Properties

Label 1200.3.cd
Level $1200$
Weight $3$
Character orbit 1200.cd
Rep. character $\chi_{1200}(79,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $240$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.cd (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1200, [\chi])\).

Total New Old
Modular forms 1968 240 1728
Cusp forms 1872 240 1632
Eisenstein series 96 0 96

Trace form

\( 240 q + 12 q^{5} - 180 q^{9} - 60 q^{25} - 120 q^{29} - 60 q^{37} - 120 q^{41} + 36 q^{45} + 1920 q^{49} + 420 q^{53} + 120 q^{61} - 36 q^{65} - 540 q^{81} - 36 q^{85} - 180 q^{89} - 120 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)