Defining parameters
Level: | \( N \) | \(=\) | \( 1200 = 2^{4} \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1200.z (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 240 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1200, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 12 | 16 |
Cusp forms | 4 | 4 | 0 |
Eisenstein series | 24 | 8 | 16 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 4 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1200, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1200.1.z.a | $2$ | $0.599$ | \(\Q(\sqrt{-1}) \) | $D_{4}$ | \(\Q(\sqrt{-15}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+iq^{3}+q^{4}-iq^{6}-q^{8}-q^{9}+\cdots\) |
1200.1.z.b | $2$ | $0.599$ | \(\Q(\sqrt{-1}) \) | $D_{4}$ | \(\Q(\sqrt{-15}) \) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+q^{2}-iq^{3}+q^{4}-iq^{6}+q^{8}-q^{9}+\cdots\) |