Properties

Label 1200.2.a.i
Level 1200
Weight 2
Character orbit 1200.a
Self dual yes
Analytic conductor 9.582
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + 5q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} + 5q^{7} + q^{9} + 6q^{11} - 3q^{13} - 2q^{17} - q^{19} - 5q^{21} + 2q^{23} - q^{27} + 6q^{29} - 3q^{31} - 6q^{33} - 6q^{37} + 3q^{39} + 4q^{41} - 11q^{43} + 10q^{47} + 18q^{49} + 2q^{51} - 8q^{53} + q^{57} + 6q^{59} + 3q^{61} + 5q^{63} + q^{67} - 2q^{69} + 12q^{71} + 10q^{73} + 30q^{77} + 8q^{79} + q^{81} + 6q^{83} - 6q^{87} - 16q^{89} - 15q^{91} + 3q^{93} - 7q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 5.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.2.a.i 1
3.b odd 2 1 3600.2.a.bq 1
4.b odd 2 1 600.2.a.f yes 1
5.b even 2 1 1200.2.a.j 1
5.c odd 4 2 1200.2.f.i 2
8.b even 2 1 4800.2.a.cs 1
8.d odd 2 1 4800.2.a.b 1
12.b even 2 1 1800.2.a.a 1
15.d odd 2 1 3600.2.a.a 1
15.e even 4 2 3600.2.f.b 2
20.d odd 2 1 600.2.a.e 1
20.e even 4 2 600.2.f.a 2
40.e odd 2 1 4800.2.a.ct 1
40.f even 2 1 4800.2.a.a 1
40.i odd 4 2 4800.2.f.a 2
40.k even 4 2 4800.2.f.bj 2
60.h even 2 1 1800.2.a.x 1
60.l odd 4 2 1800.2.f.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.a.e 1 20.d odd 2 1
600.2.a.f yes 1 4.b odd 2 1
600.2.f.a 2 20.e even 4 2
1200.2.a.i 1 1.a even 1 1 trivial
1200.2.a.j 1 5.b even 2 1
1200.2.f.i 2 5.c odd 4 2
1800.2.a.a 1 12.b even 2 1
1800.2.a.x 1 60.h even 2 1
1800.2.f.k 2 60.l odd 4 2
3600.2.a.a 1 15.d odd 2 1
3600.2.a.bq 1 3.b odd 2 1
3600.2.f.b 2 15.e even 4 2
4800.2.a.a 1 40.f even 2 1
4800.2.a.b 1 8.d odd 2 1
4800.2.a.cs 1 8.b even 2 1
4800.2.a.ct 1 40.e odd 2 1
4800.2.f.a 2 40.i odd 4 2
4800.2.f.bj 2 40.k even 4 2

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1200))\):

\( T_{7} - 5 \)
\( T_{11} - 6 \)
\( T_{13} + 3 \)

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ 1
$7$ \( 1 - 5 T + 7 T^{2} \)
$11$ \( 1 - 6 T + 11 T^{2} \)
$13$ \( 1 + 3 T + 13 T^{2} \)
$17$ \( 1 + 2 T + 17 T^{2} \)
$19$ \( 1 + T + 19 T^{2} \)
$23$ \( 1 - 2 T + 23 T^{2} \)
$29$ \( 1 - 6 T + 29 T^{2} \)
$31$ \( 1 + 3 T + 31 T^{2} \)
$37$ \( 1 + 6 T + 37 T^{2} \)
$41$ \( 1 - 4 T + 41 T^{2} \)
$43$ \( 1 + 11 T + 43 T^{2} \)
$47$ \( 1 - 10 T + 47 T^{2} \)
$53$ \( 1 + 8 T + 53 T^{2} \)
$59$ \( 1 - 6 T + 59 T^{2} \)
$61$ \( 1 - 3 T + 61 T^{2} \)
$67$ \( 1 - T + 67 T^{2} \)
$71$ \( 1 - 12 T + 71 T^{2} \)
$73$ \( 1 - 10 T + 73 T^{2} \)
$79$ \( 1 - 8 T + 79 T^{2} \)
$83$ \( 1 - 6 T + 83 T^{2} \)
$89$ \( 1 + 16 T + 89 T^{2} \)
$97$ \( 1 + 7 T + 97 T^{2} \)
show more
show less