Properties

Label 1200.3.bg.k
Level $1200$
Weight $3$
Character orbit 1200.bg
Analytic conductor $32.698$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1200.bg (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(32.6976317232\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Defining polynomial: \(x^{4} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( 1 + 2 \beta_{1} + \beta_{2} ) q^{7} -3 \beta_{2} q^{9} +O(q^{10})\) \( q + \beta_{3} q^{3} + ( 1 + 2 \beta_{1} + \beta_{2} ) q^{7} -3 \beta_{2} q^{9} + ( -4 - 3 \beta_{1} + 3 \beta_{3} ) q^{11} + ( 8 - 8 \beta_{2} + 2 \beta_{3} ) q^{13} + ( 10 + 6 \beta_{1} + 10 \beta_{2} ) q^{17} + ( -6 \beta_{1} + 6 \beta_{2} - 6 \beta_{3} ) q^{19} + ( -6 - \beta_{1} + \beta_{3} ) q^{21} + ( 14 - 14 \beta_{2} + 2 \beta_{3} ) q^{23} + 3 \beta_{1} q^{27} + ( 7 \beta_{1} + 18 \beta_{2} + 7 \beta_{3} ) q^{29} + ( 4 - 6 \beta_{1} + 6 \beta_{3} ) q^{31} + ( 9 - 9 \beta_{2} - 4 \beta_{3} ) q^{33} + ( -16 + 18 \beta_{1} - 16 \beta_{2} ) q^{37} + ( 8 \beta_{1} - 6 \beta_{2} + 8 \beta_{3} ) q^{39} + ( -14 + 6 \beta_{1} - 6 \beta_{3} ) q^{41} + ( -2 + 2 \beta_{2} + 20 \beta_{3} ) q^{43} + ( 32 + 10 \beta_{1} + 32 \beta_{2} ) q^{47} + ( 4 \beta_{1} - 35 \beta_{2} + 4 \beta_{3} ) q^{49} + ( -18 - 10 \beta_{1} + 10 \beta_{3} ) q^{51} + ( -14 + 14 \beta_{2} - 12 \beta_{3} ) q^{53} + ( 18 - 6 \beta_{1} + 18 \beta_{2} ) q^{57} + ( 31 \beta_{1} - 36 \beta_{2} + 31 \beta_{3} ) q^{59} + ( 50 - 18 \beta_{1} + 18 \beta_{3} ) q^{61} + ( 3 - 3 \beta_{2} - 6 \beta_{3} ) q^{63} + ( -50 + 4 \beta_{1} - 50 \beta_{2} ) q^{67} + ( 14 \beta_{1} - 6 \beta_{2} + 14 \beta_{3} ) q^{69} + 68 q^{71} + ( -19 + 19 \beta_{2} + 48 \beta_{3} ) q^{73} + ( -22 - 14 \beta_{1} - 22 \beta_{2} ) q^{77} + ( 10 \beta_{1} + 10 \beta_{3} ) q^{79} -9 q^{81} + ( -4 + 4 \beta_{2} - 14 \beta_{3} ) q^{83} + ( -21 - 18 \beta_{1} - 21 \beta_{2} ) q^{87} + ( 36 \beta_{1} - 6 \beta_{2} + 36 \beta_{3} ) q^{89} + ( 4 + 14 \beta_{1} - 14 \beta_{3} ) q^{91} + ( 18 - 18 \beta_{2} + 4 \beta_{3} ) q^{93} + ( 5 + 16 \beta_{1} + 5 \beta_{2} ) q^{97} + ( 9 \beta_{1} + 12 \beta_{2} + 9 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 4q^{7} + O(q^{10}) \) \( 4q + 4q^{7} - 16q^{11} + 32q^{13} + 40q^{17} - 24q^{21} + 56q^{23} + 16q^{31} + 36q^{33} - 64q^{37} - 56q^{41} - 8q^{43} + 128q^{47} - 72q^{51} - 56q^{53} + 72q^{57} + 200q^{61} + 12q^{63} - 200q^{67} + 272q^{71} - 76q^{73} - 88q^{77} - 36q^{81} - 16q^{83} - 84q^{87} + 16q^{91} + 72q^{93} + 20q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/3\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(3 \beta_{2}\)
\(\nu^{3}\)\(=\)\(3 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
193.1
1.22474 1.22474i
−1.22474 + 1.22474i
1.22474 + 1.22474i
−1.22474 1.22474i
0 −1.22474 1.22474i 0 0 0 3.44949 3.44949i 0 3.00000i 0
193.2 0 1.22474 + 1.22474i 0 0 0 −1.44949 + 1.44949i 0 3.00000i 0
1057.1 0 −1.22474 + 1.22474i 0 0 0 3.44949 + 3.44949i 0 3.00000i 0
1057.2 0 1.22474 1.22474i 0 0 0 −1.44949 1.44949i 0 3.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.3.bg.k 4
4.b odd 2 1 75.3.f.c 4
5.b even 2 1 240.3.bg.a 4
5.c odd 4 1 240.3.bg.a 4
5.c odd 4 1 inner 1200.3.bg.k 4
12.b even 2 1 225.3.g.a 4
15.d odd 2 1 720.3.bh.k 4
15.e even 4 1 720.3.bh.k 4
20.d odd 2 1 15.3.f.a 4
20.e even 4 1 15.3.f.a 4
20.e even 4 1 75.3.f.c 4
40.e odd 2 1 960.3.bg.i 4
40.f even 2 1 960.3.bg.h 4
40.i odd 4 1 960.3.bg.h 4
40.k even 4 1 960.3.bg.i 4
60.h even 2 1 45.3.g.b 4
60.l odd 4 1 45.3.g.b 4
60.l odd 4 1 225.3.g.a 4
180.n even 6 2 405.3.l.f 8
180.p odd 6 2 405.3.l.h 8
180.v odd 12 2 405.3.l.f 8
180.x even 12 2 405.3.l.h 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
15.3.f.a 4 20.d odd 2 1
15.3.f.a 4 20.e even 4 1
45.3.g.b 4 60.h even 2 1
45.3.g.b 4 60.l odd 4 1
75.3.f.c 4 4.b odd 2 1
75.3.f.c 4 20.e even 4 1
225.3.g.a 4 12.b even 2 1
225.3.g.a 4 60.l odd 4 1
240.3.bg.a 4 5.b even 2 1
240.3.bg.a 4 5.c odd 4 1
405.3.l.f 8 180.n even 6 2
405.3.l.f 8 180.v odd 12 2
405.3.l.h 8 180.p odd 6 2
405.3.l.h 8 180.x even 12 2
720.3.bh.k 4 15.d odd 2 1
720.3.bh.k 4 15.e even 4 1
960.3.bg.h 4 40.f even 2 1
960.3.bg.h 4 40.i odd 4 1
960.3.bg.i 4 40.e odd 2 1
960.3.bg.i 4 40.k even 4 1
1200.3.bg.k 4 1.a even 1 1 trivial
1200.3.bg.k 4 5.c odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - 4 T_{7}^{3} + 8 T_{7}^{2} + 40 T_{7} + 100 \) acting on \(S_{3}^{\mathrm{new}}(1200, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 9 + T^{4} \)
$5$ \( T^{4} \)
$7$ \( 100 + 40 T + 8 T^{2} - 4 T^{3} + T^{4} \)
$11$ \( ( -38 + 8 T + T^{2} )^{2} \)
$13$ \( 13456 - 3712 T + 512 T^{2} - 32 T^{3} + T^{4} \)
$17$ \( 8464 - 3680 T + 800 T^{2} - 40 T^{3} + T^{4} \)
$19$ \( 32400 + 504 T^{2} + T^{4} \)
$23$ \( 144400 - 21280 T + 1568 T^{2} - 56 T^{3} + T^{4} \)
$29$ \( 900 + 1236 T^{2} + T^{4} \)
$31$ \( ( -200 - 8 T + T^{2} )^{2} \)
$37$ \( 211600 - 29440 T + 2048 T^{2} + 64 T^{3} + T^{4} \)
$41$ \( ( -20 + 28 T + T^{2} )^{2} \)
$43$ \( 1420864 - 9536 T + 32 T^{2} + 8 T^{3} + T^{4} \)
$47$ \( 3055504 - 223744 T + 8192 T^{2} - 128 T^{3} + T^{4} \)
$53$ \( 1600 - 2240 T + 1568 T^{2} + 56 T^{3} + T^{4} \)
$59$ \( 19980900 + 14124 T^{2} + T^{4} \)
$61$ \( ( 556 - 100 T + T^{2} )^{2} \)
$67$ \( 24522304 + 990400 T + 20000 T^{2} + 200 T^{3} + T^{4} \)
$71$ \( ( -68 + T )^{4} \)
$73$ \( 38316100 - 470440 T + 2888 T^{2} + 76 T^{3} + T^{4} \)
$79$ \( ( 600 + T^{2} )^{2} \)
$83$ \( 309136 - 8896 T + 128 T^{2} + 16 T^{3} + T^{4} \)
$89$ \( 59907600 + 15624 T^{2} + T^{4} \)
$97$ \( 515524 + 14360 T + 200 T^{2} - 20 T^{3} + T^{4} \)
show more
show less