Properties

Label 1200.2.h.f.1151.2
Level $1200$
Weight $2$
Character 1200.1151
Analytic conductor $9.582$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 1151.2
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1200.1151
Dual form 1200.2.h.f.1151.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.73205i q^{3} -1.73205i q^{7} -3.00000 q^{9} +O(q^{10})\) \(q+1.73205i q^{3} -1.73205i q^{7} -3.00000 q^{9} +5.00000 q^{13} +8.66025i q^{19} +3.00000 q^{21} -5.19615i q^{27} +8.66025i q^{31} +10.0000 q^{37} +8.66025i q^{39} +12.1244i q^{43} +4.00000 q^{49} -15.0000 q^{57} -13.0000 q^{61} +5.19615i q^{63} -15.5885i q^{67} -10.0000 q^{73} +17.3205i q^{79} +9.00000 q^{81} -8.66025i q^{91} -15.0000 q^{93} +5.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 6q^{9} + O(q^{10}) \) \( 2q - 6q^{9} + 10q^{13} + 6q^{21} + 20q^{37} + 8q^{49} - 30q^{57} - 26q^{61} - 20q^{73} + 18q^{81} - 30q^{93} + 10q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 1.00000i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 1.73205i − 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
0.944911 0.327327i \(-0.106148\pi\)
\(8\) 0 0
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 8.66025i 1.98680i 0.114708 + 0.993399i \(0.463407\pi\)
−0.114708 + 0.993399i \(0.536593\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 5.19615i − 1.00000i
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 8.66025i 1.55543i 0.628619 + 0.777714i \(0.283621\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 8.66025i 1.38675i
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 12.1244i 1.84895i 0.381246 + 0.924473i \(0.375495\pi\)
−0.381246 + 0.924473i \(0.624505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 4.00000 0.571429
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −15.0000 −1.98680
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −13.0000 −1.66448 −0.832240 0.554416i \(-0.812942\pi\)
−0.832240 + 0.554416i \(0.812942\pi\)
\(62\) 0 0
\(63\) 5.19615i 0.654654i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 15.5885i − 1.90443i −0.305424 0.952217i \(-0.598798\pi\)
0.305424 0.952217i \(-0.401202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −10.0000 −1.17041 −0.585206 0.810885i \(-0.698986\pi\)
−0.585206 + 0.810885i \(0.698986\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 17.3205i 1.94871i 0.225018 + 0.974355i \(0.427756\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) − 8.66025i − 0.907841i
\(92\) 0 0
\(93\) −15.0000 −1.55543
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.00000 0.507673 0.253837 0.967247i \(-0.418307\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) − 3.46410i − 0.341328i −0.985329 0.170664i \(-0.945409\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) 17.3205i 1.64399i
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −15.0000 −1.38675
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 10.3923i 0.922168i 0.887357 + 0.461084i \(0.152539\pi\)
−0.887357 + 0.461084i \(0.847461\pi\)
\(128\) 0 0
\(129\) −21.0000 −1.84895
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 15.0000 1.30066
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) − 17.3205i − 1.46911i −0.678551 0.734553i \(-0.737392\pi\)
0.678551 0.734553i \(-0.262608\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 6.92820i 0.571429i
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 8.66025i 0.704761i 0.935857 + 0.352381i \(0.114628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 25.0000 1.99522 0.997609 0.0691164i \(-0.0220180\pi\)
0.997609 + 0.0691164i \(0.0220180\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.19615i 0.406994i 0.979076 + 0.203497i \(0.0652307\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) − 25.9808i − 1.98680i
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 7.00000 0.520306 0.260153 0.965567i \(-0.416227\pi\)
0.260153 + 0.965567i \(0.416227\pi\)
\(182\) 0 0
\(183\) − 22.5167i − 1.66448i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −9.00000 −0.654654
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 25.0000 1.79954 0.899770 0.436365i \(-0.143734\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) − 25.9808i − 1.84173i −0.389885 0.920864i \(-0.627485\pi\)
0.389885 0.920864i \(-0.372515\pi\)
\(200\) 0 0
\(201\) 27.0000 1.90443
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 25.9808i − 1.78859i −0.447478 0.894295i \(-0.647678\pi\)
0.447478 0.894295i \(-0.352322\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 15.0000 1.01827
\(218\) 0 0
\(219\) − 17.3205i − 1.17041i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 29.4449i − 1.97177i −0.167412 0.985887i \(-0.553541\pi\)
0.167412 0.985887i \(-0.446459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.0000 −1.91637 −0.958187 0.286143i \(-0.907627\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −30.0000 −1.94871
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −17.0000 −1.09507 −0.547533 0.836784i \(-0.684433\pi\)
−0.547533 + 0.836784i \(0.684433\pi\)
\(242\) 0 0
\(243\) 15.5885i 1.00000i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 43.3013i 2.75519i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) − 17.3205i − 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 17.3205i 1.05215i 0.850439 + 0.526073i \(0.176336\pi\)
−0.850439 + 0.526073i \(0.823664\pi\)
\(272\) 0 0
\(273\) 15.0000 0.907841
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.00000 0.300421 0.150210 0.988654i \(-0.452005\pi\)
0.150210 + 0.988654i \(0.452005\pi\)
\(278\) 0 0
\(279\) − 25.9808i − 1.55543i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 22.5167i − 1.33848i −0.743048 0.669238i \(-0.766621\pi\)
0.743048 0.669238i \(-0.233379\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 8.66025i 0.507673i
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 21.0000 1.21042
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 1.73205i − 0.0988534i −0.998778 0.0494267i \(-0.984261\pi\)
0.998778 0.0494267i \(-0.0157394\pi\)
\(308\) 0 0
\(309\) 6.00000 0.341328
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −35.0000 −1.97832 −0.989158 0.146852i \(-0.953086\pi\)
−0.989158 + 0.146852i \(0.953086\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 32.9090i 1.81987i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 17.3205i − 0.952021i −0.879440 0.476011i \(-0.842082\pi\)
0.879440 0.476011i \(-0.157918\pi\)
\(332\) 0 0
\(333\) −30.0000 −1.64399
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 19.0526i − 1.02874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) − 25.9808i − 1.38675i
\(352\) 0 0
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −56.0000 −2.94737
\(362\) 0 0
\(363\) − 19.0526i − 1.00000i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 15.5885i − 0.813711i −0.913493 0.406855i \(-0.866625\pi\)
0.913493 0.406855i \(-0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 25.0000 1.29445 0.647225 0.762299i \(-0.275929\pi\)
0.647225 + 0.762299i \(0.275929\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) − 25.9808i − 1.33454i −0.744815 0.667271i \(-0.767462\pi\)
0.744815 0.667271i \(-0.232538\pi\)
\(380\) 0 0
\(381\) −18.0000 −0.922168
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 36.3731i − 1.84895i
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −35.0000 −1.75660 −0.878300 0.478110i \(-0.841322\pi\)
−0.878300 + 0.478110i \(0.841322\pi\)
\(398\) 0 0
\(399\) 25.9808i 1.30066i
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 43.3013i 2.15699i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 30.0000 1.46911
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 22.5167i 1.08966i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −35.0000 −1.68199 −0.840996 0.541041i \(-0.818030\pi\)
−0.840996 + 0.541041i \(0.818030\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 8.66025i 0.413331i 0.978412 + 0.206666i \(0.0662612\pi\)
−0.978412 + 0.206666i \(0.933739\pi\)
\(440\) 0 0
\(441\) −12.0000 −0.571429
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −15.0000 −0.704761
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 38.1051i 1.77090i 0.464739 + 0.885448i \(0.346148\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) −27.0000 −1.24674
\(470\) 0 0
\(471\) 43.3013i 1.99522i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 50.0000 2.27980
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 36.3731i − 1.64822i −0.566429 0.824110i \(-0.691675\pi\)
0.566429 0.824110i \(-0.308325\pi\)
\(488\) 0 0
\(489\) −9.00000 −0.406994
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 43.3013i 1.93843i 0.246214 + 0.969216i \(0.420813\pi\)
−0.246214 + 0.969216i \(0.579187\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 20.7846i 0.923077i
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 17.3205i 0.766214i
\(512\) 0 0
\(513\) 45.0000 1.98680
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) − 29.4449i − 1.28753i −0.765222 0.643767i \(-0.777371\pi\)
0.765222 0.643767i \(-0.222629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) 12.1244i 0.520306i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 24.2487i − 1.03680i −0.855138 0.518400i \(-0.826528\pi\)
0.855138 0.518400i \(-0.173472\pi\)
\(548\) 0 0
\(549\) 39.0000 1.66448
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 30.0000 1.27573
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 60.6218i 2.56403i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) − 15.5885i − 0.654654i
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 8.66025i 0.362420i 0.983444 + 0.181210i \(0.0580014\pi\)
−0.983444 + 0.181210i \(0.941999\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −35.0000 −1.45707 −0.728535 0.685009i \(-0.759798\pi\)
−0.728535 + 0.685009i \(0.759798\pi\)
\(578\) 0 0
\(579\) 43.3013i 1.79954i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −75.0000 −3.09032
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 45.0000 1.84173
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 23.0000 0.938190 0.469095 0.883148i \(-0.344580\pi\)
0.469095 + 0.883148i \(0.344580\pi\)
\(602\) 0 0
\(603\) 46.7654i 1.90443i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 45.0333i − 1.82785i −0.405887 0.913923i \(-0.633038\pi\)
0.405887 0.913923i \(-0.366962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0000 0.403896 0.201948 0.979396i \(-0.435273\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 8.66025i 0.348085i 0.984738 + 0.174042i \(0.0556830\pi\)
−0.984738 + 0.174042i \(0.944317\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 25.9808i − 1.03428i −0.855901 0.517139i \(-0.826997\pi\)
0.855901 0.517139i \(-0.173003\pi\)
\(632\) 0 0
\(633\) 45.0000 1.78859
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 20.0000 0.792429
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 31.1769i 1.22950i 0.788723 + 0.614749i \(0.210743\pi\)
−0.788723 + 0.614749i \(0.789257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 25.9808i 1.01827i
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 30.0000 1.17041
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 38.0000 1.47803 0.739014 0.673690i \(-0.235292\pi\)
0.739014 + 0.673690i \(0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 51.0000 1.97177
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −50.0000 −1.92736 −0.963679 0.267063i \(-0.913947\pi\)
−0.963679 + 0.267063i \(0.913947\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) − 8.66025i − 0.332350i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 50.2295i − 1.91637i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 51.9615i 1.97671i 0.152167 + 0.988355i \(0.451375\pi\)
−0.152167 + 0.988355i \(0.548625\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 86.6025i 3.26628i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 31.0000 1.16423 0.582115 0.813107i \(-0.302225\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(710\) 0 0
\(711\) − 51.9615i − 1.94871i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −6.00000 −0.223452
\(722\) 0 0
\(723\) − 29.4449i − 1.09507i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 53.6936i 1.99138i 0.0927199 + 0.995692i \(0.470444\pi\)
−0.0927199 + 0.995692i \(0.529556\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 50.0000 1.84679 0.923396 0.383849i \(-0.125402\pi\)
0.923396 + 0.383849i \(0.125402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 51.9615i 1.91144i 0.294285 + 0.955718i \(0.404919\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) 0 0
\(741\) −75.0000 −2.75519
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.3205i 0.632034i 0.948753 + 0.316017i \(0.102346\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −55.0000 −1.99901 −0.999505 0.0314762i \(-0.989979\pi\)
−0.999505 + 0.0314762i \(0.989979\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) − 32.9090i − 1.19138i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −49.0000 −1.76699 −0.883493 0.468445i \(-0.844814\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 30.0000 1.07624
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 50.2295i − 1.79049i −0.445577 0.895244i \(-0.647001\pi\)
0.445577 0.895244i \(-0.352999\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −65.0000 −2.30822
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 0 0
\(811\) 43.3013i 1.52051i 0.649623 + 0.760257i \(0.274927\pi\)
−0.649623 + 0.760257i \(0.725073\pi\)
\(812\) 0 0
\(813\) −30.0000 −1.05215
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −105.000 −3.67348
\(818\) 0 0
\(819\) 25.9808i 0.907841i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) − 57.1577i − 1.99239i −0.0871445 0.996196i \(-0.527774\pi\)
0.0871445 0.996196i \(-0.472226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) 8.66025i 0.300421i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 45.0000 1.55543
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 19.0526i 0.654654i
\(848\) 0 0
\(849\) 39.0000 1.33848
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −35.0000 −1.19838 −0.599189 0.800608i \(-0.704510\pi\)
−0.599189 + 0.800608i \(0.704510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) − 17.3205i − 0.590968i −0.955348 0.295484i \(-0.904519\pi\)
0.955348 0.295484i \(-0.0954809\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 29.4449i 1.00000i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) − 77.9423i − 2.64097i
\(872\) 0 0
\(873\) −15.0000 −0.507673
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.0000 0.844190 0.422095 0.906552i \(-0.361295\pi\)
0.422095 + 0.906552i \(0.361295\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) − 22.5167i − 0.757746i −0.925449 0.378873i \(-0.876312\pi\)
0.925449 0.378873i \(-0.123688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 36.3731i 1.21042i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 45.0333i 1.49531i 0.664089 + 0.747653i \(0.268820\pi\)
−0.664089 + 0.747653i \(0.731180\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) − 60.6218i − 1.99973i −0.0164935 0.999864i \(-0.505250\pi\)
0.0164935 0.999864i \(-0.494750\pi\)
\(920\) 0 0
\(921\) 3.00000 0.0988534
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 10.3923i 0.341328i
\(928\) 0 0
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 34.6410i 1.13531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −35.0000 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(938\) 0 0
\(939\) − 60.6218i − 1.97832i
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) −50.0000 −1.62307
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −44.0000 −1.41935
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 58.8897i − 1.89377i −0.321578 0.946883i \(-0.604213\pi\)
0.321578 0.946883i \(-0.395787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −30.0000 −0.961756
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −57.0000 −1.81987
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) − 60.6218i − 1.92571i −0.270011 0.962857i \(-0.587027\pi\)
0.270011 0.962857i \(-0.412973\pi\)
\(992\) 0 0
\(993\) 30.0000 0.952021
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) 0 0
\(999\) − 51.9615i − 1.64399i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.2.h.f.1151.2 yes 2
3.2 odd 2 CM 1200.2.h.f.1151.2 yes 2
4.3 odd 2 inner 1200.2.h.f.1151.1 yes 2
5.2 odd 4 1200.2.o.h.1199.3 4
5.3 odd 4 1200.2.o.h.1199.2 4
5.4 even 2 1200.2.h.d.1151.1 2
12.11 even 2 inner 1200.2.h.f.1151.1 yes 2
15.2 even 4 1200.2.o.h.1199.3 4
15.8 even 4 1200.2.o.h.1199.2 4
15.14 odd 2 1200.2.h.d.1151.1 2
20.3 even 4 1200.2.o.h.1199.4 4
20.7 even 4 1200.2.o.h.1199.1 4
20.19 odd 2 1200.2.h.d.1151.2 yes 2
60.23 odd 4 1200.2.o.h.1199.4 4
60.47 odd 4 1200.2.o.h.1199.1 4
60.59 even 2 1200.2.h.d.1151.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1200.2.h.d.1151.1 2 5.4 even 2
1200.2.h.d.1151.1 2 15.14 odd 2
1200.2.h.d.1151.2 yes 2 20.19 odd 2
1200.2.h.d.1151.2 yes 2 60.59 even 2
1200.2.h.f.1151.1 yes 2 4.3 odd 2 inner
1200.2.h.f.1151.1 yes 2 12.11 even 2 inner
1200.2.h.f.1151.2 yes 2 1.1 even 1 trivial
1200.2.h.f.1151.2 yes 2 3.2 odd 2 CM
1200.2.o.h.1199.1 4 20.7 even 4
1200.2.o.h.1199.1 4 60.47 odd 4
1200.2.o.h.1199.2 4 5.3 odd 4
1200.2.o.h.1199.2 4 15.8 even 4
1200.2.o.h.1199.3 4 5.2 odd 4
1200.2.o.h.1199.3 4 15.2 even 4
1200.2.o.h.1199.4 4 20.3 even 4
1200.2.o.h.1199.4 4 60.23 odd 4