Properties

Label 1200.3.bm
Level $1200$
Weight $3$
Character orbit 1200.bm
Rep. character $\chi_{1200}(149,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $568$
Sturm bound $720$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.bm (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 240 \)
Character field: \(\Q(i)\)
Sturm bound: \(720\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1200, [\chi])\).

Total New Old
Modular forms 984 584 400
Cusp forms 936 568 368
Eisenstein series 48 16 32

Trace form

\( 568 q + 8 q^{4} - 4 q^{6} + 48 q^{16} - 56 q^{19} + 32 q^{21} + 36 q^{24} - 16 q^{31} - 96 q^{34} + 260 q^{36} + 352 q^{46} + 3656 q^{49} + 32 q^{51} + 60 q^{54} + 56 q^{61} + 56 q^{64} + 128 q^{66} + 40 q^{69}+ \cdots + 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1200, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1200, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)