Properties

Label 1200.2.a.i
Level $1200$
Weight $2$
Character orbit 1200.a
Self dual yes
Analytic conductor $9.582$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1200.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 600)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} + 5q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} + 5q^{7} + q^{9} + 6q^{11} - 3q^{13} - 2q^{17} - q^{19} - 5q^{21} + 2q^{23} - q^{27} + 6q^{29} - 3q^{31} - 6q^{33} - 6q^{37} + 3q^{39} + 4q^{41} - 11q^{43} + 10q^{47} + 18q^{49} + 2q^{51} - 8q^{53} + q^{57} + 6q^{59} + 3q^{61} + 5q^{63} + q^{67} - 2q^{69} + 12q^{71} + 10q^{73} + 30q^{77} + 8q^{79} + q^{81} + 6q^{83} - 6q^{87} - 16q^{89} - 15q^{91} + 3q^{93} - 7q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 5.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.2.a.i 1
3.b odd 2 1 3600.2.a.bq 1
4.b odd 2 1 600.2.a.f yes 1
5.b even 2 1 1200.2.a.j 1
5.c odd 4 2 1200.2.f.i 2
8.b even 2 1 4800.2.a.cs 1
8.d odd 2 1 4800.2.a.b 1
12.b even 2 1 1800.2.a.a 1
15.d odd 2 1 3600.2.a.a 1
15.e even 4 2 3600.2.f.b 2
20.d odd 2 1 600.2.a.e 1
20.e even 4 2 600.2.f.a 2
40.e odd 2 1 4800.2.a.ct 1
40.f even 2 1 4800.2.a.a 1
40.i odd 4 2 4800.2.f.a 2
40.k even 4 2 4800.2.f.bj 2
60.h even 2 1 1800.2.a.x 1
60.l odd 4 2 1800.2.f.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
600.2.a.e 1 20.d odd 2 1
600.2.a.f yes 1 4.b odd 2 1
600.2.f.a 2 20.e even 4 2
1200.2.a.i 1 1.a even 1 1 trivial
1200.2.a.j 1 5.b even 2 1
1200.2.f.i 2 5.c odd 4 2
1800.2.a.a 1 12.b even 2 1
1800.2.a.x 1 60.h even 2 1
1800.2.f.k 2 60.l odd 4 2
3600.2.a.a 1 15.d odd 2 1
3600.2.a.bq 1 3.b odd 2 1
3600.2.f.b 2 15.e even 4 2
4800.2.a.a 1 40.f even 2 1
4800.2.a.b 1 8.d odd 2 1
4800.2.a.cs 1 8.b even 2 1
4800.2.a.ct 1 40.e odd 2 1
4800.2.f.a 2 40.i odd 4 2
4800.2.f.bj 2 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1200))\):

\( T_{7} - 5 \)
\( T_{11} - 6 \)
\( T_{13} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 1 + T \)
$5$ \( T \)
$7$ \( -5 + T \)
$11$ \( -6 + T \)
$13$ \( 3 + T \)
$17$ \( 2 + T \)
$19$ \( 1 + T \)
$23$ \( -2 + T \)
$29$ \( -6 + T \)
$31$ \( 3 + T \)
$37$ \( 6 + T \)
$41$ \( -4 + T \)
$43$ \( 11 + T \)
$47$ \( -10 + T \)
$53$ \( 8 + T \)
$59$ \( -6 + T \)
$61$ \( -3 + T \)
$67$ \( -1 + T \)
$71$ \( -12 + T \)
$73$ \( -10 + T \)
$79$ \( -8 + T \)
$83$ \( -6 + T \)
$89$ \( 16 + T \)
$97$ \( 7 + T \)
show more
show less