Properties

Label 1200.2.h.g
Level $1200$
Weight $2$
Character orbit 1200.h
Analytic conductor $9.582$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 3 \beta q^{7} - 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} - 3 \beta q^{7} - 3 q^{9} + 7 q^{13} - 3 \beta q^{19} - 9 q^{21} + 3 \beta q^{27} + \beta q^{31} - 10 q^{37} - 7 \beta q^{39} + \beta q^{43} - 20 q^{49} - 9 q^{57} - q^{61} + 9 \beta q^{63} - 7 \beta q^{67} + 10 q^{73} + 10 \beta q^{79} + 9 q^{81} - 21 \beta q^{91} + 3 q^{93} + 19 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{9} + 14 q^{13} - 18 q^{21} - 20 q^{37} - 40 q^{49} - 18 q^{57} - 2 q^{61} + 20 q^{73} + 18 q^{81} + 6 q^{93} + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1151.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 0 0 5.19615i 0 −3.00000 0
1151.2 0 1.73205i 0 0 0 5.19615i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.2.h.g yes 2
3.b odd 2 1 CM 1200.2.h.g yes 2
4.b odd 2 1 inner 1200.2.h.g yes 2
5.b even 2 1 1200.2.h.c 2
5.c odd 4 2 1200.2.o.g 4
12.b even 2 1 inner 1200.2.h.g yes 2
15.d odd 2 1 1200.2.h.c 2
15.e even 4 2 1200.2.o.g 4
20.d odd 2 1 1200.2.h.c 2
20.e even 4 2 1200.2.o.g 4
60.h even 2 1 1200.2.h.c 2
60.l odd 4 2 1200.2.o.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1200.2.h.c 2 5.b even 2 1
1200.2.h.c 2 15.d odd 2 1
1200.2.h.c 2 20.d odd 2 1
1200.2.h.c 2 60.h even 2 1
1200.2.h.g yes 2 1.a even 1 1 trivial
1200.2.h.g yes 2 3.b odd 2 1 CM
1200.2.h.g yes 2 4.b odd 2 1 inner
1200.2.h.g yes 2 12.b even 2 1 inner
1200.2.o.g 4 5.c odd 4 2
1200.2.o.g 4 15.e even 4 2
1200.2.o.g 4 20.e even 4 2
1200.2.o.g 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1200, [\chi])\):

\( T_{7}^{2} + 27 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} - 7 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 27 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 7)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 27 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 3 \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 3 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 147 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 10)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 300 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( (T - 19)^{2} \) Copy content Toggle raw display
show more
show less