \(-0.609389\pi\)
−0.336930 + 0.941530i \(0.609389\pi\)
\(878\) 0 0
\(879\) 26900.2 1.03222
\(880\) 0 0
\(881\) −45136.0 −1.72607 −0.863037 0.505140i \(-0.831441\pi\)
−0.863037 + 0.505140i \(0.831441\pi\)
\(882\) 0 0
\(883\) −51564.8 −1.96522 −0.982612 0.185673i \(-0.940554\pi\)
−0.982612 + 0.185673i \(0.940554\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 19226.4 0.727800 0.363900 0.931438i \(-0.381445\pi\)
0.363900 + 0.931438i \(0.381445\pi\)
\(888\) 0 0
\(889\) 36684.6 1.38398
\(890\) 0 0
\(891\) −2077.02 −0.0780950
\(892\) 0 0
\(893\) −30365.4 −1.13789
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −12519.3 −0.466007
\(898\) 0 0
\(899\) 10816.0 0.401259
\(900\) 0 0
\(901\) 29277.2 1.08254
\(902\) 0 0
\(903\) −11363.8 −0.418786
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 32050.1 1.17333 0.586663 0.809831i \(-0.300441\pi\)
0.586663 + 0.809831i \(0.300441\pi\)
\(908\) 0 0
\(909\) 14319.8 0.522507
\(910\) 0 0
\(911\) 29674.6 1.07921 0.539606 0.841918i \(-0.318573\pi\)
0.539606 + 0.841918i \(0.318573\pi\)
\(912\) 0 0
\(913\) −7839.46 −0.284171
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31093.4 −1.11973
\(918\) 0 0
\(919\) 6029.99 0.216443 0.108221 0.994127i \(-0.465484\pi\)
0.108221 + 0.994127i \(0.465484\pi\)
\(920\) 0 0
\(921\) −9895.25 −0.354028
\(922\) 0 0
\(923\) 22043.2 0.786088
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 12158.5 0.430785
\(928\) 0 0
\(929\) −35365.2 −1.24897 −0.624485 0.781037i \(-0.714691\pi\)
−0.624485 + 0.781037i \(0.714691\pi\)
\(930\) 0 0
\(931\) −45122.5 −1.58843
\(932\) 0 0
\(933\) 10184.8 0.357379
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35637.0 −1.24249 −0.621243 0.783618i \(-0.713372\pi\)
−0.621243 + 0.783618i \(0.713372\pi\)
\(938\) 0 0
\(939\) 17840.9 0.620037
\(940\) 0 0
\(941\) −6609.70 −0.228980 −0.114490 0.993424i \(-0.536523\pi\)
−0.114490 + 0.993424i \(0.536523\pi\)
\(942\) 0 0
\(943\) 11513.4 0.397591
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42650.9 −1.46354 −0.731768 0.681553i \(-0.761305\pi\)
−0.731768 + 0.681553i \(0.761305\pi\)
\(948\) 0 0
\(949\) −42821.6 −1.46475
\(950\) 0 0
\(951\) −7562.48 −0.257866
\(952\) 0 0
\(953\) 38382.4 1.30465 0.652323 0.757941i \(-0.273795\pi\)
0.652323 + 0.757941i \(0.273795\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 4192.86 0.141626
\(958\) 0 0
\(959\) −5637.11 −0.189814
\(960\) 0 0
\(961\) 9587.71 0.321832
\(962\) 0 0
\(963\) 12001.6 0.401604
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 2611.76 0.0868549 0.0434275 0.999057i \(-0.486172\pi\)
0.0434275 + 0.999057i \(0.486172\pi\)
\(968\) 0 0
\(969\) −14616.2 −0.484562
\(970\) 0 0
\(971\) −7846.09 −0.259313 −0.129657 0.991559i \(-0.541387\pi\)
−0.129657 + 0.991559i \(0.541387\pi\)
\(972\) 0 0
\(973\) −2008.50 −0.0661763
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35667.2 1.16796 0.583979 0.811769i \(-0.301495\pi\)
0.583979 + 0.811769i \(0.301495\pi\)
\(978\) 0 0
\(979\) −22749.1 −0.742661
\(980\) 0 0
\(981\) −5489.19 −0.178651
\(982\) 0 0
\(983\) −13421.6 −0.435485 −0.217742 0.976006i \(-0.569869\pi\)
−0.217742 + 0.976006i \(0.569869\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −62817.5 −2.02584
\(988\) 0 0
\(989\) 11973.2 0.384959
\(990\) 0 0
\(991\) −40673.7 −1.30378 −0.651888 0.758315i \(-0.726023\pi\)
−0.651888 + 0.758315i \(0.726023\pi\)
\(992\) 0 0
\(993\) 13760.6 0.439757
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 29558.8 0.938954 0.469477 0.882945i \(-0.344442\pi\)
0.469477 + 0.882945i \(0.344442\pi\)
\(998\) 0 0
\(999\) −7207.53 −0.228264
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.4.a.bq.1.1 2
4.3 odd 2 600.4.a.t.1.2 2
5.2 odd 4 240.4.f.g.49.1 4
5.3 odd 4 240.4.f.g.49.3 4
5.4 even 2 1200.4.a.bo.1.2 2
12.11 even 2 1800.4.a.bn.1.2 2
15.2 even 4 720.4.f.i.289.4 4
15.8 even 4 720.4.f.i.289.3 4
20.3 even 4 120.4.f.d.49.1 4
20.7 even 4 120.4.f.d.49.3 yes 4
20.19 odd 2 600.4.a.v.1.1 2
40.3 even 4 960.4.f.n.769.4 4
40.13 odd 4 960.4.f.o.769.2 4
40.27 even 4 960.4.f.n.769.2 4
40.37 odd 4 960.4.f.o.769.4 4
60.23 odd 4 360.4.f.d.289.3 4
60.47 odd 4 360.4.f.d.289.4 4
60.59 even 2 1800.4.a.bl.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
120.4.f.d.49.1 4 20.3 even 4
120.4.f.d.49.3 yes 4 20.7 even 4
240.4.f.g.49.1 4 5.2 odd 4
240.4.f.g.49.3 4 5.3 odd 4
360.4.f.d.289.3 4 60.23 odd 4
360.4.f.d.289.4 4 60.47 odd 4
600.4.a.t.1.2 2 4.3 odd 2
600.4.a.v.1.1 2 20.19 odd 2
720.4.f.i.289.3 4 15.8 even 4
720.4.f.i.289.4 4 15.2 even 4
960.4.f.n.769.2 4 40.27 even 4
960.4.f.n.769.4 4 40.3 even 4
960.4.f.o.769.2 4 40.13 odd 4
960.4.f.o.769.4 4 40.37 odd 4
1200.4.a.bo.1.2 2 5.4 even 2
1200.4.a.bq.1.1 2 1.1 even 1 trivial
1800.4.a.bl.1.1 2 60.59 even 2
1800.4.a.bn.1.2 2 12.11 even 2