# Properties

 Label 1200.3.l.c Level $1200$ Weight $3$ Character orbit 1200.l Self dual yes Analytic conductor $32.698$ Analytic rank $0$ Dimension $1$ CM discriminant -3 Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1200 = 2^{4} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 1200.l (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: yes Analytic conductor: $$32.6976317232$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 75) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - 3q^{3} + 11q^{7} + 9q^{9} + O(q^{10})$$ $$q - 3q^{3} + 11q^{7} + 9q^{9} + q^{13} + 37q^{19} - 33q^{21} - 27q^{27} + 13q^{31} - 26q^{37} - 3q^{39} - 61q^{43} + 72q^{49} - 111q^{57} + 47q^{61} + 99q^{63} - 109q^{67} + 46q^{73} + 142q^{79} + 81q^{81} + 11q^{91} - 39q^{93} + 169q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times$$.

 $$n$$ $$401$$ $$577$$ $$751$$ $$901$$ $$\chi(n)$$ $$-1$$ $$1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
401.1
 0
0 −3.00000 0 0 0 11.0000 0 9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.l.c 1
3.b odd 2 1 CM 1200.3.l.c 1
4.b odd 2 1 75.3.c.b yes 1
5.b even 2 1 1200.3.l.d 1
5.c odd 4 2 1200.3.c.a 2
12.b even 2 1 75.3.c.b yes 1
15.d odd 2 1 1200.3.l.d 1
15.e even 4 2 1200.3.c.a 2
20.d odd 2 1 75.3.c.a 1
20.e even 4 2 75.3.d.a 2
60.h even 2 1 75.3.c.a 1
60.l odd 4 2 75.3.d.a 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
75.3.c.a 1 20.d odd 2 1
75.3.c.a 1 60.h even 2 1
75.3.c.b yes 1 4.b odd 2 1
75.3.c.b yes 1 12.b even 2 1
75.3.d.a 2 20.e even 4 2
75.3.d.a 2 60.l odd 4 2
1200.3.c.a 2 5.c odd 4 2
1200.3.c.a 2 15.e even 4 2
1200.3.l.c 1 1.a even 1 1 trivial
1200.3.l.c 1 3.b odd 2 1 CM
1200.3.l.d 1 5.b even 2 1
1200.3.l.d 1 15.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(1200, [\chi])$$:

 $$T_{7} - 11$$ $$T_{11}$$ $$T_{13} - 1$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$3 + T$$
$5$ $$T$$
$7$ $$-11 + T$$
$11$ $$T$$
$13$ $$-1 + T$$
$17$ $$T$$
$19$ $$-37 + T$$
$23$ $$T$$
$29$ $$T$$
$31$ $$-13 + T$$
$37$ $$26 + T$$
$41$ $$T$$
$43$ $$61 + T$$
$47$ $$T$$
$53$ $$T$$
$59$ $$T$$
$61$ $$-47 + T$$
$67$ $$109 + T$$
$71$ $$T$$
$73$ $$-46 + T$$
$79$ $$-142 + T$$
$83$ $$T$$
$89$ $$T$$
$97$ $$-169 + T$$