Properties

Label 1200.3.l.x
Level $1200$
Weight $3$
Character orbit 1200.l
Analytic conductor $32.698$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.681615360000.5
Defining polynomial: \(x^{8} - 4 x^{7} - 2 x^{6} + 20 x^{5} + 49 x^{4} - 136 x^{3} + 168 x^{2} - 96 x + 864\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} + ( 2 + \beta_{3} - \beta_{4} - \beta_{7} ) q^{7} + ( 2 + \beta_{5} - \beta_{6} ) q^{9} +O(q^{10})\) \( q + \beta_{2} q^{3} + ( 2 + \beta_{3} - \beta_{4} - \beta_{7} ) q^{7} + ( 2 + \beta_{5} - \beta_{6} ) q^{9} + ( -1 - \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + \beta_{4} + \beta_{6} + \beta_{7} ) q^{11} + ( 2 - \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} - \beta_{5} + \beta_{7} ) q^{13} + ( 2 + 2 \beta_{1} + \beta_{2} + 2 \beta_{4} + \beta_{6} - \beta_{7} ) q^{17} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} + 2 \beta_{7} ) q^{19} + ( 5 - \beta_{1} + 3 \beta_{2} - 3 \beta_{3} + \beta_{4} - 2 \beta_{6} + \beta_{7} ) q^{21} + ( 1 + \beta_{1} - 2 \beta_{2} + 3 \beta_{3} + 4 \beta_{4} ) q^{23} + ( 5 + 3 \beta_{2} + 3 \beta_{4} + \beta_{5} + 5 \beta_{6} ) q^{27} + ( 1 + \beta_{1} + 3 \beta_{2} + \beta_{4} + 5 \beta_{6} + 2 \beta_{7} ) q^{29} + ( -13 + \beta_{1} + 5 \beta_{2} + 2 \beta_{3} + \beta_{4} + 4 \beta_{5} - 2 \beta_{7} ) q^{31} + ( 14 - \beta_{1} - 2 \beta_{2} - \beta_{3} - 7 \beta_{4} - 3 \beta_{5} + 2 \beta_{6} - 6 \beta_{7} ) q^{33} + ( 2 + \beta_{1} + 7 \beta_{2} + \beta_{3} + 3 \beta_{4} + 5 \beta_{5} - \beta_{7} ) q^{37} + ( 8 + 3 \beta_{1} + 2 \beta_{2} + 3 \beta_{3} - 3 \beta_{4} + \beta_{5} - \beta_{6} ) q^{39} + ( -5 - 5 \beta_{1} - 9 \beta_{2} - 5 \beta_{4} + 4 \beta_{6} - 4 \beta_{7} ) q^{41} + ( -43 + \beta_{1} - 3 \beta_{2} + \beta_{3} - 2 \beta_{4} - \beta_{7} ) q^{43} + ( -1 - \beta_{1} - 4 \beta_{2} - \beta_{3} - 2 \beta_{4} - 2 \beta_{6} - 4 \beta_{7} ) q^{47} + ( 4 + 3 \beta_{1} - 5 \beta_{2} - 4 \beta_{3} + 3 \beta_{4} + 2 \beta_{5} + 4 \beta_{7} ) q^{49} + ( -6 - 3 \beta_{2} + 4 \beta_{3} + 2 \beta_{4} - 7 \beta_{6} - 5 \beta_{7} ) q^{51} + ( -6 - 6 \beta_{1} - 4 \beta_{3} - 10 \beta_{4} - 7 \beta_{6} + 2 \beta_{7} ) q^{53} + ( -8 - \beta_{1} - 3 \beta_{2} + 9 \beta_{3} + \beta_{4} + \beta_{5} + 9 \beta_{6} - 5 \beta_{7} ) q^{57} + ( 3 + 3 \beta_{1} - 2 \beta_{2} + 3 \beta_{4} + 11 \beta_{6} - 5 \beta_{7} ) q^{59} + ( 9 - 7 \beta_{1} + 9 \beta_{2} + 8 \beta_{3} - 7 \beta_{4} - 6 \beta_{5} - 8 \beta_{7} ) q^{61} + ( 12 + 5 \beta_{1} + 7 \beta_{2} + 6 \beta_{3} + 4 \beta_{4} + 5 \beta_{5} + 5 \beta_{6} + 4 \beta_{7} ) q^{63} + ( 27 - 3 \beta_{1} + 13 \beta_{2} - \beta_{3} + 6 \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{67} + ( 18 + 4 \beta_{1} - 4 \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - 3 \beta_{6} - 15 \beta_{7} ) q^{69} + ( 4 + 4 \beta_{1} - 4 \beta_{2} + 6 \beta_{3} + 10 \beta_{4} + 6 \beta_{6} - 2 \beta_{7} ) q^{71} + ( -4 - 2 \beta_{1} - 2 \beta_{2} - 4 \beta_{3} + 2 \beta_{4} - 4 \beta_{5} + 4 \beta_{7} ) q^{73} + ( -12 - 12 \beta_{1} - 20 \beta_{2} + 12 \beta_{3} - 10 \beta_{6} + 4 \beta_{7} ) q^{77} + ( -15 + \beta_{1} - 7 \beta_{2} - 2 \beta_{3} - \beta_{4} - 2 \beta_{5} + 2 \beta_{7} ) q^{79} + ( 26 - 9 \beta_{1} - 3 \beta_{2} + 12 \beta_{3} - 9 \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - 6 \beta_{7} ) q^{81} + ( -3 - 3 \beta_{1} - 13 \beta_{2} + 3 \beta_{3} - 20 \beta_{6} - 7 \beta_{7} ) q^{83} + ( -25 - 9 \beta_{1} - 6 \beta_{2} + 4 \beta_{3} - 13 \beta_{4} - 2 \beta_{5} - 8 \beta_{6} - 5 \beta_{7} ) q^{87} + ( 2 + 2 \beta_{1} + 26 \beta_{2} - 8 \beta_{3} - 6 \beta_{4} - 4 \beta_{6} + 16 \beta_{7} ) q^{89} + ( -58 - 10 \beta_{1} + 14 \beta_{2} + 6 \beta_{3} - 4 \beta_{4} - 8 \beta_{5} - 6 \beta_{7} ) q^{91} + ( 42 - 7 \beta_{1} - 15 \beta_{2} + 3 \beta_{3} + 7 \beta_{4} + 5 \beta_{5} + 5 \beta_{6} - 5 \beta_{7} ) q^{93} + ( -10 - 8 \beta_{1} + 8 \beta_{2} + 4 \beta_{3} - 4 \beta_{4} - 8 \beta_{5} - 4 \beta_{7} ) q^{97} + ( -1 - 5 \beta_{1} + 20 \beta_{2} - 6 \beta_{3} + 5 \beta_{4} - 4 \beta_{5} - 15 \beta_{6} + 23 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 16 q^{7} + 20 q^{9} + O(q^{10}) \) \( 8 q - 4 q^{3} + 16 q^{7} + 20 q^{9} + 8 q^{13} + 8 q^{19} + 28 q^{21} + 20 q^{27} - 120 q^{31} + 112 q^{33} - 8 q^{37} + 72 q^{39} - 328 q^{43} + 64 q^{49} - 64 q^{51} - 72 q^{57} + 8 q^{61} + 88 q^{63} + 152 q^{67} + 100 q^{69} - 32 q^{73} - 88 q^{79} + 224 q^{81} - 152 q^{87} - 560 q^{91} + 368 q^{93} - 144 q^{97} - 32 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} - 4 x^{7} - 2 x^{6} + 20 x^{5} + 49 x^{4} - 136 x^{3} + 168 x^{2} - 96 x + 864\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -9 \nu^{7} - 511 \nu^{6} + 1235 \nu^{5} + 2685 \nu^{4} - 3206 \nu^{3} - 34634 \nu^{2} + 25656 \nu - 66288 \)\()/18600\)
\(\beta_{2}\)\(=\)\((\)\( -2 \nu^{7} + 7 \nu^{6} + 85 \nu^{5} - 230 \nu^{4} - 523 \nu^{3} + 243 \nu^{2} + 4668 \nu - 2124 \)\()/3100\)
\(\beta_{3}\)\(=\)\((\)\( -26 \nu^{7} - 64 \nu^{6} + 795 \nu^{5} - 45 \nu^{4} - 4939 \nu^{3} - 1181 \nu^{2} + 23484 \nu - 23892 \)\()/9300\)
\(\beta_{4}\)\(=\)\((\)\( -59 \nu^{7} + 129 \nu^{6} + 415 \nu^{5} + 1275 \nu^{4} - 7136 \nu^{3} - 11664 \nu^{2} - 15744 \nu + 64752 \)\()/18600\)
\(\beta_{5}\)\(=\)\((\)\( -37 \nu^{7} + 362 \nu^{6} - 675 \nu^{5} - 1310 \nu^{4} + 322 \nu^{3} + 16818 \nu^{2} - 1992 \nu + 24876 \)\()/9300\)
\(\beta_{6}\)\(=\)\((\)\( 8 \nu^{7} - 28 \nu^{6} - 30 \nu^{5} + 145 \nu^{4} + 232 \nu^{3} - 507 \nu^{2} + 1788 \nu - 804 \)\()/930\)
\(\beta_{7}\)\(=\)\((\)\( 82 \nu^{7} - 287 \nu^{6} - 385 \nu^{5} + 1680 \nu^{4} + 5943 \nu^{3} - 8413 \nu^{2} + 13212 \nu - 5916 \)\()/9300\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(2 \beta_{7} + 3 \beta_{5} + \beta_{3} + 3 \beta_{2} + 2 \beta_{1} + 5\)\()/12\)
\(\nu^{2}\)\(=\)\((\)\(-\beta_{4} + 2 \beta_{3} - 3 \beta_{2} - \beta_{1} + 3\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(6 \beta_{7} - 6 \beta_{6} - \beta_{4} + 2 \beta_{3} - \beta_{2} - \beta_{1} + 3\)\()/2\)
\(\nu^{4}\)\(=\)\((\)\(16 \beta_{7} - 8 \beta_{6} + 2 \beta_{5} + 11 \beta_{4} + 16 \beta_{3} - 17 \beta_{2} - 9 \beta_{1} - 43\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(54 \beta_{7} - 50 \beta_{6} - 28 \beta_{5} + 23 \beta_{4} + 38 \beta_{3} + 3 \beta_{2} - 49 \beta_{1} - 89\)\()/2\)
\(\nu^{6}\)\(=\)\((\)\(188 \beta_{7} - 124 \beta_{6} - 26 \beta_{5} + 179 \beta_{4} + 36 \beta_{3} + 143 \beta_{2} - 137 \beta_{1} - 839\)\()/2\)
\(\nu^{7}\)\(=\)\((\)\(322 \beta_{7} - 70 \beta_{6} - 344 \beta_{5} + 479 \beta_{4} + 10 \beta_{3} + 547 \beta_{2} - 609 \beta_{1} - 2373\)\()/2\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
3.22255 + 1.41421i
3.22255 1.41421i
−0.542939 1.41421i
−0.542939 + 1.41421i
−2.22255 1.41421i
−2.22255 + 1.41421i
1.54294 1.41421i
1.54294 + 1.41421i
0 −2.87275 0.864473i 0 0 0 9.02416 0 7.50537 + 4.96683i 0
401.2 0 −2.87275 + 0.864473i 0 0 0 9.02416 0 7.50537 4.96683i 0
401.3 0 −2.40140 1.79813i 0 0 0 −10.2132 0 2.53346 + 8.63606i 0
401.4 0 −2.40140 + 1.79813i 0 0 0 −10.2132 0 2.53346 8.63606i 0
401.5 0 0.291610 2.98579i 0 0 0 4.46268 0 −8.82993 1.74137i 0
401.6 0 0.291610 + 2.98579i 0 0 0 4.46268 0 −8.82993 + 1.74137i 0
401.7 0 2.98254 0.323191i 0 0 0 4.72640 0 8.79110 1.92786i 0
401.8 0 2.98254 + 0.323191i 0 0 0 4.72640 0 8.79110 + 1.92786i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 401.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.l.x 8
3.b odd 2 1 inner 1200.3.l.x 8
4.b odd 2 1 600.3.l.f 8
5.b even 2 1 240.3.l.d 8
5.c odd 4 2 1200.3.c.m 16
12.b even 2 1 600.3.l.f 8
15.d odd 2 1 240.3.l.d 8
15.e even 4 2 1200.3.c.m 16
20.d odd 2 1 120.3.l.a 8
20.e even 4 2 600.3.c.d 16
40.e odd 2 1 960.3.l.h 8
40.f even 2 1 960.3.l.g 8
60.h even 2 1 120.3.l.a 8
60.l odd 4 2 600.3.c.d 16
120.i odd 2 1 960.3.l.g 8
120.m even 2 1 960.3.l.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.3.l.a 8 20.d odd 2 1
120.3.l.a 8 60.h even 2 1
240.3.l.d 8 5.b even 2 1
240.3.l.d 8 15.d odd 2 1
600.3.c.d 16 20.e even 4 2
600.3.c.d 16 60.l odd 4 2
600.3.l.f 8 4.b odd 2 1
600.3.l.f 8 12.b even 2 1
960.3.l.g 8 40.f even 2 1
960.3.l.g 8 120.i odd 2 1
960.3.l.h 8 40.e odd 2 1
960.3.l.h 8 120.m even 2 1
1200.3.c.m 16 5.c odd 4 2
1200.3.c.m 16 15.e even 4 2
1200.3.l.x 8 1.a even 1 1 trivial
1200.3.l.x 8 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7}^{4} - 8 T_{7}^{3} - 82 T_{7}^{2} + 872 T_{7} - 1944 \)
\( T_{11}^{8} + 888 T_{11}^{6} + 226128 T_{11}^{4} + 14951168 T_{11}^{2} + 232989696 \)
\( T_{13}^{4} - 4 T_{13}^{3} - 380 T_{13}^{2} + 3648 T_{13} - 3456 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( 6561 + 2916 T - 162 T^{2} - 324 T^{3} - 102 T^{4} - 36 T^{5} - 2 T^{6} + 4 T^{7} + T^{8} \)
$5$ \( T^{8} \)
$7$ \( ( -1944 + 872 T - 82 T^{2} - 8 T^{3} + T^{4} )^{2} \)
$11$ \( 232989696 + 14951168 T^{2} + 226128 T^{4} + 888 T^{6} + T^{8} \)
$13$ \( ( -3456 + 3648 T - 380 T^{2} - 4 T^{3} + T^{4} )^{2} \)
$17$ \( 15872256 + 25369856 T^{2} + 312672 T^{4} + 1104 T^{6} + T^{8} \)
$19$ \( ( 16736 + 3424 T - 708 T^{2} - 4 T^{3} + T^{4} )^{2} \)
$23$ \( 93650688576 + 885144416 T^{2} + 2697012 T^{4} + 2964 T^{6} + T^{8} \)
$29$ \( 3474395136 + 145293824 T^{2} + 1160592 T^{4} + 2376 T^{6} + T^{8} \)
$31$ \( ( -151296 - 71360 T - 924 T^{2} + 60 T^{3} + T^{4} )^{2} \)
$37$ \( ( -31104 - 39744 T - 3228 T^{2} + 4 T^{3} + T^{4} )^{2} \)
$41$ \( 43961355472896 + 77260718592 T^{2} + 46587024 T^{4} + 11528 T^{6} + T^{8} \)
$43$ \( ( 1582656 + 220576 T + 9482 T^{2} + 164 T^{3} + T^{4} )^{2} \)
$47$ \( 13517317696 + 266492768 T^{2} + 1541364 T^{4} + 2612 T^{6} + T^{8} \)
$53$ \( 6801580544256 + 88193961216 T^{2} + 82087776 T^{4} + 16976 T^{6} + T^{8} \)
$59$ \( 15563214360576 + 64836527616 T^{2} + 49411216 T^{4} + 12616 T^{6} + T^{8} \)
$61$ \( ( 30631296 + 12544 T - 12508 T^{2} - 4 T^{3} + T^{4} )^{2} \)
$67$ \( ( -668224 + 236224 T - 4854 T^{2} - 76 T^{3} + T^{4} )^{2} \)
$71$ \( 35499479924736 + 145459224576 T^{2} + 83806272 T^{4} + 16304 T^{6} + T^{8} \)
$73$ \( ( 2938896 - 29376 T - 3528 T^{2} + 16 T^{3} + T^{4} )^{2} \)
$79$ \( ( -12384 + 8256 T - 1268 T^{2} + 44 T^{3} + T^{4} )^{2} \)
$83$ \( 336130569170496 + 2057217800544 T^{2} + 532895092 T^{4} + 41716 T^{6} + T^{8} \)
$89$ \( 1334603390386176 + 2220134105088 T^{2} + 649648384 T^{4} + 49312 T^{6} + T^{8} \)
$97$ \( ( 10270096 - 535392 T - 10376 T^{2} + 72 T^{3} + T^{4} )^{2} \)
show more
show less