Properties

Label 1200.3.l.q
Level $1200$
Weight $3$
Character orbit 1200.l
Analytic conductor $32.698$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Defining polynomial: \(x^{2} + 5\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 60)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 2 - \beta ) q^{3} -8 q^{7} + ( -1 - 4 \beta ) q^{9} +O(q^{10})\) \( q + ( 2 - \beta ) q^{3} -8 q^{7} + ( -1 - 4 \beta ) q^{9} + 4 \beta q^{11} + 12 q^{13} + 14 \beta q^{17} -6 q^{19} + ( -16 + 8 \beta ) q^{21} -2 \beta q^{23} + ( -22 - 7 \beta ) q^{27} + 12 \beta q^{29} -34 q^{31} + ( 20 + 8 \beta ) q^{33} + 44 q^{37} + ( 24 - 12 \beta ) q^{39} + 8 \beta q^{41} + 28 q^{43} + 2 \beta q^{47} + 15 q^{49} + ( 70 + 28 \beta ) q^{51} + 18 \beta q^{53} + ( -12 + 6 \beta ) q^{57} + 44 \beta q^{59} + 74 q^{61} + ( 8 + 32 \beta ) q^{63} + 92 q^{67} + ( -10 - 4 \beta ) q^{69} -24 \beta q^{71} + 56 q^{73} -32 \beta q^{77} -78 q^{79} + ( -79 + 8 \beta ) q^{81} + 46 \beta q^{83} + ( 60 + 24 \beta ) q^{87} + 8 \beta q^{89} -96 q^{91} + ( -68 + 34 \beta ) q^{93} -32 q^{97} + ( 80 - 4 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 4q^{3} - 16q^{7} - 2q^{9} + O(q^{10}) \) \( 2q + 4q^{3} - 16q^{7} - 2q^{9} + 24q^{13} - 12q^{19} - 32q^{21} - 44q^{27} - 68q^{31} + 40q^{33} + 88q^{37} + 48q^{39} + 56q^{43} + 30q^{49} + 140q^{51} - 24q^{57} + 148q^{61} + 16q^{63} + 184q^{67} - 20q^{69} + 112q^{73} - 156q^{79} - 158q^{81} + 120q^{87} - 192q^{91} - 136q^{93} - 64q^{97} + 160q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
2.23607i
2.23607i
0 2.00000 2.23607i 0 0 0 −8.00000 0 −1.00000 8.94427i 0
401.2 0 2.00000 + 2.23607i 0 0 0 −8.00000 0 −1.00000 + 8.94427i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.l.q 2
3.b odd 2 1 inner 1200.3.l.q 2
4.b odd 2 1 300.3.g.e 2
5.b even 2 1 1200.3.l.h 2
5.c odd 4 2 240.3.c.d 4
12.b even 2 1 300.3.g.e 2
15.d odd 2 1 1200.3.l.h 2
15.e even 4 2 240.3.c.d 4
20.d odd 2 1 300.3.g.h 2
20.e even 4 2 60.3.b.a 4
40.i odd 4 2 960.3.c.g 4
40.k even 4 2 960.3.c.h 4
60.h even 2 1 300.3.g.h 2
60.l odd 4 2 60.3.b.a 4
120.q odd 4 2 960.3.c.h 4
120.w even 4 2 960.3.c.g 4
180.v odd 12 4 1620.3.t.b 8
180.x even 12 4 1620.3.t.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
60.3.b.a 4 20.e even 4 2
60.3.b.a 4 60.l odd 4 2
240.3.c.d 4 5.c odd 4 2
240.3.c.d 4 15.e even 4 2
300.3.g.e 2 4.b odd 2 1
300.3.g.e 2 12.b even 2 1
300.3.g.h 2 20.d odd 2 1
300.3.g.h 2 60.h even 2 1
960.3.c.g 4 40.i odd 4 2
960.3.c.g 4 120.w even 4 2
960.3.c.h 4 40.k even 4 2
960.3.c.h 4 120.q odd 4 2
1200.3.l.h 2 5.b even 2 1
1200.3.l.h 2 15.d odd 2 1
1200.3.l.q 2 1.a even 1 1 trivial
1200.3.l.q 2 3.b odd 2 1 inner
1620.3.t.b 8 180.v odd 12 4
1620.3.t.b 8 180.x even 12 4

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7} + 8 \)
\( T_{11}^{2} + 80 \)
\( T_{13} - 12 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 - 4 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( ( 8 + T )^{2} \)
$11$ \( 80 + T^{2} \)
$13$ \( ( -12 + T )^{2} \)
$17$ \( 980 + T^{2} \)
$19$ \( ( 6 + T )^{2} \)
$23$ \( 20 + T^{2} \)
$29$ \( 720 + T^{2} \)
$31$ \( ( 34 + T )^{2} \)
$37$ \( ( -44 + T )^{2} \)
$41$ \( 320 + T^{2} \)
$43$ \( ( -28 + T )^{2} \)
$47$ \( 20 + T^{2} \)
$53$ \( 1620 + T^{2} \)
$59$ \( 9680 + T^{2} \)
$61$ \( ( -74 + T )^{2} \)
$67$ \( ( -92 + T )^{2} \)
$71$ \( 2880 + T^{2} \)
$73$ \( ( -56 + T )^{2} \)
$79$ \( ( 78 + T )^{2} \)
$83$ \( 10580 + T^{2} \)
$89$ \( 320 + T^{2} \)
$97$ \( ( 32 + T )^{2} \)
show more
show less