Properties

Label 1200.4
Level 1200
Weight 4
Dimension 44609
Nonzero newspaces 28
Sturm bound 307200
Trace bound 25

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 28 \)
Sturm bound: \(307200\)
Trace bound: \(25\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1200))\).

Total New Old
Modular forms 116768 44977 71791
Cusp forms 113632 44609 69023
Eisenstein series 3136 368 2768

Trace form

\( 44609q - 23q^{3} - 72q^{4} - 12q^{6} - 12q^{7} + 84q^{8} + 47q^{9} + O(q^{10}) \) \( 44609q - 23q^{3} - 72q^{4} - 12q^{6} - 12q^{7} + 84q^{8} + 47q^{9} - 64q^{10} - 60q^{11} - 128q^{12} - 442q^{13} - 348q^{14} - 36q^{15} - 384q^{16} + 390q^{17} - 8q^{18} + 916q^{19} + 234q^{21} + 616q^{22} + 88q^{23} + 84q^{24} - 192q^{25} - 20q^{26} - 1067q^{27} + 1360q^{28} + 1194q^{29} + 1600q^{30} + 276q^{31} + 1760q^{32} + 590q^{33} - 2536q^{34} - 456q^{35} - 1400q^{36} - 4226q^{37} - 7032q^{38} - 284q^{39} - 6304q^{40} - 4322q^{41} - 3948q^{42} - 1364q^{43} - 4456q^{44} + 66q^{45} - 80q^{46} + 240q^{47} + 4872q^{48} + 5009q^{49} + 5680q^{50} + 1470q^{51} + 16256q^{52} + 5810q^{53} + 1676q^{54} + 452q^{55} + 1344q^{56} - 1226q^{57} + 1464q^{58} - 628q^{59} - 544q^{60} - 786q^{61} - 996q^{62} + 3242q^{63} - 17616q^{64} + 1048q^{65} - 15260q^{66} + 13772q^{67} - 13440q^{68} - 1254q^{69} - 1648q^{70} - 3528q^{71} + 1180q^{72} - 4242q^{73} + 14508q^{74} - 6112q^{75} + 14544q^{76} - 4336q^{77} + 20016q^{78} - 25628q^{79} + 12640q^{80} - 2189q^{81} + 24296q^{82} - 8476q^{83} + 17616q^{84} + 15328q^{85} + 7760q^{86} + 28q^{87} + 7344q^{88} + 814q^{89} - 3752q^{90} + 11444q^{91} - 16880q^{92} - 3482q^{93} - 18504q^{94} + 4152q^{95} - 13856q^{96} - 14994q^{97} - 18488q^{98} + 12296q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1200))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1200.4.a \(\chi_{1200}(1, \cdot)\) 1200.4.a.a 1 1
1200.4.a.b 1
1200.4.a.c 1
1200.4.a.d 1
1200.4.a.e 1
1200.4.a.f 1
1200.4.a.g 1
1200.4.a.h 1
1200.4.a.i 1
1200.4.a.j 1
1200.4.a.k 1
1200.4.a.l 1
1200.4.a.m 1
1200.4.a.n 1
1200.4.a.o 1
1200.4.a.p 1
1200.4.a.q 1
1200.4.a.r 1
1200.4.a.s 1
1200.4.a.t 1
1200.4.a.u 1
1200.4.a.v 1
1200.4.a.w 1
1200.4.a.x 1
1200.4.a.y 1
1200.4.a.z 1
1200.4.a.ba 1
1200.4.a.bb 1
1200.4.a.bc 1
1200.4.a.bd 1
1200.4.a.be 1
1200.4.a.bf 1
1200.4.a.bg 1
1200.4.a.bh 1
1200.4.a.bi 1
1200.4.a.bj 1
1200.4.a.bk 1
1200.4.a.bl 2
1200.4.a.bm 2
1200.4.a.bn 2
1200.4.a.bo 2
1200.4.a.bp 2
1200.4.a.bq 2
1200.4.a.br 2
1200.4.a.bs 2
1200.4.a.bt 2
1200.4.a.bu 2
1200.4.b \(\chi_{1200}(551, \cdot)\) None 0 1
1200.4.d \(\chi_{1200}(649, \cdot)\) None 0 1
1200.4.f \(\chi_{1200}(49, \cdot)\) 1200.4.f.a 2 1
1200.4.f.b 2
1200.4.f.c 2
1200.4.f.d 2
1200.4.f.e 2
1200.4.f.f 2
1200.4.f.g 2
1200.4.f.h 2
1200.4.f.i 2
1200.4.f.j 2
1200.4.f.k 2
1200.4.f.l 2
1200.4.f.m 2
1200.4.f.n 2
1200.4.f.o 2
1200.4.f.p 2
1200.4.f.q 2
1200.4.f.r 2
1200.4.f.s 2
1200.4.f.t 2
1200.4.f.u 2
1200.4.f.v 4
1200.4.f.w 4
1200.4.f.x 4
1200.4.h \(\chi_{1200}(1151, \cdot)\) n/a 114 1
1200.4.k \(\chi_{1200}(601, \cdot)\) None 0 1
1200.4.m \(\chi_{1200}(599, \cdot)\) None 0 1
1200.4.o \(\chi_{1200}(1199, \cdot)\) n/a 108 1
1200.4.s \(\chi_{1200}(301, \cdot)\) n/a 456 2
1200.4.t \(\chi_{1200}(299, \cdot)\) n/a 856 2
1200.4.v \(\chi_{1200}(257, \cdot)\) n/a 212 2
1200.4.w \(\chi_{1200}(607, \cdot)\) n/a 108 2
1200.4.y \(\chi_{1200}(643, \cdot)\) n/a 432 2
1200.4.bb \(\chi_{1200}(893, \cdot)\) n/a 856 2
1200.4.bc \(\chi_{1200}(43, \cdot)\) n/a 432 2
1200.4.bf \(\chi_{1200}(293, \cdot)\) n/a 856 2
1200.4.bh \(\chi_{1200}(7, \cdot)\) None 0 2
1200.4.bi \(\chi_{1200}(857, \cdot)\) None 0 2
1200.4.bk \(\chi_{1200}(251, \cdot)\) n/a 900 2
1200.4.bl \(\chi_{1200}(349, \cdot)\) n/a 432 2
1200.4.bo \(\chi_{1200}(241, \cdot)\) n/a 360 4
1200.4.bq \(\chi_{1200}(191, \cdot)\) n/a 720 4
1200.4.bs \(\chi_{1200}(289, \cdot)\) n/a 360 4
1200.4.bu \(\chi_{1200}(169, \cdot)\) None 0 4
1200.4.bw \(\chi_{1200}(71, \cdot)\) None 0 4
1200.4.by \(\chi_{1200}(239, \cdot)\) n/a 720 4
1200.4.ca \(\chi_{1200}(119, \cdot)\) None 0 4
1200.4.cc \(\chi_{1200}(121, \cdot)\) None 0 4
1200.4.ce \(\chi_{1200}(59, \cdot)\) n/a 5728 8
1200.4.cf \(\chi_{1200}(61, \cdot)\) n/a 2880 8
1200.4.cj \(\chi_{1200}(137, \cdot)\) None 0 8
1200.4.ck \(\chi_{1200}(103, \cdot)\) None 0 8
1200.4.cm \(\chi_{1200}(53, \cdot)\) n/a 5728 8
1200.4.cp \(\chi_{1200}(67, \cdot)\) n/a 2880 8
1200.4.cq \(\chi_{1200}(173, \cdot)\) n/a 5728 8
1200.4.ct \(\chi_{1200}(163, \cdot)\) n/a 2880 8
1200.4.cv \(\chi_{1200}(127, \cdot)\) n/a 720 8
1200.4.cw \(\chi_{1200}(17, \cdot)\) n/a 1424 8
1200.4.da \(\chi_{1200}(109, \cdot)\) n/a 2880 8
1200.4.db \(\chi_{1200}(11, \cdot)\) n/a 5728 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1200))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1200)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 20}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(48))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(150))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(240))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(300))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(400))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(600))\)\(^{\oplus 2}\)