Properties

Label 1200.2.a.c
Level 1200
Weight 2
Character orbit 1200.a
Self dual Yes
Analytic conductor 9.582
Analytic rank 0
Dimension 1
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1200.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(9.58204824255\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - 3q^{7} + q^{9} + O(q^{10}) \) \( q - q^{3} - 3q^{7} + q^{9} - 2q^{11} - q^{13} - 2q^{17} + 5q^{19} + 3q^{21} + 6q^{23} - q^{27} + 10q^{29} + 3q^{31} + 2q^{33} - 2q^{37} + q^{39} - 8q^{41} + q^{43} + 2q^{47} + 2q^{49} + 2q^{51} + 4q^{53} - 5q^{57} + 10q^{59} + 7q^{61} - 3q^{63} - 3q^{67} - 6q^{69} + 8q^{71} + 14q^{73} + 6q^{77} + q^{81} + 6q^{83} - 10q^{87} + 3q^{91} - 3q^{93} - 17q^{97} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 0 0 −3.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(5\) \(1\)

Hecke kernels

This newform can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1200))\):

\( T_{7} + 3 \)
\( T_{11} + 2 \)
\( T_{13} + 1 \)