Properties

Label 1200.3.l.g
Level $1200$
Weight $3$
Character orbit 1200.l
Analytic conductor $32.698$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-5}) \)
Defining polynomial: \(x^{2} + 5\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + \beta ) q^{3} -6 q^{7} + ( -1 - 4 \beta ) q^{9} +O(q^{10})\) \( q + ( -2 + \beta ) q^{3} -6 q^{7} + ( -1 - 4 \beta ) q^{9} -2 \beta q^{11} -16 q^{13} -2 \beta q^{17} + 2 q^{19} + ( 12 - 6 \beta ) q^{21} + 6 \beta q^{23} + ( 22 + 7 \beta ) q^{27} -14 \beta q^{29} + 18 q^{31} + ( 10 + 4 \beta ) q^{33} + 16 q^{37} + ( 32 - 16 \beta ) q^{39} + 28 \beta q^{41} + 16 q^{43} -22 \beta q^{47} -13 q^{49} + ( 10 + 4 \beta ) q^{51} -2 \beta q^{53} + ( -4 + 2 \beta ) q^{57} -2 \beta q^{59} + 82 q^{61} + ( 6 + 24 \beta ) q^{63} + 24 q^{67} + ( -30 - 12 \beta ) q^{69} + 56 \beta q^{71} + 74 q^{73} + 12 \beta q^{77} -138 q^{79} + ( -79 + 8 \beta ) q^{81} -42 \beta q^{83} + ( 70 + 28 \beta ) q^{87} + 48 \beta q^{89} + 96 q^{91} + ( -36 + 18 \beta ) q^{93} + 166 q^{97} + ( -40 + 2 \beta ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{3} - 12q^{7} - 2q^{9} + O(q^{10}) \) \( 2q - 4q^{3} - 12q^{7} - 2q^{9} - 32q^{13} + 4q^{19} + 24q^{21} + 44q^{27} + 36q^{31} + 20q^{33} + 32q^{37} + 64q^{39} + 32q^{43} - 26q^{49} + 20q^{51} - 8q^{57} + 164q^{61} + 12q^{63} + 48q^{67} - 60q^{69} + 148q^{73} - 276q^{79} - 158q^{81} + 140q^{87} + 192q^{91} - 72q^{93} + 332q^{97} - 80q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
401.1
2.23607i
2.23607i
0 −2.00000 2.23607i 0 0 0 −6.00000 0 −1.00000 + 8.94427i 0
401.2 0 −2.00000 + 2.23607i 0 0 0 −6.00000 0 −1.00000 8.94427i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.l.g 2
3.b odd 2 1 inner 1200.3.l.g 2
4.b odd 2 1 75.3.c.e 2
5.b even 2 1 240.3.l.b 2
5.c odd 4 2 1200.3.c.f 4
12.b even 2 1 75.3.c.e 2
15.d odd 2 1 240.3.l.b 2
15.e even 4 2 1200.3.c.f 4
20.d odd 2 1 15.3.c.a 2
20.e even 4 2 75.3.d.b 4
40.e odd 2 1 960.3.l.c 2
40.f even 2 1 960.3.l.b 2
60.h even 2 1 15.3.c.a 2
60.l odd 4 2 75.3.d.b 4
120.i odd 2 1 960.3.l.b 2
120.m even 2 1 960.3.l.c 2
180.n even 6 2 405.3.i.b 4
180.p odd 6 2 405.3.i.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.3.c.a 2 20.d odd 2 1
15.3.c.a 2 60.h even 2 1
75.3.c.e 2 4.b odd 2 1
75.3.c.e 2 12.b even 2 1
75.3.d.b 4 20.e even 4 2
75.3.d.b 4 60.l odd 4 2
240.3.l.b 2 5.b even 2 1
240.3.l.b 2 15.d odd 2 1
405.3.i.b 4 180.n even 6 2
405.3.i.b 4 180.p odd 6 2
960.3.l.b 2 40.f even 2 1
960.3.l.b 2 120.i odd 2 1
960.3.l.c 2 40.e odd 2 1
960.3.l.c 2 120.m even 2 1
1200.3.c.f 4 5.c odd 4 2
1200.3.c.f 4 15.e even 4 2
1200.3.l.g 2 1.a even 1 1 trivial
1200.3.l.g 2 3.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7} + 6 \)
\( T_{11}^{2} + 20 \)
\( T_{13} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 9 + 4 T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( ( 6 + T )^{2} \)
$11$ \( 20 + T^{2} \)
$13$ \( ( 16 + T )^{2} \)
$17$ \( 20 + T^{2} \)
$19$ \( ( -2 + T )^{2} \)
$23$ \( 180 + T^{2} \)
$29$ \( 980 + T^{2} \)
$31$ \( ( -18 + T )^{2} \)
$37$ \( ( -16 + T )^{2} \)
$41$ \( 3920 + T^{2} \)
$43$ \( ( -16 + T )^{2} \)
$47$ \( 2420 + T^{2} \)
$53$ \( 20 + T^{2} \)
$59$ \( 20 + T^{2} \)
$61$ \( ( -82 + T )^{2} \)
$67$ \( ( -24 + T )^{2} \)
$71$ \( 15680 + T^{2} \)
$73$ \( ( -74 + T )^{2} \)
$79$ \( ( 138 + T )^{2} \)
$83$ \( 8820 + T^{2} \)
$89$ \( 11520 + T^{2} \)
$97$ \( ( -166 + T )^{2} \)
show more
show less