Properties

Label 1200.4.a.bl.1.2
Level $1200$
Weight $4$
Character 1200.1
Self dual yes
Analytic conductor $70.802$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(1,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{19}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 75)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.35890\) of defining polynomial
Character \(\chi\) \(=\) 1200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +4.43560 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q-3.00000 q^{3} +4.43560 q^{7} +9.00000 q^{9} +3.43560 q^{11} +78.7424 q^{13} +53.1780 q^{17} -20.4356 q^{19} -13.3068 q^{21} -118.307 q^{23} -27.0000 q^{27} +168.049 q^{29} +61.0492 q^{31} -10.3068 q^{33} -246.614 q^{37} -236.227 q^{39} +422.663 q^{41} -362.436 q^{43} +170.515 q^{47} -323.325 q^{49} -159.534 q^{51} -546.049 q^{53} +61.3068 q^{57} +216.970 q^{59} +130.902 q^{61} +39.9204 q^{63} +614.890 q^{67} +354.920 q^{69} -324.822 q^{71} -88.8712 q^{73} +15.2389 q^{77} +1137.42 q^{79} +81.0000 q^{81} +758.909 q^{83} -504.148 q^{87} +195.681 q^{89} +349.269 q^{91} -183.148 q^{93} +521.000 q^{97} +30.9204 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} - 26 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{3} - 26 q^{7} + 18 q^{9} - 28 q^{11} + 18 q^{13} - 68 q^{17} - 6 q^{19} + 78 q^{21} - 132 q^{23} - 54 q^{27} + 92 q^{29} - 122 q^{31} + 84 q^{33} - 284 q^{37} - 54 q^{39} + 392 q^{41} - 690 q^{43} + 620 q^{47} + 260 q^{49} + 204 q^{51} - 848 q^{53} + 18 q^{57} - 124 q^{59} + 750 q^{61} - 234 q^{63} + 358 q^{67} + 396 q^{69} - 824 q^{71} - 108 q^{73} + 972 q^{77} + 880 q^{79} + 162 q^{81} - 156 q^{83} - 276 q^{87} - 864 q^{89} + 2198 q^{91} + 366 q^{93} + 1042 q^{97} - 252 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 4.43560 0.239500 0.119750 0.992804i \(-0.461791\pi\)
0.119750 + 0.992804i \(0.461791\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 3.43560 0.0941701 0.0470851 0.998891i \(-0.485007\pi\)
0.0470851 + 0.998891i \(0.485007\pi\)
\(12\) 0 0
\(13\) 78.7424 1.67994 0.839970 0.542634i \(-0.182573\pi\)
0.839970 + 0.542634i \(0.182573\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 53.1780 0.758680 0.379340 0.925257i \(-0.376151\pi\)
0.379340 + 0.925257i \(0.376151\pi\)
\(18\) 0 0
\(19\) −20.4356 −0.246750 −0.123375 0.992360i \(-0.539372\pi\)
−0.123375 + 0.992360i \(0.539372\pi\)
\(20\) 0 0
\(21\) −13.3068 −0.138275
\(22\) 0 0
\(23\) −118.307 −1.07255 −0.536275 0.844043i \(-0.680169\pi\)
−0.536275 + 0.844043i \(0.680169\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 168.049 1.07607 0.538034 0.842923i \(-0.319167\pi\)
0.538034 + 0.842923i \(0.319167\pi\)
\(30\) 0 0
\(31\) 61.0492 0.353702 0.176851 0.984238i \(-0.443409\pi\)
0.176851 + 0.984238i \(0.443409\pi\)
\(32\) 0 0
\(33\) −10.3068 −0.0543691
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −246.614 −1.09576 −0.547879 0.836558i \(-0.684564\pi\)
−0.547879 + 0.836558i \(0.684564\pi\)
\(38\) 0 0
\(39\) −236.227 −0.969913
\(40\) 0 0
\(41\) 422.663 1.60997 0.804986 0.593294i \(-0.202173\pi\)
0.804986 + 0.593294i \(0.202173\pi\)
\(42\) 0 0
\(43\) −362.436 −1.28537 −0.642685 0.766131i \(-0.722180\pi\)
−0.642685 + 0.766131i \(0.722180\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 170.515 0.529196 0.264598 0.964359i \(-0.414761\pi\)
0.264598 + 0.964359i \(0.414761\pi\)
\(48\) 0 0
\(49\) −323.325 −0.942640
\(50\) 0 0
\(51\) −159.534 −0.438024
\(52\) 0 0
\(53\) −546.049 −1.41520 −0.707600 0.706613i \(-0.750222\pi\)
−0.707600 + 0.706613i \(0.750222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 61.3068 0.142461
\(58\) 0 0
\(59\) 216.970 0.478763 0.239382 0.970926i \(-0.423055\pi\)
0.239382 + 0.970926i \(0.423055\pi\)
\(60\) 0 0
\(61\) 130.902 0.274758 0.137379 0.990519i \(-0.456132\pi\)
0.137379 + 0.990519i \(0.456132\pi\)
\(62\) 0 0
\(63\) 39.9204 0.0798332
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 614.890 1.12121 0.560603 0.828085i \(-0.310570\pi\)
0.560603 + 0.828085i \(0.310570\pi\)
\(68\) 0 0
\(69\) 354.920 0.619238
\(70\) 0 0
\(71\) −324.822 −0.542948 −0.271474 0.962446i \(-0.587511\pi\)
−0.271474 + 0.962446i \(0.587511\pi\)
\(72\) 0 0
\(73\) −88.8712 −0.142487 −0.0712437 0.997459i \(-0.522697\pi\)
−0.0712437 + 0.997459i \(0.522697\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.2389 0.0225537
\(78\) 0 0
\(79\) 1137.42 1.61988 0.809938 0.586516i \(-0.199501\pi\)
0.809938 + 0.586516i \(0.199501\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 758.909 1.00363 0.501813 0.864976i \(-0.332666\pi\)
0.501813 + 0.864976i \(0.332666\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −504.148 −0.621268
\(88\) 0 0
\(89\) 195.681 0.233058 0.116529 0.993187i \(-0.462823\pi\)
0.116529 + 0.993187i \(0.462823\pi\)
\(90\) 0 0
\(91\) 349.269 0.402345
\(92\) 0 0
\(93\) −183.148 −0.204210
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 521.000 0.545356 0.272678 0.962105i \(-0.412091\pi\)
0.272678 + 0.962105i \(0.412091\pi\)
\(98\) 0 0
\(99\) 30.9204 0.0313900
\(100\) 0 0
\(101\) 660.920 0.651129 0.325565 0.945520i \(-0.394446\pi\)
0.325565 + 0.945520i \(0.394446\pi\)
\(102\) 0 0
\(103\) −1530.75 −1.46436 −0.732181 0.681110i \(-0.761497\pi\)
−0.732181 + 0.681110i \(0.761497\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 264.625 0.239087 0.119543 0.992829i \(-0.461857\pi\)
0.119543 + 0.992829i \(0.461857\pi\)
\(108\) 0 0
\(109\) 1117.61 0.982091 0.491046 0.871134i \(-0.336615\pi\)
0.491046 + 0.871134i \(0.336615\pi\)
\(110\) 0 0
\(111\) 739.841 0.632636
\(112\) 0 0
\(113\) −934.061 −0.777602 −0.388801 0.921322i \(-0.627111\pi\)
−0.388801 + 0.921322i \(0.627111\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 708.681 0.559980
\(118\) 0 0
\(119\) 235.876 0.181704
\(120\) 0 0
\(121\) −1319.20 −0.991132
\(122\) 0 0
\(123\) −1267.99 −0.929517
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −630.356 −0.440433 −0.220217 0.975451i \(-0.570676\pi\)
−0.220217 + 0.975451i \(0.570676\pi\)
\(128\) 0 0
\(129\) 1087.31 0.742109
\(130\) 0 0
\(131\) 2163.06 1.44265 0.721325 0.692597i \(-0.243534\pi\)
0.721325 + 0.692597i \(0.243534\pi\)
\(132\) 0 0
\(133\) −90.6440 −0.0590965
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1118.61 0.697588 0.348794 0.937199i \(-0.386591\pi\)
0.348794 + 0.937199i \(0.386591\pi\)
\(138\) 0 0
\(139\) 166.478 0.101586 0.0507930 0.998709i \(-0.483825\pi\)
0.0507930 + 0.998709i \(0.483825\pi\)
\(140\) 0 0
\(141\) −511.546 −0.305531
\(142\) 0 0
\(143\) 270.527 0.158200
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 969.976 0.544233
\(148\) 0 0
\(149\) −653.143 −0.359111 −0.179555 0.983748i \(-0.557466\pi\)
−0.179555 + 0.983748i \(0.557466\pi\)
\(150\) 0 0
\(151\) 1929.38 1.03981 0.519903 0.854225i \(-0.325968\pi\)
0.519903 + 0.854225i \(0.325968\pi\)
\(152\) 0 0
\(153\) 478.602 0.252893
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2169.75 1.10296 0.551480 0.834188i \(-0.314063\pi\)
0.551480 + 0.834188i \(0.314063\pi\)
\(158\) 0 0
\(159\) 1638.15 0.817066
\(160\) 0 0
\(161\) −524.761 −0.256876
\(162\) 0 0
\(163\) 763.738 0.366997 0.183499 0.983020i \(-0.441258\pi\)
0.183499 + 0.983020i \(0.441258\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2564.28 1.18820 0.594102 0.804389i \(-0.297507\pi\)
0.594102 + 0.804389i \(0.297507\pi\)
\(168\) 0 0
\(169\) 4003.36 1.82220
\(170\) 0 0
\(171\) −183.920 −0.0822500
\(172\) 0 0
\(173\) 51.8290 0.0227774 0.0113887 0.999935i \(-0.496375\pi\)
0.0113887 + 0.999935i \(0.496375\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −650.909 −0.276414
\(178\) 0 0
\(179\) 3956.63 1.65214 0.826068 0.563571i \(-0.190573\pi\)
0.826068 + 0.563571i \(0.190573\pi\)
\(180\) 0 0
\(181\) 1804.04 0.740848 0.370424 0.928863i \(-0.379212\pi\)
0.370424 + 0.928863i \(0.379212\pi\)
\(182\) 0 0
\(183\) −392.705 −0.158632
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 182.698 0.0714449
\(188\) 0 0
\(189\) −119.761 −0.0460917
\(190\) 0 0
\(191\) −3666.75 −1.38909 −0.694547 0.719448i \(-0.744395\pi\)
−0.694547 + 0.719448i \(0.744395\pi\)
\(192\) 0 0
\(193\) −2716.98 −1.01333 −0.506664 0.862144i \(-0.669121\pi\)
−0.506664 + 0.862144i \(0.669121\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2034.30 0.735723 0.367862 0.929881i \(-0.380090\pi\)
0.367862 + 0.929881i \(0.380090\pi\)
\(198\) 0 0
\(199\) 1551.27 0.552596 0.276298 0.961072i \(-0.410892\pi\)
0.276298 + 0.961072i \(0.410892\pi\)
\(200\) 0 0
\(201\) −1844.67 −0.647328
\(202\) 0 0
\(203\) 745.398 0.257718
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1064.76 −0.357517
\(208\) 0 0
\(209\) −70.2084 −0.0232365
\(210\) 0 0
\(211\) −3192.51 −1.04162 −0.520809 0.853673i \(-0.674370\pi\)
−0.520809 + 0.853673i \(0.674370\pi\)
\(212\) 0 0
\(213\) 974.466 0.313471
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 270.789 0.0847115
\(218\) 0 0
\(219\) 266.614 0.0822652
\(220\) 0 0
\(221\) 4187.36 1.27454
\(222\) 0 0
\(223\) 1555.55 0.467120 0.233560 0.972342i \(-0.424963\pi\)
0.233560 + 0.972342i \(0.424963\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6206.86 1.81482 0.907409 0.420248i \(-0.138057\pi\)
0.907409 + 0.420248i \(0.138057\pi\)
\(228\) 0 0
\(229\) 4679.51 1.35035 0.675176 0.737657i \(-0.264068\pi\)
0.675176 + 0.737657i \(0.264068\pi\)
\(230\) 0 0
\(231\) −45.7167 −0.0130214
\(232\) 0 0
\(233\) −3244.53 −0.912259 −0.456129 0.889913i \(-0.650765\pi\)
−0.456129 + 0.889913i \(0.650765\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −3412.27 −0.935236
\(238\) 0 0
\(239\) 3658.62 0.990193 0.495097 0.868838i \(-0.335133\pi\)
0.495097 + 0.868838i \(0.335133\pi\)
\(240\) 0 0
\(241\) 1931.01 0.516131 0.258065 0.966127i \(-0.416915\pi\)
0.258065 + 0.966127i \(0.416915\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1609.15 −0.414525
\(248\) 0 0
\(249\) −2276.73 −0.579444
\(250\) 0 0
\(251\) 5843.34 1.46944 0.734718 0.678373i \(-0.237315\pi\)
0.734718 + 0.678373i \(0.237315\pi\)
\(252\) 0 0
\(253\) −406.454 −0.101002
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4506.11 1.09371 0.546855 0.837227i \(-0.315825\pi\)
0.546855 + 0.837227i \(0.315825\pi\)
\(258\) 0 0
\(259\) −1093.88 −0.262434
\(260\) 0 0
\(261\) 1512.44 0.358689
\(262\) 0 0
\(263\) −5340.16 −1.25205 −0.626024 0.779804i \(-0.715319\pi\)
−0.626024 + 0.779804i \(0.715319\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −587.044 −0.134556
\(268\) 0 0
\(269\) 2809.79 0.636863 0.318431 0.947946i \(-0.396844\pi\)
0.318431 + 0.947946i \(0.396844\pi\)
\(270\) 0 0
\(271\) −3102.95 −0.695537 −0.347769 0.937580i \(-0.613060\pi\)
−0.347769 + 0.937580i \(0.613060\pi\)
\(272\) 0 0
\(273\) −1047.81 −0.232294
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4598.93 −0.997555 −0.498777 0.866730i \(-0.666217\pi\)
−0.498777 + 0.866730i \(0.666217\pi\)
\(278\) 0 0
\(279\) 549.443 0.117901
\(280\) 0 0
\(281\) 2571.83 0.545987 0.272994 0.962016i \(-0.411986\pi\)
0.272994 + 0.962016i \(0.411986\pi\)
\(282\) 0 0
\(283\) −5575.31 −1.17109 −0.585544 0.810641i \(-0.699119\pi\)
−0.585544 + 0.810641i \(0.699119\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1874.76 0.385588
\(288\) 0 0
\(289\) −2085.10 −0.424405
\(290\) 0 0
\(291\) −1563.00 −0.314861
\(292\) 0 0
\(293\) 5794.27 1.15531 0.577654 0.816282i \(-0.303968\pi\)
0.577654 + 0.816282i \(0.303968\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −92.7611 −0.0181230
\(298\) 0 0
\(299\) −9315.76 −1.80182
\(300\) 0 0
\(301\) −1607.62 −0.307846
\(302\) 0 0
\(303\) −1982.76 −0.375930
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1404.47 0.261099 0.130550 0.991442i \(-0.458326\pi\)
0.130550 + 0.991442i \(0.458326\pi\)
\(308\) 0 0
\(309\) 4592.25 0.845449
\(310\) 0 0
\(311\) 4096.75 0.746963 0.373481 0.927638i \(-0.378164\pi\)
0.373481 + 0.927638i \(0.378164\pi\)
\(312\) 0 0
\(313\) 974.611 0.176001 0.0880004 0.996120i \(-0.471952\pi\)
0.0880004 + 0.996120i \(0.471952\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2071.69 −0.367058 −0.183529 0.983014i \(-0.558752\pi\)
−0.183529 + 0.983014i \(0.558752\pi\)
\(318\) 0 0
\(319\) 577.349 0.101333
\(320\) 0 0
\(321\) −793.876 −0.138037
\(322\) 0 0
\(323\) −1086.72 −0.187204
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −3352.84 −0.567011
\(328\) 0 0
\(329\) 756.337 0.126742
\(330\) 0 0
\(331\) 6159.17 1.02278 0.511388 0.859350i \(-0.329132\pi\)
0.511388 + 0.859350i \(0.329132\pi\)
\(332\) 0 0
\(333\) −2219.52 −0.365252
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 2791.26 0.451186 0.225593 0.974222i \(-0.427568\pi\)
0.225593 + 0.974222i \(0.427568\pi\)
\(338\) 0 0
\(339\) 2802.18 0.448949
\(340\) 0 0
\(341\) 209.740 0.0333081
\(342\) 0 0
\(343\) −2955.55 −0.465262
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −940.848 −0.145554 −0.0727772 0.997348i \(-0.523186\pi\)
−0.0727772 + 0.997348i \(0.523186\pi\)
\(348\) 0 0
\(349\) −3519.62 −0.539831 −0.269915 0.962884i \(-0.586996\pi\)
−0.269915 + 0.962884i \(0.586996\pi\)
\(350\) 0 0
\(351\) −2126.04 −0.323304
\(352\) 0 0
\(353\) 5021.60 0.757147 0.378573 0.925571i \(-0.376415\pi\)
0.378573 + 0.925571i \(0.376415\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) −707.628 −0.104907
\(358\) 0 0
\(359\) −6811.99 −1.00146 −0.500728 0.865604i \(-0.666934\pi\)
−0.500728 + 0.865604i \(0.666934\pi\)
\(360\) 0 0
\(361\) −6441.39 −0.939115
\(362\) 0 0
\(363\) 3957.59 0.572230
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −3748.07 −0.533099 −0.266550 0.963821i \(-0.585884\pi\)
−0.266550 + 0.963821i \(0.585884\pi\)
\(368\) 0 0
\(369\) 3803.96 0.536657
\(370\) 0 0
\(371\) −2422.05 −0.338940
\(372\) 0 0
\(373\) −898.302 −0.124698 −0.0623489 0.998054i \(-0.519859\pi\)
−0.0623489 + 0.998054i \(0.519859\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 13232.6 1.80773
\(378\) 0 0
\(379\) 9378.99 1.27115 0.635576 0.772038i \(-0.280763\pi\)
0.635576 + 0.772038i \(0.280763\pi\)
\(380\) 0 0
\(381\) 1891.07 0.254284
\(382\) 0 0
\(383\) 9446.29 1.26027 0.630134 0.776486i \(-0.283000\pi\)
0.630134 + 0.776486i \(0.283000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3261.92 −0.428457
\(388\) 0 0
\(389\) −7643.23 −0.996214 −0.498107 0.867116i \(-0.665971\pi\)
−0.498107 + 0.867116i \(0.665971\pi\)
\(390\) 0 0
\(391\) −6291.32 −0.813723
\(392\) 0 0
\(393\) −6489.17 −0.832914
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −12013.6 −1.51876 −0.759378 0.650650i \(-0.774497\pi\)
−0.759378 + 0.650650i \(0.774497\pi\)
\(398\) 0 0
\(399\) 271.932 0.0341194
\(400\) 0 0
\(401\) −8538.51 −1.06332 −0.531662 0.846957i \(-0.678432\pi\)
−0.531662 + 0.846957i \(0.678432\pi\)
\(402\) 0 0
\(403\) 4807.16 0.594197
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −847.265 −0.103188
\(408\) 0 0
\(409\) −12267.6 −1.48312 −0.741558 0.670889i \(-0.765913\pi\)
−0.741558 + 0.670889i \(0.765913\pi\)
\(410\) 0 0
\(411\) −3355.84 −0.402753
\(412\) 0 0
\(413\) 962.389 0.114664
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −499.433 −0.0586508
\(418\) 0 0
\(419\) −15493.0 −1.80641 −0.903204 0.429212i \(-0.858791\pi\)
−0.903204 + 0.429212i \(0.858791\pi\)
\(420\) 0 0
\(421\) 7510.67 0.869472 0.434736 0.900558i \(-0.356842\pi\)
0.434736 + 0.900558i \(0.356842\pi\)
\(422\) 0 0
\(423\) 1534.64 0.176399
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 580.627 0.0658045
\(428\) 0 0
\(429\) −811.581 −0.0913368
\(430\) 0 0
\(431\) 15675.3 1.75186 0.875932 0.482434i \(-0.160247\pi\)
0.875932 + 0.482434i \(0.160247\pi\)
\(432\) 0 0
\(433\) −9604.78 −1.06600 −0.532998 0.846117i \(-0.678935\pi\)
−0.532998 + 0.846117i \(0.678935\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2417.67 0.264652
\(438\) 0 0
\(439\) 6362.06 0.691673 0.345837 0.938295i \(-0.387595\pi\)
0.345837 + 0.938295i \(0.387595\pi\)
\(440\) 0 0
\(441\) −2909.93 −0.314213
\(442\) 0 0
\(443\) −931.658 −0.0999196 −0.0499598 0.998751i \(-0.515909\pi\)
−0.0499598 + 0.998751i \(0.515909\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1959.43 0.207333
\(448\) 0 0
\(449\) −18684.1 −1.96383 −0.981914 0.189329i \(-0.939369\pi\)
−0.981914 + 0.189329i \(0.939369\pi\)
\(450\) 0 0
\(451\) 1452.10 0.151611
\(452\) 0 0
\(453\) −5788.14 −0.600333
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −11565.9 −1.18387 −0.591936 0.805985i \(-0.701636\pi\)
−0.591936 + 0.805985i \(0.701636\pi\)
\(458\) 0 0
\(459\) −1435.81 −0.146008
\(460\) 0 0
\(461\) 19401.0 1.96008 0.980039 0.198806i \(-0.0637062\pi\)
0.980039 + 0.198806i \(0.0637062\pi\)
\(462\) 0 0
\(463\) −1576.28 −0.158220 −0.0791099 0.996866i \(-0.525208\pi\)
−0.0791099 + 0.996866i \(0.525208\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3256.55 −0.322687 −0.161344 0.986898i \(-0.551583\pi\)
−0.161344 + 0.986898i \(0.551583\pi\)
\(468\) 0 0
\(469\) 2727.40 0.268528
\(470\) 0 0
\(471\) −6509.25 −0.636795
\(472\) 0 0
\(473\) −1245.18 −0.121043
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4914.44 −0.471733
\(478\) 0 0
\(479\) −8291.59 −0.790924 −0.395462 0.918482i \(-0.629415\pi\)
−0.395462 + 0.918482i \(0.629415\pi\)
\(480\) 0 0
\(481\) −19418.9 −1.84081
\(482\) 0 0
\(483\) 1574.28 0.148307
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −4758.55 −0.442773 −0.221387 0.975186i \(-0.571058\pi\)
−0.221387 + 0.975186i \(0.571058\pi\)
\(488\) 0 0
\(489\) −2291.21 −0.211886
\(490\) 0 0
\(491\) −3906.46 −0.359055 −0.179528 0.983753i \(-0.557457\pi\)
−0.179528 + 0.983753i \(0.557457\pi\)
\(492\) 0 0
\(493\) 8936.52 0.816390
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1440.78 −0.130036
\(498\) 0 0
\(499\) 3093.31 0.277506 0.138753 0.990327i \(-0.455691\pi\)
0.138753 + 0.990327i \(0.455691\pi\)
\(500\) 0 0
\(501\) −7692.85 −0.686010
\(502\) 0 0
\(503\) 18153.9 1.60923 0.804616 0.593796i \(-0.202371\pi\)
0.804616 + 0.593796i \(0.202371\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −12010.1 −1.05204
\(508\) 0 0
\(509\) 2281.32 0.198660 0.0993298 0.995055i \(-0.468330\pi\)
0.0993298 + 0.995055i \(0.468330\pi\)
\(510\) 0 0
\(511\) −394.197 −0.0341257
\(512\) 0 0
\(513\) 551.761 0.0474870
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 585.821 0.0498344
\(518\) 0 0
\(519\) −155.487 −0.0131505
\(520\) 0 0
\(521\) −16691.9 −1.40362 −0.701809 0.712366i \(-0.747624\pi\)
−0.701809 + 0.712366i \(0.747624\pi\)
\(522\) 0 0
\(523\) 17090.4 1.42889 0.714446 0.699690i \(-0.246679\pi\)
0.714446 + 0.699690i \(0.246679\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3246.47 0.268346
\(528\) 0 0
\(529\) 1829.50 0.150365
\(530\) 0 0
\(531\) 1952.73 0.159588
\(532\) 0 0
\(533\) 33281.5 2.70465
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −11869.9 −0.953861
\(538\) 0 0
\(539\) −1110.82 −0.0887685
\(540\) 0 0
\(541\) 5271.40 0.418919 0.209459 0.977817i \(-0.432830\pi\)
0.209459 + 0.977817i \(0.432830\pi\)
\(542\) 0 0
\(543\) −5412.13 −0.427729
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −15182.2 −1.18673 −0.593366 0.804933i \(-0.702201\pi\)
−0.593366 + 0.804933i \(0.702201\pi\)
\(548\) 0 0
\(549\) 1178.11 0.0915860
\(550\) 0 0
\(551\) −3434.18 −0.265519
\(552\) 0 0
\(553\) 5045.15 0.387960
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12241.2 0.931198 0.465599 0.884996i \(-0.345839\pi\)
0.465599 + 0.884996i \(0.345839\pi\)
\(558\) 0 0
\(559\) −28539.0 −2.15934
\(560\) 0 0
\(561\) −548.094 −0.0412488
\(562\) 0 0
\(563\) −14196.4 −1.06271 −0.531355 0.847149i \(-0.678317\pi\)
−0.531355 + 0.847149i \(0.678317\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 359.283 0.0266111
\(568\) 0 0
\(569\) 9150.05 0.674148 0.337074 0.941478i \(-0.390563\pi\)
0.337074 + 0.941478i \(0.390563\pi\)
\(570\) 0 0
\(571\) −23582.1 −1.72833 −0.864167 0.503206i \(-0.832154\pi\)
−0.864167 + 0.503206i \(0.832154\pi\)
\(572\) 0 0
\(573\) 11000.3 0.801993
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 3906.22 0.281834 0.140917 0.990021i \(-0.454995\pi\)
0.140917 + 0.990021i \(0.454995\pi\)
\(578\) 0 0
\(579\) 8150.93 0.585045
\(580\) 0 0
\(581\) 3366.21 0.240368
\(582\) 0 0
\(583\) −1876.00 −0.133270
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 25938.0 1.82381 0.911905 0.410401i \(-0.134611\pi\)
0.911905 + 0.410401i \(0.134611\pi\)
\(588\) 0 0
\(589\) −1247.58 −0.0872759
\(590\) 0 0
\(591\) −6102.89 −0.424770
\(592\) 0 0
\(593\) 1908.23 0.132145 0.0660723 0.997815i \(-0.478953\pi\)
0.0660723 + 0.997815i \(0.478953\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4653.81 −0.319041
\(598\) 0 0
\(599\) 3495.41 0.238429 0.119214 0.992869i \(-0.461962\pi\)
0.119214 + 0.992869i \(0.461962\pi\)
\(600\) 0 0
\(601\) −18267.2 −1.23983 −0.619913 0.784671i \(-0.712832\pi\)
−0.619913 + 0.784671i \(0.712832\pi\)
\(602\) 0 0
\(603\) 5534.01 0.373735
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −11538.2 −0.771534 −0.385767 0.922596i \(-0.626063\pi\)
−0.385767 + 0.922596i \(0.626063\pi\)
\(608\) 0 0
\(609\) −2236.19 −0.148793
\(610\) 0 0
\(611\) 13426.8 0.889017
\(612\) 0 0
\(613\) 21136.9 1.39268 0.696340 0.717713i \(-0.254811\pi\)
0.696340 + 0.717713i \(0.254811\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15673.2 1.02266 0.511329 0.859385i \(-0.329153\pi\)
0.511329 + 0.859385i \(0.329153\pi\)
\(618\) 0 0
\(619\) −22923.7 −1.48850 −0.744249 0.667902i \(-0.767193\pi\)
−0.744249 + 0.667902i \(0.767193\pi\)
\(620\) 0 0
\(621\) 3194.28 0.206413
\(622\) 0 0
\(623\) 867.964 0.0558174
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 210.625 0.0134156
\(628\) 0 0
\(629\) −13114.4 −0.831329
\(630\) 0 0
\(631\) −9108.23 −0.574632 −0.287316 0.957836i \(-0.592763\pi\)
−0.287316 + 0.957836i \(0.592763\pi\)
\(632\) 0 0
\(633\) 9577.53 0.601379
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −25459.4 −1.58358
\(638\) 0 0
\(639\) −2923.40 −0.180983
\(640\) 0 0
\(641\) 20103.5 1.23875 0.619375 0.785095i \(-0.287386\pi\)
0.619375 + 0.785095i \(0.287386\pi\)
\(642\) 0 0
\(643\) −5934.92 −0.363997 −0.181999 0.983299i \(-0.558257\pi\)
−0.181999 + 0.983299i \(0.558257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14193.7 0.862460 0.431230 0.902242i \(-0.358080\pi\)
0.431230 + 0.902242i \(0.358080\pi\)
\(648\) 0 0
\(649\) 745.420 0.0450852
\(650\) 0 0
\(651\) −812.368 −0.0489082
\(652\) 0 0
\(653\) −4795.80 −0.287403 −0.143701 0.989621i \(-0.545900\pi\)
−0.143701 + 0.989621i \(0.545900\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −799.841 −0.0474958
\(658\) 0 0
\(659\) −4399.57 −0.260065 −0.130032 0.991510i \(-0.541508\pi\)
−0.130032 + 0.991510i \(0.541508\pi\)
\(660\) 0 0
\(661\) 24096.0 1.41789 0.708945 0.705263i \(-0.249171\pi\)
0.708945 + 0.705263i \(0.249171\pi\)
\(662\) 0 0
\(663\) −12562.1 −0.735853
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −19881.4 −1.15414
\(668\) 0 0
\(669\) −4666.66 −0.269692
\(670\) 0 0
\(671\) 449.725 0.0258740
\(672\) 0 0
\(673\) −27648.3 −1.58360 −0.791800 0.610781i \(-0.790856\pi\)
−0.791800 + 0.610781i \(0.790856\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −27605.5 −1.56716 −0.783580 0.621292i \(-0.786608\pi\)
−0.783580 + 0.621292i \(0.786608\pi\)
\(678\) 0 0
\(679\) 2310.95 0.130613
\(680\) 0 0
\(681\) −18620.6 −1.04779
\(682\) 0 0
\(683\) 14949.4 0.837513 0.418756 0.908099i \(-0.362466\pi\)
0.418756 + 0.908099i \(0.362466\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −14038.5 −0.779626
\(688\) 0 0
\(689\) −42997.2 −2.37745
\(690\) 0 0
\(691\) −8884.30 −0.489110 −0.244555 0.969635i \(-0.578642\pi\)
−0.244555 + 0.969635i \(0.578642\pi\)
\(692\) 0 0
\(693\) 137.150 0.00751790
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 22476.4 1.22145
\(698\) 0 0
\(699\) 9733.59 0.526693
\(700\) 0 0
\(701\) 10556.9 0.568798 0.284399 0.958706i \(-0.408206\pi\)
0.284399 + 0.958706i \(0.408206\pi\)
\(702\) 0 0
\(703\) 5039.70 0.270378
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2931.58 0.155945
\(708\) 0 0
\(709\) 25351.9 1.34289 0.671445 0.741055i \(-0.265674\pi\)
0.671445 + 0.741055i \(0.265674\pi\)
\(710\) 0 0
\(711\) 10236.8 0.539959
\(712\) 0 0
\(713\) −7222.53 −0.379363
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −10975.8 −0.571688
\(718\) 0 0
\(719\) −9719.94 −0.504162 −0.252081 0.967706i \(-0.581115\pi\)
−0.252081 + 0.967706i \(0.581115\pi\)
\(720\) 0 0
\(721\) −6789.79 −0.350714
\(722\) 0 0
\(723\) −5793.04 −0.297988
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 27509.3 1.40339 0.701694 0.712479i \(-0.252428\pi\)
0.701694 + 0.712479i \(0.252428\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −19273.6 −0.975184
\(732\) 0 0
\(733\) −7240.49 −0.364848 −0.182424 0.983220i \(-0.558394\pi\)
−0.182424 + 0.983220i \(0.558394\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2112.51 0.105584
\(738\) 0 0
\(739\) 15875.3 0.790234 0.395117 0.918631i \(-0.370704\pi\)
0.395117 + 0.918631i \(0.370704\pi\)
\(740\) 0 0
\(741\) 4827.44 0.239326
\(742\) 0 0
\(743\) 25714.3 1.26967 0.634836 0.772647i \(-0.281068\pi\)
0.634836 + 0.772647i \(0.281068\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 6830.18 0.334542
\(748\) 0 0
\(749\) 1173.77 0.0572612
\(750\) 0 0
\(751\) 9709.09 0.471757 0.235879 0.971783i \(-0.424203\pi\)
0.235879 + 0.971783i \(0.424203\pi\)
\(752\) 0 0
\(753\) −17530.0 −0.848379
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9567.13 −0.459344 −0.229672 0.973268i \(-0.573765\pi\)
−0.229672 + 0.973268i \(0.573765\pi\)
\(758\) 0 0
\(759\) 1219.36 0.0583137
\(760\) 0 0
\(761\) −12322.5 −0.586980 −0.293490 0.955962i \(-0.594817\pi\)
−0.293490 + 0.955962i \(0.594817\pi\)
\(762\) 0 0
\(763\) 4957.28 0.235211
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 17084.7 0.804293
\(768\) 0 0
\(769\) 2575.56 0.120776 0.0603881 0.998175i \(-0.480766\pi\)
0.0603881 + 0.998175i \(0.480766\pi\)
\(770\) 0 0
\(771\) −13518.3 −0.631454
\(772\) 0 0
\(773\) −6606.23 −0.307386 −0.153693 0.988119i \(-0.549117\pi\)
−0.153693 + 0.988119i \(0.549117\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3281.63 0.151516
\(778\) 0 0
\(779\) −8637.37 −0.397260
\(780\) 0 0
\(781\) −1115.96 −0.0511294
\(782\) 0 0
\(783\) −4537.33 −0.207089
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −16417.0 −0.743587 −0.371793 0.928315i \(-0.621257\pi\)
−0.371793 + 0.928315i \(0.621257\pi\)
\(788\) 0 0
\(789\) 16020.5 0.722870
\(790\) 0 0
\(791\) −4143.12 −0.186235
\(792\) 0 0
\(793\) 10307.5 0.461577
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3944.19 −0.175295 −0.0876477 0.996152i \(-0.527935\pi\)
−0.0876477 + 0.996152i \(0.527935\pi\)
\(798\) 0 0
\(799\) 9067.66 0.401490
\(800\) 0 0
\(801\) 1761.13 0.0776861
\(802\) 0 0
\(803\) −305.325 −0.0134181
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8429.37 −0.367693
\(808\) 0 0
\(809\) −17960.7 −0.780549 −0.390275 0.920699i \(-0.627620\pi\)
−0.390275 + 0.920699i \(0.627620\pi\)
\(810\) 0 0
\(811\) 13162.5 0.569912 0.284956 0.958541i \(-0.408021\pi\)
0.284956 + 0.958541i \(0.408021\pi\)
\(812\) 0 0
\(813\) 9308.84 0.401569
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 7406.59 0.317165
\(818\) 0 0
\(819\) 3143.42 0.134115
\(820\) 0 0
\(821\) 26502.4 1.12660 0.563302 0.826251i \(-0.309531\pi\)
0.563302 + 0.826251i \(0.309531\pi\)
\(822\) 0 0
\(823\) −6937.86 −0.293850 −0.146925 0.989148i \(-0.546938\pi\)
−0.146925 + 0.989148i \(0.546938\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −41197.9 −1.73228 −0.866138 0.499805i \(-0.833405\pi\)
−0.866138 + 0.499805i \(0.833405\pi\)
\(828\) 0 0
\(829\) −693.324 −0.0290472 −0.0145236 0.999895i \(-0.504623\pi\)
−0.0145236 + 0.999895i \(0.504623\pi\)
\(830\) 0 0
\(831\) 13796.8 0.575938
\(832\) 0 0
\(833\) −17193.8 −0.715162
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1648.33 −0.0680699
\(838\) 0 0
\(839\) 6491.28 0.267108 0.133554 0.991042i \(-0.457361\pi\)
0.133554 + 0.991042i \(0.457361\pi\)
\(840\) 0 0
\(841\) 3851.52 0.157921
\(842\) 0 0
\(843\) −7715.49 −0.315226
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5851.42 −0.237376
\(848\) 0 0
\(849\) 16725.9 0.676128
\(850\) 0 0
\(851\) 29176.1 1.17526
\(852\) 0 0
\(853\) −1116.68 −0.0448233 −0.0224117 0.999749i \(-0.507134\pi\)
−0.0224117 + 0.999749i \(0.507134\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 44383.9 1.76911 0.884554 0.466438i \(-0.154463\pi\)
0.884554 + 0.466438i \(0.154463\pi\)
\(858\) 0 0
\(859\) 25579.3 1.01601 0.508006 0.861354i \(-0.330383\pi\)
0.508006 + 0.861354i \(0.330383\pi\)
\(860\) 0 0
\(861\) −5624.28 −0.222619
\(862\) 0 0
\(863\) 11194.8 0.441570 0.220785 0.975323i \(-0.429138\pi\)
0.220785 + 0.975323i \(0.429138\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 6255.31 0.245030
\(868\) 0 0
\(869\) 3907.73 0.152544
\(870\) 0 0
\(871\) 48417.9 1.88356
\(872\) 0 0
\(873\) 4689.00 0.181785
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −5721.75 −0.220308 −0.110154 0.993915i \(-0.535134\pi\)
−0.110154 + 0.993915i \(0.535134\pi\)
\(878\) 0 0
\(879\) −17382.8 −0.667017
\(880\) 0 0
\(881\) −34682.8 −1.32633 −0.663163 0.748475i \(-0.730786\pi\)
−0.663163 + 0.748475i \(0.730786\pi\)
\(882\) 0 0
\(883\) −37990.4 −1.44788 −0.723941 0.689862i \(-0.757671\pi\)
−0.723941 + 0.689862i \(0.757671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28299.0 1.07124 0.535618 0.844460i \(-0.320079\pi\)
0.535618 + 0.844460i \(0.320079\pi\)
\(888\) 0 0
\(889\) −2796.00 −0.105484
\(890\) 0 0
\(891\) 278.283 0.0104633
\(892\) 0 0
\(893\) −3484.58 −0.130579
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 27947.3 1.04028
\(898\) 0 0
\(899\) 10259.3 0.380607
\(900\) 0 0
\(901\) −29037.8 −1.07368
\(902\) 0 0
\(903\) 4822.85 0.177735
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17388.0 0.636559 0.318280 0.947997i \(-0.396895\pi\)
0.318280 + 0.947997i \(0.396895\pi\)
\(908\) 0 0
\(909\) 5948.28 0.217043
\(910\) 0 0
\(911\) −23555.3 −0.856663 −0.428332 0.903622i \(-0.640899\pi\)
−0.428332 + 0.903622i \(0.640899\pi\)
\(912\) 0 0
\(913\) 2607.30 0.0945117
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9594.44 0.345514
\(918\) 0 0
\(919\) 5983.09 0.214760 0.107380 0.994218i \(-0.465754\pi\)
0.107380 + 0.994218i \(0.465754\pi\)
\(920\) 0 0
\(921\) −4213.42 −0.150746
\(922\) 0 0
\(923\) −25577.3 −0.912119
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −13776.7 −0.488120
\(928\) 0 0
\(929\) 20576.7 0.726694 0.363347 0.931654i \(-0.381634\pi\)
0.363347 + 0.931654i \(0.381634\pi\)
\(930\) 0 0
\(931\) 6607.35 0.232596
\(932\) 0 0
\(933\) −12290.2 −0.431259
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −11228.6 −0.391485 −0.195743 0.980655i \(-0.562712\pi\)
−0.195743 + 0.980655i \(0.562712\pi\)
\(938\) 0 0
\(939\) −2923.83 −0.101614
\(940\) 0 0
\(941\) 38567.6 1.33610 0.668049 0.744118i \(-0.267130\pi\)
0.668049 + 0.744118i \(0.267130\pi\)
\(942\) 0 0
\(943\) −50003.9 −1.72678
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4606.17 −0.158057 −0.0790287 0.996872i \(-0.525182\pi\)
−0.0790287 + 0.996872i \(0.525182\pi\)
\(948\) 0 0
\(949\) −6997.93 −0.239370
\(950\) 0 0
\(951\) 6215.06 0.211921
\(952\) 0 0
\(953\) −25559.7 −0.868795 −0.434397 0.900721i \(-0.643039\pi\)
−0.434397 + 0.900721i \(0.643039\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −1732.05 −0.0585048
\(958\) 0 0
\(959\) 4961.72 0.167072
\(960\) 0 0
\(961\) −26064.0 −0.874895
\(962\) 0 0
\(963\) 2381.63 0.0796956
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −37895.8 −1.26023 −0.630117 0.776500i \(-0.716993\pi\)
−0.630117 + 0.776500i \(0.716993\pi\)
\(968\) 0 0
\(969\) 3260.17 0.108082
\(970\) 0 0
\(971\) 46761.0 1.54545 0.772726 0.634740i \(-0.218893\pi\)
0.772726 + 0.634740i \(0.218893\pi\)
\(972\) 0 0
\(973\) 738.428 0.0243298
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3070.29 0.100540 0.0502698 0.998736i \(-0.483992\pi\)
0.0502698 + 0.998736i \(0.483992\pi\)
\(978\) 0 0
\(979\) 672.282 0.0219471
\(980\) 0 0
\(981\) 10058.5 0.327364
\(982\) 0 0
\(983\) −16319.0 −0.529498 −0.264749 0.964317i \(-0.585289\pi\)
−0.264749 + 0.964317i \(0.585289\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2269.01 −0.0731747
\(988\) 0 0
\(989\) 42878.6 1.37862
\(990\) 0 0
\(991\) −5105.79 −0.163664 −0.0818319 0.996646i \(-0.526077\pi\)
−0.0818319 + 0.996646i \(0.526077\pi\)
\(992\) 0 0
\(993\) −18477.5 −0.590500
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 7206.97 0.228934 0.114467 0.993427i \(-0.463484\pi\)
0.114467 + 0.993427i \(0.463484\pi\)
\(998\) 0 0
\(999\) 6658.57 0.210879
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.4.a.bl.1.2 2
4.3 odd 2 75.4.a.d.1.1 2
5.2 odd 4 1200.4.f.v.49.4 4
5.3 odd 4 1200.4.f.v.49.1 4
5.4 even 2 1200.4.a.bu.1.1 2
12.11 even 2 225.4.a.n.1.2 2
20.3 even 4 75.4.b.c.49.4 4
20.7 even 4 75.4.b.c.49.1 4
20.19 odd 2 75.4.a.e.1.2 yes 2
60.23 odd 4 225.4.b.h.199.1 4
60.47 odd 4 225.4.b.h.199.4 4
60.59 even 2 225.4.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.4.a.d.1.1 2 4.3 odd 2
75.4.a.e.1.2 yes 2 20.19 odd 2
75.4.b.c.49.1 4 20.7 even 4
75.4.b.c.49.4 4 20.3 even 4
225.4.a.j.1.1 2 60.59 even 2
225.4.a.n.1.2 2 12.11 even 2
225.4.b.h.199.1 4 60.23 odd 4
225.4.b.h.199.4 4 60.47 odd 4
1200.4.a.bl.1.2 2 1.1 even 1 trivial
1200.4.a.bu.1.1 2 5.4 even 2
1200.4.f.v.49.1 4 5.3 odd 4
1200.4.f.v.49.4 4 5.2 odd 4