# Properties

 Label 1200.3.c.c Level $1200$ Weight $3$ Character orbit 1200.c Analytic conductor $32.698$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1200,3,Mod(449,1200)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1200, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))

N = Newforms(chi, 3, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1200.449");

S:= CuspForms(chi, 3);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1200 = 2^{4} \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 1200.c (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$32.6976317232$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 12) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + 3 i q^{3} + 2 i q^{7} - 9 q^{9}+O(q^{10})$$ q + 3*i * q^3 + 2*i * q^7 - 9 * q^9 $$q + 3 i q^{3} + 2 i q^{7} - 9 q^{9} - 22 i q^{13} + 26 q^{19} - 6 q^{21} - 27 i q^{27} + 46 q^{31} - 26 i q^{37} + 66 q^{39} + 22 i q^{43} + 45 q^{49} + 78 i q^{57} + 74 q^{61} - 18 i q^{63} + 122 i q^{67} - 46 i q^{73} - 142 q^{79} + 81 q^{81} + 44 q^{91} + 138 i q^{93} - 2 i q^{97} +O(q^{100})$$ q + 3*i * q^3 + 2*i * q^7 - 9 * q^9 - 22*i * q^13 + 26 * q^19 - 6 * q^21 - 27*i * q^27 + 46 * q^31 - 26*i * q^37 + 66 * q^39 + 22*i * q^43 + 45 * q^49 + 78*i * q^57 + 74 * q^61 - 18*i * q^63 + 122*i * q^67 - 46*i * q^73 - 142 * q^79 + 81 * q^81 + 44 * q^91 + 138*i * q^93 - 2*i * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 18 q^{9}+O(q^{10})$$ 2 * q - 18 * q^9 $$2 q - 18 q^{9} + 52 q^{19} - 12 q^{21} + 92 q^{31} + 132 q^{39} + 90 q^{49} + 148 q^{61} - 284 q^{79} + 162 q^{81} + 88 q^{91}+O(q^{100})$$ 2 * q - 18 * q^9 + 52 * q^19 - 12 * q^21 + 92 * q^31 + 132 * q^39 + 90 * q^49 + 148 * q^61 - 284 * q^79 + 162 * q^81 + 88 * q^91

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times$$.

 $$n$$ $$401$$ $$577$$ $$751$$ $$901$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
449.1
 − 1.00000i 1.00000i
0 3.00000i 0 0 0 2.00000i 0 −9.00000 0
449.2 0 3.00000i 0 0 0 2.00000i 0 −9.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
5.b even 2 1 inner
15.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.c.c 2
3.b odd 2 1 CM 1200.3.c.c 2
4.b odd 2 1 300.3.b.a 2
5.b even 2 1 inner 1200.3.c.c 2
5.c odd 4 1 48.3.e.a 1
5.c odd 4 1 1200.3.l.b 1
12.b even 2 1 300.3.b.a 2
15.d odd 2 1 inner 1200.3.c.c 2
15.e even 4 1 48.3.e.a 1
15.e even 4 1 1200.3.l.b 1
20.d odd 2 1 300.3.b.a 2
20.e even 4 1 12.3.c.a 1
20.e even 4 1 300.3.g.b 1
40.i odd 4 1 192.3.e.a 1
40.k even 4 1 192.3.e.b 1
45.k odd 12 2 1296.3.q.b 2
45.l even 12 2 1296.3.q.b 2
60.h even 2 1 300.3.b.a 2
60.l odd 4 1 12.3.c.a 1
60.l odd 4 1 300.3.g.b 1
80.i odd 4 1 768.3.h.b 2
80.j even 4 1 768.3.h.a 2
80.s even 4 1 768.3.h.a 2
80.t odd 4 1 768.3.h.b 2
120.q odd 4 1 192.3.e.b 1
120.w even 4 1 192.3.e.a 1
140.j odd 4 1 588.3.c.c 1
140.w even 12 2 588.3.p.c 2
140.x odd 12 2 588.3.p.b 2
180.v odd 12 2 324.3.g.b 2
180.x even 12 2 324.3.g.b 2
220.i odd 4 1 1452.3.e.b 1
240.z odd 4 1 768.3.h.a 2
240.bb even 4 1 768.3.h.b 2
240.bd odd 4 1 768.3.h.a 2
240.bf even 4 1 768.3.h.b 2
420.w even 4 1 588.3.c.c 1
420.bp odd 12 2 588.3.p.c 2
420.br even 12 2 588.3.p.b 2
660.q even 4 1 1452.3.e.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
12.3.c.a 1 20.e even 4 1
12.3.c.a 1 60.l odd 4 1
48.3.e.a 1 5.c odd 4 1
48.3.e.a 1 15.e even 4 1
192.3.e.a 1 40.i odd 4 1
192.3.e.a 1 120.w even 4 1
192.3.e.b 1 40.k even 4 1
192.3.e.b 1 120.q odd 4 1
300.3.b.a 2 4.b odd 2 1
300.3.b.a 2 12.b even 2 1
300.3.b.a 2 20.d odd 2 1
300.3.b.a 2 60.h even 2 1
300.3.g.b 1 20.e even 4 1
300.3.g.b 1 60.l odd 4 1
324.3.g.b 2 180.v odd 12 2
324.3.g.b 2 180.x even 12 2
588.3.c.c 1 140.j odd 4 1
588.3.c.c 1 420.w even 4 1
588.3.p.b 2 140.x odd 12 2
588.3.p.b 2 420.br even 12 2
588.3.p.c 2 140.w even 12 2
588.3.p.c 2 420.bp odd 12 2
768.3.h.a 2 80.j even 4 1
768.3.h.a 2 80.s even 4 1
768.3.h.a 2 240.z odd 4 1
768.3.h.a 2 240.bd odd 4 1
768.3.h.b 2 80.i odd 4 1
768.3.h.b 2 80.t odd 4 1
768.3.h.b 2 240.bb even 4 1
768.3.h.b 2 240.bf even 4 1
1200.3.c.c 2 1.a even 1 1 trivial
1200.3.c.c 2 3.b odd 2 1 CM
1200.3.c.c 2 5.b even 2 1 inner
1200.3.c.c 2 15.d odd 2 1 inner
1200.3.l.b 1 5.c odd 4 1
1200.3.l.b 1 15.e even 4 1
1296.3.q.b 2 45.k odd 12 2
1296.3.q.b 2 45.l even 12 2
1452.3.e.b 1 220.i odd 4 1
1452.3.e.b 1 660.q even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(1200, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11}$$ T11

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 9$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 4$$
$11$ $$T^{2}$$
$13$ $$T^{2} + 484$$
$17$ $$T^{2}$$
$19$ $$(T - 26)^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$(T - 46)^{2}$$
$37$ $$T^{2} + 676$$
$41$ $$T^{2}$$
$43$ $$T^{2} + 484$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$(T - 74)^{2}$$
$67$ $$T^{2} + 14884$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 2116$$
$79$ $$(T + 142)^{2}$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$T^{2} + 4$$