Properties

Label 1200.2.v.g.257.2
Level $1200$
Weight $2$
Character 1200.257
Analytic conductor $9.582$
Analytic rank $0$
Dimension $4$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1200,2,Mod(257,1200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1200, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1200.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.v (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 257.2
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1200.257
Dual form 1200.2.v.g.593.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 1.22474i) q^{3} +3.00000i q^{9} +O(q^{10})\) \(q+(1.22474 + 1.22474i) q^{3} +3.00000i q^{9} +(-4.89898 + 4.89898i) q^{17} +4.00000i q^{19} +(2.44949 + 2.44949i) q^{23} +(-3.67423 + 3.67423i) q^{27} +8.00000 q^{31} +(-7.34847 + 7.34847i) q^{47} -7.00000i q^{49} -12.0000 q^{51} +(9.79796 + 9.79796i) q^{53} +(-4.89898 + 4.89898i) q^{57} +2.00000 q^{61} +6.00000i q^{69} -16.0000i q^{79} -9.00000 q^{81} +(2.44949 + 2.44949i) q^{83} +(9.79796 + 9.79796i) q^{93} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 32 q^{31} - 48 q^{51} + 8 q^{61} - 36 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.22474 + 1.22474i 0.707107 + 0.707107i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.89898 + 4.89898i −1.18818 + 1.18818i −0.210606 + 0.977571i \(0.567544\pi\)
−0.977571 + 0.210606i \(0.932456\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.44949 + 2.44949i 0.510754 + 0.510754i 0.914757 0.404004i \(-0.132382\pi\)
−0.404004 + 0.914757i \(0.632382\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34847 + 7.34847i −1.07188 + 1.07188i −0.0746766 + 0.997208i \(0.523792\pi\)
−0.997208 + 0.0746766i \(0.976208\pi\)
\(48\) 0 0
\(49\) 7.00000i 1.00000i
\(50\) 0 0
\(51\) −12.0000 −1.68034
\(52\) 0 0
\(53\) 9.79796 + 9.79796i 1.34585 + 1.34585i 0.890113 + 0.455740i \(0.150625\pi\)
0.455740 + 0.890113i \(0.349375\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −4.89898 + 4.89898i −0.648886 + 0.648886i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 6.00000i 0.722315i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000i 1.80014i −0.435745 0.900070i \(-0.643515\pi\)
0.435745 0.900070i \(-0.356485\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 2.44949 + 2.44949i 0.268866 + 0.268866i 0.828643 0.559777i \(-0.189113\pi\)
−0.559777 + 0.828643i \(0.689113\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 9.79796 + 9.79796i 1.01600 + 1.01600i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.34847 + 7.34847i −0.710403 + 0.710403i −0.966620 0.256216i \(-0.917524\pi\)
0.256216 + 0.966620i \(0.417524\pi\)
\(108\) 0 0
\(109\) 14.0000i 1.34096i −0.741929 0.670478i \(-0.766089\pi\)
0.741929 0.670478i \(-0.233911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.6969 14.6969i −1.38257 1.38257i −0.840027 0.542545i \(-0.817461\pi\)
−0.542545 0.840027i \(-0.682539\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.89898 + 4.89898i −0.418548 + 0.418548i −0.884703 0.466155i \(-0.845639\pi\)
0.466155 + 0.884703i \(0.345639\pi\)
\(138\) 0 0
\(139\) 4.00000i 0.339276i 0.985506 + 0.169638i \(0.0542598\pi\)
−0.985506 + 0.169638i \(0.945740\pi\)
\(140\) 0 0
\(141\) −18.0000 −1.51587
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 8.57321 8.57321i 0.707107 0.707107i
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) −14.6969 14.6969i −1.18818 1.18818i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 24.0000i 1.90332i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 17.1464 17.1464i 1.32683 1.32683i 0.418711 0.908120i \(-0.362482\pi\)
0.908120 0.418711i \(-0.137518\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) −12.0000 −0.917663
\(172\) 0 0
\(173\) 9.79796 + 9.79796i 0.744925 + 0.744925i 0.973521 0.228596i \(-0.0734136\pi\)
−0.228596 + 0.973521i \(0.573414\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 2.44949 + 2.44949i 0.181071 + 0.181071i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 19.5959 19.5959i 1.39615 1.39615i 0.585424 0.810727i \(-0.300928\pi\)
0.810727 0.585424i \(-0.199072\pi\)
\(198\) 0 0
\(199\) 16.0000i 1.13421i −0.823646 0.567105i \(-0.808063\pi\)
0.823646 0.567105i \(-0.191937\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −7.34847 + 7.34847i −0.510754 + 0.510754i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 17.1464 17.1464i 1.13805 1.13805i 0.149249 0.988800i \(-0.452314\pi\)
0.988800 0.149249i \(-0.0476855\pi\)
\(228\) 0 0
\(229\) 26.0000i 1.71813i 0.511868 + 0.859064i \(0.328954\pi\)
−0.511868 + 0.859064i \(0.671046\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.6969 14.6969i −0.962828 0.962828i 0.0365050 0.999333i \(-0.488378\pi\)
−0.999333 + 0.0365050i \(0.988378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 19.5959 19.5959i 1.27289 1.27289i
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −4.89898 + 4.89898i −0.305590 + 0.305590i −0.843196 0.537606i \(-0.819329\pi\)
0.537606 + 0.843196i \(0.319329\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.0454 22.0454i −1.35938 1.35938i −0.874683 0.484695i \(-0.838931\pi\)
−0.484695 0.874683i \(-0.661069\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −32.0000 −1.94386 −0.971931 0.235267i \(-0.924404\pi\)
−0.971931 + 0.235267i \(0.924404\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(278\) 0 0
\(279\) 24.0000i 1.43684i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 31.0000i 1.82353i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.79796 + 9.79796i 0.572403 + 0.572403i 0.932799 0.360396i \(-0.117359\pi\)
−0.360396 + 0.932799i \(0.617359\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 19.5959 19.5959i 1.10062 1.10062i 0.106280 0.994336i \(-0.466106\pi\)
0.994336 0.106280i \(-0.0338940\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) −19.5959 19.5959i −1.09035 1.09035i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 17.1464 17.1464i 0.948200 0.948200i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 28.0000 1.53902 0.769510 0.638635i \(-0.220501\pi\)
0.769510 + 0.638635i \(0.220501\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) 0 0
\(339\) 36.0000i 1.95525i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.34847 + 7.34847i −0.394486 + 0.394486i −0.876283 0.481797i \(-0.839984\pi\)
0.481797 + 0.876283i \(0.339984\pi\)
\(348\) 0 0
\(349\) 34.0000i 1.81998i −0.414632 0.909989i \(-0.636090\pi\)
0.414632 0.909989i \(-0.363910\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6969 14.6969i −0.782239 0.782239i 0.197969 0.980208i \(-0.436565\pi\)
−0.980208 + 0.197969i \(0.936565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 0 0
\(363\) 13.4722 + 13.4722i 0.707107 + 0.707107i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 4.00000i 0.205466i 0.994709 + 0.102733i \(0.0327588\pi\)
−0.994709 + 0.102733i \(0.967241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 26.9444 + 26.9444i 1.37679 + 1.37679i 0.849982 + 0.526812i \(0.176613\pi\)
0.526812 + 0.849982i \(0.323387\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 26.0000i 1.28562i 0.766027 + 0.642809i \(0.222231\pi\)
−0.766027 + 0.642809i \(0.777769\pi\)
\(410\) 0 0
\(411\) −12.0000 −0.591916
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −4.89898 + 4.89898i −0.239904 + 0.239904i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −38.0000 −1.85201 −0.926003 0.377515i \(-0.876779\pi\)
−0.926003 + 0.377515i \(0.876779\pi\)
\(422\) 0 0
\(423\) −22.0454 22.0454i −1.07188 1.07188i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −9.79796 + 9.79796i −0.468700 + 0.468700i
\(438\) 0 0
\(439\) 16.0000i 0.763638i −0.924237 0.381819i \(-0.875298\pi\)
0.924237 0.381819i \(-0.124702\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) 0 0
\(443\) 26.9444 + 26.9444i 1.28017 + 1.28017i 0.940572 + 0.339595i \(0.110290\pi\)
0.339595 + 0.940572i \(0.389710\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 9.79796 + 9.79796i 0.460348 + 0.460348i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 36.0000i 1.68034i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.1464 17.1464i 0.793442 0.793442i −0.188610 0.982052i \(-0.560398\pi\)
0.982052 + 0.188610i \(0.0603982\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −29.3939 + 29.3939i −1.34585 + 1.34585i
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 44.0000i 1.96971i 0.173379 + 0.984855i \(0.444532\pi\)
−0.173379 + 0.984855i \(0.555468\pi\)
\(500\) 0 0
\(501\) 42.0000 1.87642
\(502\) 0 0
\(503\) 2.44949 + 2.44949i 0.109217 + 0.109217i 0.759604 0.650386i \(-0.225393\pi\)
−0.650386 + 0.759604i \(0.725393\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −15.9217 + 15.9217i −0.707107 + 0.707107i
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −14.6969 14.6969i −0.648886 0.648886i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 24.0000i 1.05348i
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −39.1918 + 39.1918i −1.70722 + 1.70722i
\(528\) 0 0
\(529\) 11.0000i 0.478261i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 2.00000 0.0859867 0.0429934 0.999075i \(-0.486311\pi\)
0.0429934 + 0.999075i \(0.486311\pi\)
\(542\) 0 0
\(543\) 26.9444 + 26.9444i 1.15629 + 1.15629i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(548\) 0 0
\(549\) 6.00000i 0.256074i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −29.3939 + 29.3939i −1.24546 + 1.24546i −0.287754 + 0.957704i \(0.592909\pi\)
−0.957704 + 0.287754i \(0.907091\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.0454 22.0454i −0.929103 0.929103i 0.0685449 0.997648i \(-0.478164\pi\)
−0.997648 + 0.0685449i \(0.978164\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −31.8434 + 31.8434i −1.31432 + 1.31432i −0.396116 + 0.918201i \(0.629642\pi\)
−0.918201 + 0.396116i \(0.870358\pi\)
\(588\) 0 0
\(589\) 32.0000i 1.31854i
\(590\) 0 0
\(591\) 48.0000 1.97446
\(592\) 0 0
\(593\) 34.2929 + 34.2929i 1.40824 + 1.40824i 0.769049 + 0.639190i \(0.220730\pi\)
0.639190 + 0.769049i \(0.279270\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 19.5959 19.5959i 0.802008 0.802008i
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −38.0000 −1.55005 −0.775026 0.631929i \(-0.782263\pi\)
−0.775026 + 0.631929i \(0.782263\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.89898 + 4.89898i −0.197225 + 0.197225i −0.798810 0.601584i \(-0.794536\pi\)
0.601584 + 0.798810i \(0.294536\pi\)
\(618\) 0 0
\(619\) 44.0000i 1.76851i 0.467005 + 0.884255i \(0.345333\pi\)
−0.467005 + 0.884255i \(0.654667\pi\)
\(620\) 0 0
\(621\) −18.0000 −0.722315
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −32.0000 −1.27390 −0.636950 0.770905i \(-0.719804\pi\)
−0.636950 + 0.770905i \(0.719804\pi\)
\(632\) 0 0
\(633\) 34.2929 + 34.2929i 1.36302 + 1.36302i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 17.1464 17.1464i 0.674096 0.674096i −0.284562 0.958658i \(-0.591848\pi\)
0.958658 + 0.284562i \(0.0918482\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.79796 + 9.79796i 0.383424 + 0.383424i 0.872334 0.488910i \(-0.162605\pi\)
−0.488910 + 0.872334i \(0.662605\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −29.3939 + 29.3939i −1.12970 + 1.12970i −0.139473 + 0.990226i \(0.544541\pi\)
−0.990226 + 0.139473i \(0.955459\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 42.0000 1.60944
\(682\) 0 0
\(683\) 26.9444 + 26.9444i 1.03100 + 1.03100i 0.999504 + 0.0314944i \(0.0100266\pi\)
0.0314944 + 0.999504i \(0.489973\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −31.8434 + 31.8434i −1.21490 + 1.21490i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −52.0000 −1.97817 −0.989087 0.147335i \(-0.952930\pi\)
−0.989087 + 0.147335i \(0.952930\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 36.0000i 1.36165i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0000i 0.976450i 0.872718 + 0.488225i \(0.162356\pi\)
−0.872718 + 0.488225i \(0.837644\pi\)
\(710\) 0 0
\(711\) 48.0000 1.80014
\(712\) 0 0
\(713\) 19.5959 + 19.5959i 0.733873 + 0.733873i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.44949 + 2.44949i 0.0910975 + 0.0910975i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 4.00000i 0.147142i 0.997290 + 0.0735712i \(0.0234396\pi\)
−0.997290 + 0.0735712i \(0.976560\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −22.0454 22.0454i −0.808768 0.808768i 0.175680 0.984447i \(-0.443788\pi\)
−0.984447 + 0.175680i \(0.943788\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −7.34847 + 7.34847i −0.268866 + 0.268866i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 46.0000i 1.65880i 0.558653 + 0.829401i \(0.311318\pi\)
−0.558653 + 0.829401i \(0.688682\pi\)
\(770\) 0 0
\(771\) −12.0000 −0.432169
\(772\) 0 0
\(773\) −39.1918 39.1918i −1.40963 1.40963i −0.761686 0.647947i \(-0.775628\pi\)
−0.647947 0.761686i \(-0.724372\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 0 0
\(789\) 54.0000i 1.92245i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.5959 19.5959i 0.694123 0.694123i −0.269013 0.963136i \(-0.586698\pi\)
0.963136 + 0.269013i \(0.0866976\pi\)
\(798\) 0 0
\(799\) 72.0000i 2.54718i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −52.0000 −1.82597 −0.912983 0.407997i \(-0.866228\pi\)
−0.912983 + 0.407997i \(0.866228\pi\)
\(812\) 0 0
\(813\) −39.1918 39.1918i −1.37452 1.37452i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −31.8434 + 31.8434i −1.10730 + 1.10730i −0.113799 + 0.993504i \(0.536302\pi\)
−0.993504 + 0.113799i \(0.963698\pi\)
\(828\) 0 0
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 34.2929 + 34.2929i 1.18818 + 1.18818i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −29.3939 + 29.3939i −1.01600 + 1.01600i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.89898 + 4.89898i −0.167346 + 0.167346i −0.785812 0.618466i \(-0.787755\pi\)
0.618466 + 0.785812i \(0.287755\pi\)
\(858\) 0 0
\(859\) 44.0000i 1.50126i 0.660722 + 0.750630i \(0.270250\pi\)
−0.660722 + 0.750630i \(0.729750\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.9444 + 26.9444i 0.917198 + 0.917198i 0.996825 0.0796271i \(-0.0253730\pi\)
−0.0796271 + 0.996825i \(0.525373\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 37.9671 37.9671i 1.28943 1.28943i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 0 0
\(879\) 24.0000i 0.809500i
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 41.6413 41.6413i 1.39818 1.39818i 0.592911 0.805268i \(-0.297979\pi\)
0.805268 0.592911i \(-0.202021\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −29.3939 29.3939i −0.983629 0.983629i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −96.0000 −3.19822
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 56.0000i 1.84727i −0.383274 0.923635i \(-0.625203\pi\)
0.383274 0.923635i \(-0.374797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.6413 41.6413i 1.35316 1.35316i 0.471060 0.882101i \(-0.343871\pi\)
0.882101 0.471060i \(-0.156129\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 48.0000 1.55651
\(952\) 0 0
\(953\) −14.6969 14.6969i −0.476081 0.476081i 0.427795 0.903876i \(-0.359290\pi\)
−0.903876 + 0.427795i \(0.859290\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −22.0454 22.0454i −0.710403 0.710403i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 0 0
\(969\) 48.0000i 1.54198i
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 44.0908 44.0908i 1.41059 1.41059i 0.654710 0.755880i \(-0.272791\pi\)
0.755880 0.654710i \(-0.227209\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 42.0000 1.34096
\(982\) 0 0
\(983\) 2.44949 + 2.44949i 0.0781266 + 0.0781266i 0.745090 0.666964i \(-0.232406\pi\)
−0.666964 + 0.745090i \(0.732406\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −32.0000 −1.01651 −0.508257 0.861206i \(-0.669710\pi\)
−0.508257 + 0.861206i \(0.669710\pi\)
\(992\) 0 0
\(993\) 34.2929 + 34.2929i 1.08825 + 1.08825i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.2.v.g.257.2 4
3.2 odd 2 inner 1200.2.v.g.257.1 4
4.3 odd 2 75.2.e.a.32.2 yes 4
5.2 odd 4 inner 1200.2.v.g.593.2 4
5.3 odd 4 inner 1200.2.v.g.593.1 4
5.4 even 2 inner 1200.2.v.g.257.1 4
12.11 even 2 75.2.e.a.32.1 4
15.2 even 4 inner 1200.2.v.g.593.1 4
15.8 even 4 inner 1200.2.v.g.593.2 4
15.14 odd 2 CM 1200.2.v.g.257.2 4
20.3 even 4 75.2.e.a.68.1 yes 4
20.7 even 4 75.2.e.a.68.2 yes 4
20.19 odd 2 75.2.e.a.32.1 4
60.23 odd 4 75.2.e.a.68.2 yes 4
60.47 odd 4 75.2.e.a.68.1 yes 4
60.59 even 2 75.2.e.a.32.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.e.a.32.1 4 12.11 even 2
75.2.e.a.32.1 4 20.19 odd 2
75.2.e.a.32.2 yes 4 4.3 odd 2
75.2.e.a.32.2 yes 4 60.59 even 2
75.2.e.a.68.1 yes 4 20.3 even 4
75.2.e.a.68.1 yes 4 60.47 odd 4
75.2.e.a.68.2 yes 4 20.7 even 4
75.2.e.a.68.2 yes 4 60.23 odd 4
1200.2.v.g.257.1 4 3.2 odd 2 inner
1200.2.v.g.257.1 4 5.4 even 2 inner
1200.2.v.g.257.2 4 1.1 even 1 trivial
1200.2.v.g.257.2 4 15.14 odd 2 CM
1200.2.v.g.593.1 4 5.3 odd 4 inner
1200.2.v.g.593.1 4 15.2 even 4 inner
1200.2.v.g.593.2 4 5.2 odd 4 inner
1200.2.v.g.593.2 4 15.8 even 4 inner