Properties

Label 1200.1.c.a
Level 12001200
Weight 11
Character orbit 1200.c
Analytic conductor 0.5990.599
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1200,1,Mod(449,1200)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1200, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1200.449"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: N N == 1200=24352 1200 = 2^{4} \cdot 3 \cdot 5^{2}
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1200.c (of order 22, degree 11, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.5988780151600.598878015160
Analytic rank: 00
Dimension: 22
Coefficient field: Q(i)\Q(i)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 300)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.300.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qiq3iq7q9iq13q19q21+iq27+q312iq37q39+iq43+iq57q61+iq63iq67+2iq73+2q79+q81q91++iq97+O(q100) q - i q^{3} - i q^{7} - q^{9} - i q^{13} - q^{19} - q^{21} + i q^{27} + q^{31} - 2 i q^{37} - q^{39} + i q^{43} + i q^{57} - q^{61} + i q^{63} - i q^{67} + 2 i q^{73} + 2 q^{79} + q^{81} - q^{91} + \cdots + i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q92q192q21+2q312q392q61+4q79+2q812q91+O(q100) 2 q - 2 q^{9} - 2 q^{19} - 2 q^{21} + 2 q^{31} - 2 q^{39} - 2 q^{61} + 4 q^{79} + 2 q^{81} - 2 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1200Z)×\left(\mathbb{Z}/1200\mathbb{Z}\right)^\times.

nn 401401 577577 751751 901901
χ(n)\chi(n) 1-1 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
449.1
1.00000i
1.00000i
0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
449.2 0 1.00000i 0 0 0 1.00000i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1200.1.c.a 2
3.b odd 2 1 CM 1200.1.c.a 2
4.b odd 2 1 300.1.b.a 2
5.b even 2 1 inner 1200.1.c.a 2
5.c odd 4 1 1200.1.l.a 1
5.c odd 4 1 1200.1.l.b 1
12.b even 2 1 300.1.b.a 2
15.d odd 2 1 inner 1200.1.c.a 2
15.e even 4 1 1200.1.l.a 1
15.e even 4 1 1200.1.l.b 1
20.d odd 2 1 300.1.b.a 2
20.e even 4 1 300.1.g.a 1
20.e even 4 1 300.1.g.b yes 1
60.h even 2 1 300.1.b.a 2
60.l odd 4 1 300.1.g.a 1
60.l odd 4 1 300.1.g.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
300.1.b.a 2 4.b odd 2 1
300.1.b.a 2 12.b even 2 1
300.1.b.a 2 20.d odd 2 1
300.1.b.a 2 60.h even 2 1
300.1.g.a 1 20.e even 4 1
300.1.g.a 1 60.l odd 4 1
300.1.g.b yes 1 20.e even 4 1
300.1.g.b yes 1 60.l odd 4 1
1200.1.c.a 2 1.a even 1 1 trivial
1200.1.c.a 2 3.b odd 2 1 CM
1200.1.c.a 2 5.b even 2 1 inner
1200.1.c.a 2 15.d odd 2 1 inner
1200.1.l.a 1 5.c odd 4 1
1200.1.l.a 1 15.e even 4 1
1200.1.l.b 1 5.c odd 4 1
1200.1.l.b 1 15.e even 4 1

Hecke kernels

This newform subspace is the entire newspace S1new(1200,[χ])S_{1}^{\mathrm{new}}(1200, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+1 T^{2} + 1 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+1 T^{2} + 1 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 (T1)2 (T - 1)^{2} Copy content Toggle raw display
3737 T2+4 T^{2} + 4 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T2+1 T^{2} + 1 Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
6767 T2+1 T^{2} + 1 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+4 T^{2} + 4 Copy content Toggle raw display
7979 (T2)2 (T - 2)^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+1 T^{2} + 1 Copy content Toggle raw display
show more
show less