Properties

Label 1200.2.f.d.49.1
Level $1200$
Weight $2$
Character 1200.49
Analytic conductor $9.582$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1200.49
Dual form 1200.2.f.d.49.2

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000i q^{3} +3.00000i q^{7} -1.00000 q^{9} +O(q^{10})\) \(q-1.00000i q^{3} +3.00000i q^{7} -1.00000 q^{9} -2.00000 q^{11} -1.00000i q^{13} +2.00000i q^{17} -5.00000 q^{19} +3.00000 q^{21} +6.00000i q^{23} +1.00000i q^{27} -10.0000 q^{29} +3.00000 q^{31} +2.00000i q^{33} +2.00000i q^{37} -1.00000 q^{39} -8.00000 q^{41} +1.00000i q^{43} -2.00000i q^{47} -2.00000 q^{49} +2.00000 q^{51} +4.00000i q^{53} +5.00000i q^{57} -10.0000 q^{59} +7.00000 q^{61} -3.00000i q^{63} +3.00000i q^{67} +6.00000 q^{69} +8.00000 q^{71} +14.0000i q^{73} -6.00000i q^{77} +1.00000 q^{81} +6.00000i q^{83} +10.0000i q^{87} +3.00000 q^{91} -3.00000i q^{93} +17.0000i q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{9} - 4q^{11} - 10q^{19} + 6q^{21} - 20q^{29} + 6q^{31} - 2q^{39} - 16q^{41} - 4q^{49} + 4q^{51} - 20q^{59} + 14q^{61} + 12q^{69} + 16q^{71} + 2q^{81} + 6q^{91} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times\).

\(n\) \(401\) \(577\) \(751\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.00000i − 0.577350i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.00000i 1.13389i 0.823754 + 0.566947i \(0.191875\pi\)
−0.823754 + 0.566947i \(0.808125\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i −0.990338 0.138675i \(-0.955716\pi\)
0.990338 0.138675i \(-0.0442844\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 3.00000 0.654654
\(22\) 0 0
\(23\) 6.00000i 1.25109i 0.780189 + 0.625543i \(0.215123\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −8.00000 −1.24939 −0.624695 0.780869i \(-0.714777\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 2.00000i − 0.291730i −0.989305 0.145865i \(-0.953403\pi\)
0.989305 0.145865i \(-0.0465965\pi\)
\(48\) 0 0
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) 4.00000i 0.549442i 0.961524 + 0.274721i \(0.0885855\pi\)
−0.961524 + 0.274721i \(0.911414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.00000i 0.662266i
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 0 0
\(63\) − 3.00000i − 0.377964i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.00000i 0.366508i 0.983066 + 0.183254i \(0.0586631\pi\)
−0.983066 + 0.183254i \(0.941337\pi\)
\(68\) 0 0
\(69\) 6.00000 0.722315
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 14.0000i 1.63858i 0.573382 + 0.819288i \(0.305631\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.00000i − 0.683763i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 10.0000i 1.07211i
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) − 3.00000i − 0.311086i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.0000i 1.72609i 0.505128 + 0.863044i \(0.331445\pi\)
−0.505128 + 0.863044i \(0.668555\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 2.00000 0.189832
\(112\) 0 0
\(113\) 4.00000i 0.376288i 0.982141 + 0.188144i \(0.0602472\pi\)
−0.982141 + 0.188144i \(0.939753\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 8.00000i 0.721336i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.00000i 0.709885i 0.934888 + 0.354943i \(0.115500\pi\)
−0.934888 + 0.354943i \(0.884500\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) − 15.0000i − 1.30066i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) 20.0000 1.69638 0.848189 0.529694i \(-0.177693\pi\)
0.848189 + 0.529694i \(0.177693\pi\)
\(140\) 0 0
\(141\) −2.00000 −0.168430
\(142\) 0 0
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000i 0.164957i
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −7.00000 −0.569652 −0.284826 0.958579i \(-0.591936\pi\)
−0.284826 + 0.958579i \(0.591936\pi\)
\(152\) 0 0
\(153\) − 2.00000i − 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 13.0000i − 1.03751i −0.854922 0.518756i \(-0.826395\pi\)
0.854922 0.518756i \(-0.173605\pi\)
\(158\) 0 0
\(159\) 4.00000 0.317221
\(160\) 0 0
\(161\) −18.0000 −1.41860
\(162\) 0 0
\(163\) 11.0000i 0.861586i 0.902451 + 0.430793i \(0.141766\pi\)
−0.902451 + 0.430793i \(0.858234\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 12.0000i − 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 5.00000 0.382360
\(172\) 0 0
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 10.0000i 0.751646i
\(178\) 0 0
\(179\) −10.0000 −0.747435 −0.373718 0.927543i \(-0.621917\pi\)
−0.373718 + 0.927543i \(0.621917\pi\)
\(180\) 0 0
\(181\) 17.0000 1.26360 0.631800 0.775131i \(-0.282316\pi\)
0.631800 + 0.775131i \(0.282316\pi\)
\(182\) 0 0
\(183\) − 7.00000i − 0.517455i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 4.00000i − 0.292509i
\(188\) 0 0
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) −22.0000 −1.59186 −0.795932 0.605386i \(-0.793019\pi\)
−0.795932 + 0.605386i \(0.793019\pi\)
\(192\) 0 0
\(193\) − 11.0000i − 0.791797i −0.918294 0.395899i \(-0.870433\pi\)
0.918294 0.395899i \(-0.129567\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 18.0000i − 1.28245i −0.767354 0.641223i \(-0.778427\pi\)
0.767354 0.641223i \(-0.221573\pi\)
\(198\) 0 0
\(199\) −5.00000 −0.354441 −0.177220 0.984171i \(-0.556711\pi\)
−0.177220 + 0.984171i \(0.556711\pi\)
\(200\) 0 0
\(201\) 3.00000 0.211604
\(202\) 0 0
\(203\) − 30.0000i − 2.10559i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 6.00000i − 0.417029i
\(208\) 0 0
\(209\) 10.0000 0.691714
\(210\) 0 0
\(211\) 13.0000 0.894957 0.447478 0.894295i \(-0.352322\pi\)
0.447478 + 0.894295i \(0.352322\pi\)
\(212\) 0 0
\(213\) − 8.00000i − 0.548151i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.00000i 0.610960i
\(218\) 0 0
\(219\) 14.0000 0.946032
\(220\) 0 0
\(221\) 2.00000 0.134535
\(222\) 0 0
\(223\) − 19.0000i − 1.27233i −0.771551 0.636167i \(-0.780519\pi\)
0.771551 0.636167i \(-0.219481\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.00000i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914466\pi\)
\(228\) 0 0
\(229\) 15.0000 0.991228 0.495614 0.868543i \(-0.334943\pi\)
0.495614 + 0.868543i \(0.334943\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) 24.0000i 1.57229i 0.618041 + 0.786146i \(0.287927\pi\)
−0.618041 + 0.786146i \(0.712073\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) 0 0
\(243\) − 1.00000i − 0.0641500i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.00000i 0.318142i
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) − 12.0000i − 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.0000i 0.748539i 0.927320 + 0.374270i \(0.122107\pi\)
−0.927320 + 0.374270i \(0.877893\pi\)
\(258\) 0 0
\(259\) −6.00000 −0.372822
\(260\) 0 0
\(261\) 10.0000 0.618984
\(262\) 0 0
\(263\) 16.0000i 0.986602i 0.869859 + 0.493301i \(0.164210\pi\)
−0.869859 + 0.493301i \(0.835790\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) − 3.00000i − 0.181568i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 3.00000i − 0.180253i −0.995930 0.0901263i \(-0.971273\pi\)
0.995930 0.0901263i \(-0.0287271\pi\)
\(278\) 0 0
\(279\) −3.00000 −0.179605
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) − 9.00000i − 0.534994i −0.963559 0.267497i \(-0.913803\pi\)
0.963559 0.267497i \(-0.0861966\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 24.0000i − 1.41668i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 17.0000 0.996558
\(292\) 0 0
\(293\) − 6.00000i − 0.350524i −0.984522 0.175262i \(-0.943923\pi\)
0.984522 0.175262i \(-0.0560772\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 2.00000i − 0.116052i
\(298\) 0 0
\(299\) 6.00000 0.346989
\(300\) 0 0
\(301\) −3.00000 −0.172917
\(302\) 0 0
\(303\) − 12.0000i − 0.689382i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 7.00000i − 0.399511i −0.979846 0.199756i \(-0.935985\pi\)
0.979846 0.199756i \(-0.0640148\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) − 11.0000i − 0.621757i −0.950450 0.310878i \(-0.899377\pi\)
0.950450 0.310878i \(-0.100623\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 8.00000i − 0.449325i −0.974437 0.224662i \(-0.927872\pi\)
0.974437 0.224662i \(-0.0721279\pi\)
\(318\) 0 0
\(319\) 20.0000 1.11979
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) − 10.0000i − 0.556415i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 5.00000i 0.276501i
\(328\) 0 0
\(329\) 6.00000 0.330791
\(330\) 0 0
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 0 0
\(333\) − 2.00000i − 0.109599i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) − 23.0000i − 1.25289i −0.779466 0.626445i \(-0.784509\pi\)
0.779466 0.626445i \(-0.215491\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) −6.00000 −0.324918
\(342\) 0 0
\(343\) 15.0000i 0.809924i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 2.00000i − 0.107366i −0.998558 0.0536828i \(-0.982904\pi\)
0.998558 0.0536828i \(-0.0170960\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) − 6.00000i − 0.319348i −0.987170 0.159674i \(-0.948956\pi\)
0.987170 0.159674i \(-0.0510443\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.00000i 0.317554i
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 27.0000i − 1.40939i −0.709511 0.704694i \(-0.751084\pi\)
0.709511 0.704694i \(-0.248916\pi\)
\(368\) 0 0
\(369\) 8.00000 0.416463
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 29.0000i 1.50156i 0.660551 + 0.750782i \(0.270323\pi\)
−0.660551 + 0.750782i \(0.729677\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.0000i 0.515026i
\(378\) 0 0
\(379\) 25.0000 1.28416 0.642082 0.766636i \(-0.278071\pi\)
0.642082 + 0.766636i \(0.278071\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 36.0000i 1.83951i 0.392488 + 0.919757i \(0.371614\pi\)
−0.392488 + 0.919757i \(0.628386\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.00000i − 0.0508329i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 12.0000i 0.605320i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.00000i 0.351320i 0.984451 + 0.175660i \(0.0562059\pi\)
−0.984451 + 0.175660i \(0.943794\pi\)
\(398\) 0 0
\(399\) −15.0000 −0.750939
\(400\) 0 0
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) − 3.00000i − 0.149441i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.00000i − 0.198273i
\(408\) 0 0
\(409\) −5.00000 −0.247234 −0.123617 0.992330i \(-0.539449\pi\)
−0.123617 + 0.992330i \(0.539449\pi\)
\(410\) 0 0
\(411\) −18.0000 −0.887875
\(412\) 0 0
\(413\) − 30.0000i − 1.47620i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) − 20.0000i − 0.979404i
\(418\) 0 0
\(419\) −20.0000 −0.977064 −0.488532 0.872546i \(-0.662467\pi\)
−0.488532 + 0.872546i \(0.662467\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 2.00000i 0.0972433i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 21.0000i 1.01626i
\(428\) 0 0
\(429\) 2.00000 0.0965609
\(430\) 0 0
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 0 0
\(433\) 29.0000i 1.39365i 0.717241 + 0.696826i \(0.245405\pi\)
−0.717241 + 0.696826i \(0.754595\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 30.0000i − 1.43509i
\(438\) 0 0
\(439\) −35.0000 −1.67046 −0.835229 0.549902i \(-0.814665\pi\)
−0.835229 + 0.549902i \(0.814665\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) − 24.0000i − 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 10.0000i 0.472984i
\(448\) 0 0
\(449\) −20.0000 −0.943858 −0.471929 0.881636i \(-0.656442\pi\)
−0.471929 + 0.881636i \(0.656442\pi\)
\(450\) 0 0
\(451\) 16.0000 0.753411
\(452\) 0 0
\(453\) 7.00000i 0.328889i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000i 1.02912i 0.857455 + 0.514558i \(0.172044\pi\)
−0.857455 + 0.514558i \(0.827956\pi\)
\(458\) 0 0
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 38.0000i 1.75843i 0.476425 + 0.879215i \(0.341932\pi\)
−0.476425 + 0.879215i \(0.658068\pi\)
\(468\) 0 0
\(469\) −9.00000 −0.415581
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) 0 0
\(473\) − 2.00000i − 0.0919601i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 4.00000i − 0.183147i
\(478\) 0 0
\(479\) 30.0000 1.37073 0.685367 0.728197i \(-0.259642\pi\)
0.685367 + 0.728197i \(0.259642\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 18.0000i 0.819028i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 13.0000i 0.589086i 0.955638 + 0.294543i \(0.0951675\pi\)
−0.955638 + 0.294543i \(0.904833\pi\)
\(488\) 0 0
\(489\) 11.0000 0.497437
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) − 20.0000i − 0.900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 24.0000i 1.07655i
\(498\) 0 0
\(499\) −5.00000 −0.223831 −0.111915 0.993718i \(-0.535699\pi\)
−0.111915 + 0.993718i \(0.535699\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 16.0000i 0.713405i 0.934218 + 0.356702i \(0.116099\pi\)
−0.934218 + 0.356702i \(0.883901\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 12.0000i − 0.532939i
\(508\) 0 0
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) 0 0
\(511\) −42.0000 −1.85797
\(512\) 0 0
\(513\) − 5.00000i − 0.220755i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 4.00000i 0.175920i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 31.0000i 1.35554i 0.735276 + 0.677768i \(0.237052\pi\)
−0.735276 + 0.677768i \(0.762948\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6.00000i 0.261364i
\(528\) 0 0
\(529\) −13.0000 −0.565217
\(530\) 0 0
\(531\) 10.0000 0.433963
\(532\) 0 0
\(533\) 8.00000i 0.346518i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 10.0000i 0.431532i
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) −3.00000 −0.128980 −0.0644900 0.997918i \(-0.520542\pi\)
−0.0644900 + 0.997918i \(0.520542\pi\)
\(542\) 0 0
\(543\) − 17.0000i − 0.729540i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.00000i 0.342055i 0.985266 + 0.171028i \(0.0547087\pi\)
−0.985266 + 0.171028i \(0.945291\pi\)
\(548\) 0 0
\(549\) −7.00000 −0.298753
\(550\) 0 0
\(551\) 50.0000 2.13007
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.0000i 1.77960i 0.456354 + 0.889799i \(0.349155\pi\)
−0.456354 + 0.889799i \(0.650845\pi\)
\(558\) 0 0
\(559\) 1.00000 0.0422955
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 6.00000i 0.252870i 0.991975 + 0.126435i \(0.0403535\pi\)
−0.991975 + 0.126435i \(0.959647\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.00000i 0.125988i
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 13.0000 0.544033 0.272017 0.962293i \(-0.412309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(572\) 0 0
\(573\) 22.0000i 0.919063i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 13.0000i − 0.541197i −0.962692 0.270599i \(-0.912778\pi\)
0.962692 0.270599i \(-0.0872216\pi\)
\(578\) 0 0
\(579\) −11.0000 −0.457144
\(580\) 0 0
\(581\) −18.0000 −0.746766
\(582\) 0 0
\(583\) − 8.00000i − 0.331326i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 12.0000i − 0.495293i −0.968850 0.247647i \(-0.920343\pi\)
0.968850 0.247647i \(-0.0796572\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) 0 0
\(593\) − 16.0000i − 0.657041i −0.944497 0.328521i \(-0.893450\pi\)
0.944497 0.328521i \(-0.106550\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.00000i 0.204636i
\(598\) 0 0
\(599\) −20.0000 −0.817178 −0.408589 0.912719i \(-0.633979\pi\)
−0.408589 + 0.912719i \(0.633979\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 0 0
\(603\) − 3.00000i − 0.122169i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) 0 0
\(609\) −30.0000 −1.21566
\(610\) 0 0
\(611\) −2.00000 −0.0809113
\(612\) 0 0
\(613\) 14.0000i 0.565455i 0.959200 + 0.282727i \(0.0912392\pi\)
−0.959200 + 0.282727i \(0.908761\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000i 0.483102i 0.970388 + 0.241551i \(0.0776561\pi\)
−0.970388 + 0.241551i \(0.922344\pi\)
\(618\) 0 0
\(619\) −25.0000 −1.00483 −0.502417 0.864625i \(-0.667556\pi\)
−0.502417 + 0.864625i \(0.667556\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 10.0000i − 0.399362i
\(628\) 0 0
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 23.0000 0.915616 0.457808 0.889051i \(-0.348635\pi\)
0.457808 + 0.889051i \(0.348635\pi\)
\(632\) 0 0
\(633\) − 13.0000i − 0.516704i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) 0 0
\(641\) 12.0000 0.473972 0.236986 0.971513i \(-0.423841\pi\)
0.236986 + 0.971513i \(0.423841\pi\)
\(642\) 0 0
\(643\) 36.0000i 1.41970i 0.704352 + 0.709851i \(0.251238\pi\)
−0.704352 + 0.709851i \(0.748762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 28.0000i 1.10079i 0.834903 + 0.550397i \(0.185524\pi\)
−0.834903 + 0.550397i \(0.814476\pi\)
\(648\) 0 0
\(649\) 20.0000 0.785069
\(650\) 0 0
\(651\) 9.00000 0.352738
\(652\) 0 0
\(653\) 14.0000i 0.547862i 0.961749 + 0.273931i \(0.0883240\pi\)
−0.961749 + 0.273931i \(0.911676\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 14.0000i − 0.546192i
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) − 2.00000i − 0.0776736i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 60.0000i − 2.32321i
\(668\) 0 0
\(669\) −19.0000 −0.734582
\(670\) 0 0
\(671\) −14.0000 −0.540464
\(672\) 0 0
\(673\) − 6.00000i − 0.231283i −0.993291 0.115642i \(-0.963108\pi\)
0.993291 0.115642i \(-0.0368924\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 42.0000i 1.61419i 0.590421 + 0.807096i \(0.298962\pi\)
−0.590421 + 0.807096i \(0.701038\pi\)
\(678\) 0 0
\(679\) −51.0000 −1.95720
\(680\) 0 0
\(681\) 8.00000 0.306561
\(682\) 0 0
\(683\) − 24.0000i − 0.918334i −0.888350 0.459167i \(-0.848148\pi\)
0.888350 0.459167i \(-0.151852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 15.0000i − 0.572286i
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 16.0000i − 0.606043i
\(698\) 0 0
\(699\) 24.0000 0.907763
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) − 10.0000i − 0.377157i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 36.0000i 1.35392i
\(708\) 0 0
\(709\) −25.0000 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000i 0.674105i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 20.0000i − 0.746914i
\(718\) 0 0
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 23.0000i 0.855379i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 43.0000i 1.59478i 0.603463 + 0.797391i \(0.293787\pi\)
−0.603463 + 0.797391i \(0.706213\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) 34.0000i 1.25582i 0.778287 + 0.627909i \(0.216089\pi\)
−0.778287 + 0.627909i \(0.783911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 6.00000i − 0.221013i
\(738\) 0 0
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) 5.00000 0.183680
\(742\) 0 0
\(743\) − 4.00000i − 0.146746i −0.997305 0.0733729i \(-0.976624\pi\)
0.997305 0.0733729i \(-0.0233763\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 6.00000i − 0.219529i
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) 0 0
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 23.0000i − 0.835949i −0.908459 0.417975i \(-0.862740\pi\)
0.908459 0.417975i \(-0.137260\pi\)
\(758\) 0 0
\(759\) −12.0000 −0.435572
\(760\) 0 0
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 0 0
\(763\) − 15.0000i − 0.543036i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0000i 0.361079i
\(768\) 0 0
\(769\) −35.0000 −1.26213 −0.631066 0.775729i \(-0.717382\pi\)
−0.631066 + 0.775729i \(0.717382\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) 24.0000i 0.863220i 0.902060 + 0.431610i \(0.142054\pi\)
−0.902060 + 0.431610i \(0.857946\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 6.00000i 0.215249i
\(778\) 0 0
\(779\) 40.0000 1.43315
\(780\) 0 0
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) − 10.0000i − 0.357371i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) − 7.00000i − 0.249523i −0.992187 0.124762i \(-0.960183\pi\)
0.992187 0.124762i \(-0.0398166\pi\)
\(788\) 0 0
\(789\) 16.0000 0.569615
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) − 7.00000i − 0.248577i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 52.0000i 1.84193i 0.389640 + 0.920967i \(0.372599\pi\)
−0.389640 + 0.920967i \(0.627401\pi\)
\(798\) 0 0
\(799\) 4.00000 0.141510
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 28.0000i − 0.988099i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 10.0000i − 0.352017i
\(808\) 0 0
\(809\) 20.0000 0.703163 0.351581 0.936157i \(-0.385644\pi\)
0.351581 + 0.936157i \(0.385644\pi\)
\(810\) 0 0
\(811\) −27.0000 −0.948098 −0.474049 0.880498i \(-0.657208\pi\)
−0.474049 + 0.880498i \(0.657208\pi\)
\(812\) 0 0
\(813\) − 8.00000i − 0.280572i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 5.00000i − 0.174928i
\(818\) 0 0
\(819\) −3.00000 −0.104828
\(820\) 0 0
\(821\) −18.0000 −0.628204 −0.314102 0.949389i \(-0.601703\pi\)
−0.314102 + 0.949389i \(0.601703\pi\)
\(822\) 0 0
\(823\) 41.0000i 1.42917i 0.699549 + 0.714585i \(0.253384\pi\)
−0.699549 + 0.714585i \(0.746616\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 28.0000i 0.973655i 0.873498 + 0.486828i \(0.161846\pi\)
−0.873498 + 0.486828i \(0.838154\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) −3.00000 −0.104069
\(832\) 0 0
\(833\) − 4.00000i − 0.138592i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 3.00000i 0.103695i
\(838\) 0 0
\(839\) 10.0000 0.345238 0.172619 0.984989i \(-0.444777\pi\)
0.172619 + 0.984989i \(0.444777\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) 0 0
\(843\) 18.0000i 0.619953i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 21.0000i − 0.721569i
\(848\) 0 0
\(849\) −9.00000 −0.308879
\(850\) 0 0
\(851\) −12.0000 −0.411355
\(852\) 0 0
\(853\) − 51.0000i − 1.74621i −0.487535 0.873103i \(-0.662104\pi\)
0.487535 0.873103i \(-0.337896\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 28.0000i − 0.956462i −0.878234 0.478231i \(-0.841278\pi\)
0.878234 0.478231i \(-0.158722\pi\)
\(858\) 0 0
\(859\) 40.0000 1.36478 0.682391 0.730987i \(-0.260940\pi\)
0.682391 + 0.730987i \(0.260940\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 16.0000i 0.544646i 0.962206 + 0.272323i \(0.0877920\pi\)
−0.962206 + 0.272323i \(0.912208\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 13.0000i − 0.441503i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 3.00000 0.101651
\(872\) 0 0
\(873\) − 17.0000i − 0.575363i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 27.0000i 0.911725i 0.890050 + 0.455863i \(0.150669\pi\)
−0.890050 + 0.455863i \(0.849331\pi\)
\(878\) 0 0
\(879\) −6.00000 −0.202375
\(880\) 0 0
\(881\) 32.0000 1.07811 0.539054 0.842271i \(-0.318782\pi\)
0.539054 + 0.842271i \(0.318782\pi\)
\(882\) 0 0
\(883\) 41.0000i 1.37976i 0.723924 + 0.689880i \(0.242337\pi\)
−0.723924 + 0.689880i \(0.757663\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.0000i 0.604381i 0.953248 + 0.302190i \(0.0977178\pi\)
−0.953248 + 0.302190i \(0.902282\pi\)
\(888\) 0 0
\(889\) −24.0000 −0.804934
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 10.0000i 0.334637i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 6.00000i − 0.200334i
\(898\) 0 0
\(899\) −30.0000 −1.00056
\(900\) 0 0
\(901\) −8.00000 −0.266519
\(902\) 0 0
\(903\) 3.00000i 0.0998337i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 12.0000i − 0.398453i −0.979953 0.199227i \(-0.936157\pi\)
0.979953 0.199227i \(-0.0638430\pi\)
\(908\) 0 0
\(909\) −12.0000 −0.398015
\(910\) 0 0
\(911\) 58.0000 1.92163 0.960813 0.277198i \(-0.0894057\pi\)
0.960813 + 0.277198i \(0.0894057\pi\)
\(912\) 0 0
\(913\) − 12.0000i − 0.397142i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 36.0000i − 1.18882i
\(918\) 0 0
\(919\) 55.0000 1.81428 0.907141 0.420826i \(-0.138260\pi\)
0.907141 + 0.420826i \(0.138260\pi\)
\(920\) 0 0
\(921\) −7.00000 −0.230658
\(922\) 0 0
\(923\) − 8.00000i − 0.263323i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 4.00000i 0.131377i
\(928\) 0 0
\(929\) 50.0000 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(930\) 0 0
\(931\) 10.0000 0.327737
\(932\) 0 0
\(933\) − 18.0000i − 0.589294i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 33.0000i − 1.07806i −0.842286 0.539032i \(-0.818790\pi\)
0.842286 0.539032i \(-0.181210\pi\)
\(938\) 0 0
\(939\) −11.0000 −0.358971
\(940\) 0 0
\(941\) 22.0000 0.717180 0.358590 0.933495i \(-0.383258\pi\)
0.358590 + 0.933495i \(0.383258\pi\)
\(942\) 0 0
\(943\) − 48.0000i − 1.56310i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18.0000i 0.584921i 0.956278 + 0.292461i \(0.0944741\pi\)
−0.956278 + 0.292461i \(0.905526\pi\)
\(948\) 0 0
\(949\) 14.0000 0.454459
\(950\) 0 0
\(951\) −8.00000 −0.259418
\(952\) 0 0
\(953\) − 56.0000i − 1.81402i −0.421111 0.907009i \(-0.638360\pi\)
0.421111 0.907009i \(-0.361640\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 20.0000i − 0.646508i
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 0 0
\(963\) 12.0000i 0.386695i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 32.0000i − 1.02905i −0.857475 0.514525i \(-0.827968\pi\)
0.857475 0.514525i \(-0.172032\pi\)
\(968\) 0 0
\(969\) −10.0000 −0.321246
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 0 0
\(973\) 60.0000i 1.92351i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.00000i 0.0639857i 0.999488 + 0.0319928i \(0.0101854\pi\)
−0.999488 + 0.0319928i \(0.989815\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 5.00000 0.159638
\(982\) 0 0
\(983\) 36.0000i 1.14822i 0.818778 + 0.574111i \(0.194652\pi\)
−0.818778 + 0.574111i \(0.805348\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 6.00000i − 0.190982i
\(988\) 0 0
\(989\) −6.00000 −0.190789
\(990\) 0 0
\(991\) −17.0000 −0.540023 −0.270011 0.962857i \(-0.587027\pi\)
−0.270011 + 0.962857i \(0.587027\pi\)
\(992\) 0 0
\(993\) 12.0000i 0.380808i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.0000i 1.33015i 0.746775 + 0.665077i \(0.231601\pi\)
−0.746775 + 0.665077i \(0.768399\pi\)
\(998\) 0 0
\(999\) −2.00000 −0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1200.2.f.d.49.1 2
3.2 odd 2 3600.2.f.p.2449.2 2
4.3 odd 2 75.2.b.a.49.2 2
5.2 odd 4 1200.2.a.c.1.1 1
5.3 odd 4 1200.2.a.p.1.1 1
5.4 even 2 inner 1200.2.f.d.49.2 2
8.3 odd 2 4800.2.f.l.3649.1 2
8.5 even 2 4800.2.f.y.3649.2 2
12.11 even 2 225.2.b.a.199.1 2
15.2 even 4 3600.2.a.j.1.1 1
15.8 even 4 3600.2.a.bk.1.1 1
15.14 odd 2 3600.2.f.p.2449.1 2
20.3 even 4 75.2.a.c.1.1 yes 1
20.7 even 4 75.2.a.a.1.1 1
20.19 odd 2 75.2.b.a.49.1 2
40.3 even 4 4800.2.a.bq.1.1 1
40.13 odd 4 4800.2.a.be.1.1 1
40.19 odd 2 4800.2.f.l.3649.2 2
40.27 even 4 4800.2.a.bb.1.1 1
40.29 even 2 4800.2.f.y.3649.1 2
40.37 odd 4 4800.2.a.br.1.1 1
60.23 odd 4 225.2.a.a.1.1 1
60.47 odd 4 225.2.a.e.1.1 1
60.59 even 2 225.2.b.a.199.2 2
140.27 odd 4 3675.2.a.b.1.1 1
140.83 odd 4 3675.2.a.q.1.1 1
220.43 odd 4 9075.2.a.a.1.1 1
220.87 odd 4 9075.2.a.s.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.2.a.a.1.1 1 20.7 even 4
75.2.a.c.1.1 yes 1 20.3 even 4
75.2.b.a.49.1 2 20.19 odd 2
75.2.b.a.49.2 2 4.3 odd 2
225.2.a.a.1.1 1 60.23 odd 4
225.2.a.e.1.1 1 60.47 odd 4
225.2.b.a.199.1 2 12.11 even 2
225.2.b.a.199.2 2 60.59 even 2
1200.2.a.c.1.1 1 5.2 odd 4
1200.2.a.p.1.1 1 5.3 odd 4
1200.2.f.d.49.1 2 1.1 even 1 trivial
1200.2.f.d.49.2 2 5.4 even 2 inner
3600.2.a.j.1.1 1 15.2 even 4
3600.2.a.bk.1.1 1 15.8 even 4
3600.2.f.p.2449.1 2 15.14 odd 2
3600.2.f.p.2449.2 2 3.2 odd 2
3675.2.a.b.1.1 1 140.27 odd 4
3675.2.a.q.1.1 1 140.83 odd 4
4800.2.a.bb.1.1 1 40.27 even 4
4800.2.a.be.1.1 1 40.13 odd 4
4800.2.a.bq.1.1 1 40.3 even 4
4800.2.a.br.1.1 1 40.37 odd 4
4800.2.f.l.3649.1 2 8.3 odd 2
4800.2.f.l.3649.2 2 40.19 odd 2
4800.2.f.y.3649.1 2 40.29 even 2
4800.2.f.y.3649.2 2 8.5 even 2
9075.2.a.a.1.1 1 220.43 odd 4
9075.2.a.s.1.1 1 220.87 odd 4