Properties

Label 1200.4.a.be
Level $1200$
Weight $4$
Character orbit 1200.a
Self dual yes
Analytic conductor $70.802$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,4,Mod(1,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(70.8022920069\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 12)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 8 q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} + 8 q^{7} + 9 q^{9} - 36 q^{11} + 10 q^{13} - 18 q^{17} + 100 q^{19} + 24 q^{21} + 72 q^{23} + 27 q^{27} - 234 q^{29} + 16 q^{31} - 108 q^{33} + 226 q^{37} + 30 q^{39} + 90 q^{41} + 452 q^{43} + 432 q^{47} - 279 q^{49} - 54 q^{51} - 414 q^{53} + 300 q^{57} + 684 q^{59} + 422 q^{61} + 72 q^{63} + 332 q^{67} + 216 q^{69} + 360 q^{71} - 26 q^{73} - 288 q^{77} - 512 q^{79} + 81 q^{81} - 1188 q^{83} - 702 q^{87} - 630 q^{89} + 80 q^{91} + 48 q^{93} + 1054 q^{97} - 324 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 0 0 8.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.4.a.be 1
4.b odd 2 1 300.4.a.b 1
5.b even 2 1 48.4.a.a 1
5.c odd 4 2 1200.4.f.d 2
12.b even 2 1 900.4.a.g 1
15.d odd 2 1 144.4.a.g 1
20.d odd 2 1 12.4.a.a 1
20.e even 4 2 300.4.d.e 2
35.c odd 2 1 2352.4.a.bk 1
40.e odd 2 1 192.4.a.f 1
40.f even 2 1 192.4.a.l 1
60.h even 2 1 36.4.a.a 1
60.l odd 4 2 900.4.d.c 2
80.k odd 4 2 768.4.d.g 2
80.q even 4 2 768.4.d.j 2
120.i odd 2 1 576.4.a.a 1
120.m even 2 1 576.4.a.b 1
140.c even 2 1 588.4.a.c 1
140.p odd 6 2 588.4.i.d 2
140.s even 6 2 588.4.i.e 2
180.n even 6 2 324.4.e.a 2
180.p odd 6 2 324.4.e.h 2
220.g even 2 1 1452.4.a.d 1
260.g odd 2 1 2028.4.a.c 1
260.u even 4 2 2028.4.b.c 2
420.o odd 2 1 1764.4.a.b 1
420.ba even 6 2 1764.4.k.b 2
420.be odd 6 2 1764.4.k.o 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.4.a.a 1 20.d odd 2 1
36.4.a.a 1 60.h even 2 1
48.4.a.a 1 5.b even 2 1
144.4.a.g 1 15.d odd 2 1
192.4.a.f 1 40.e odd 2 1
192.4.a.l 1 40.f even 2 1
300.4.a.b 1 4.b odd 2 1
300.4.d.e 2 20.e even 4 2
324.4.e.a 2 180.n even 6 2
324.4.e.h 2 180.p odd 6 2
576.4.a.a 1 120.i odd 2 1
576.4.a.b 1 120.m even 2 1
588.4.a.c 1 140.c even 2 1
588.4.i.d 2 140.p odd 6 2
588.4.i.e 2 140.s even 6 2
768.4.d.g 2 80.k odd 4 2
768.4.d.j 2 80.q even 4 2
900.4.a.g 1 12.b even 2 1
900.4.d.c 2 60.l odd 4 2
1200.4.a.be 1 1.a even 1 1 trivial
1200.4.f.d 2 5.c odd 4 2
1452.4.a.d 1 220.g even 2 1
1764.4.a.b 1 420.o odd 2 1
1764.4.k.b 2 420.ba even 6 2
1764.4.k.o 2 420.be odd 6 2
2028.4.a.c 1 260.g odd 2 1
2028.4.b.c 2 260.u even 4 2
2352.4.a.bk 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1200))\):

\( T_{7} - 8 \) Copy content Toggle raw display
\( T_{11} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 8 \) Copy content Toggle raw display
$11$ \( T + 36 \) Copy content Toggle raw display
$13$ \( T - 10 \) Copy content Toggle raw display
$17$ \( T + 18 \) Copy content Toggle raw display
$19$ \( T - 100 \) Copy content Toggle raw display
$23$ \( T - 72 \) Copy content Toggle raw display
$29$ \( T + 234 \) Copy content Toggle raw display
$31$ \( T - 16 \) Copy content Toggle raw display
$37$ \( T - 226 \) Copy content Toggle raw display
$41$ \( T - 90 \) Copy content Toggle raw display
$43$ \( T - 452 \) Copy content Toggle raw display
$47$ \( T - 432 \) Copy content Toggle raw display
$53$ \( T + 414 \) Copy content Toggle raw display
$59$ \( T - 684 \) Copy content Toggle raw display
$61$ \( T - 422 \) Copy content Toggle raw display
$67$ \( T - 332 \) Copy content Toggle raw display
$71$ \( T - 360 \) Copy content Toggle raw display
$73$ \( T + 26 \) Copy content Toggle raw display
$79$ \( T + 512 \) Copy content Toggle raw display
$83$ \( T + 1188 \) Copy content Toggle raw display
$89$ \( T + 630 \) Copy content Toggle raw display
$97$ \( T - 1054 \) Copy content Toggle raw display
show more
show less