Properties

Label 120.4.w.a
Level $120$
Weight $4$
Character orbit 120.w
Analytic conductor $7.080$
Analytic rank $0$
Dimension $4$
CM discriminant -24
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(53,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 2, 2, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.53");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.w (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (2 \beta_{2} - 2) q^{2} - \beta_1 q^{3} - 8 \beta_{2} q^{4} + ( - \beta_{3} - 7 \beta_{2} - 7) q^{5} + ( - 2 \beta_{3} + 2 \beta_1) q^{6} + (2 \beta_{3} - 17 \beta_{2} + 17) q^{7} + (16 \beta_{2} + 16) q^{8} + 27 \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (2 \beta_{2} - 2) q^{2} - \beta_1 q^{3} - 8 \beta_{2} q^{4} + ( - \beta_{3} - 7 \beta_{2} - 7) q^{5} + ( - 2 \beta_{3} + 2 \beta_1) q^{6} + (2 \beta_{3} - 17 \beta_{2} + 17) q^{7} + (16 \beta_{2} + 16) q^{8} + 27 \beta_{2} q^{9} + (2 \beta_{3} + 2 \beta_1 + 28) q^{10} + (7 \beta_{3} - 7 \beta_1 + 4) q^{11} + 8 \beta_{3} q^{12} + ( - 4 \beta_{3} + 68 \beta_{2} - 4 \beta_1) q^{14} + (7 \beta_{3} + 7 \beta_1 - 27) q^{15} - 64 q^{16} + ( - 54 \beta_{2} - 54) q^{18} + (56 \beta_{2} - 8 \beta_1 - 56) q^{20} + (17 \beta_{3} - 17 \beta_1 + 54) q^{21} + ( - 28 \beta_{3} + 8 \beta_{2} - 8) q^{22} + ( - 16 \beta_{3} - 16 \beta_1) q^{24} + (14 \beta_{3} + 71 \beta_{2} - 14 \beta_1) q^{25} - 27 \beta_{3} q^{27} + ( - 136 \beta_{2} + 16 \beta_1 - 136) q^{28} + (21 \beta_{3} + 158 \beta_{2} + 21 \beta_1) q^{29} + ( - 54 \beta_{2} - 28 \beta_1 + 54) q^{30} + (46 \beta_{3} - 46 \beta_1) q^{31} + ( - 128 \beta_{2} + 128) q^{32} + (189 \beta_{2} - 4 \beta_1 + 189) q^{33} + ( - 31 \beta_{3} + 54 \beta_{2} + \cdots - 238) q^{35}+ \cdots + ( - 189 \beta_{3} + 108 \beta_{2} - 189 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{2} - 28 q^{5} + 68 q^{7} + 64 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{2} - 28 q^{5} + 68 q^{7} + 64 q^{8} + 112 q^{10} + 16 q^{11} - 108 q^{15} - 256 q^{16} - 216 q^{18} - 224 q^{20} + 216 q^{21} - 32 q^{22} - 544 q^{28} + 216 q^{30} + 512 q^{32} + 756 q^{33} - 952 q^{35} + 864 q^{36} - 432 q^{42} + 756 q^{45} - 568 q^{50} - 868 q^{55} + 2176 q^{56} - 1264 q^{58} + 1836 q^{63} - 3024 q^{66} + 1472 q^{70} - 1728 q^{72} - 644 q^{73} + 1512 q^{75} + 1784 q^{77} + 1792 q^{80} - 2916 q^{81} - 3472 q^{83} + 2268 q^{87} + 256 q^{88} + 4968 q^{93} + 1148 q^{97} + 2744 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
1.22474 + 1.22474i
−1.22474 1.22474i
1.22474 1.22474i
−1.22474 + 1.22474i
−2.00000 + 2.00000i −3.67423 3.67423i 8.00000i −3.32577 10.6742i 14.6969 9.65153 9.65153i 16.0000 + 16.0000i 27.0000i 28.0000 + 14.6969i
53.2 −2.00000 + 2.00000i 3.67423 + 3.67423i 8.00000i −10.6742 3.32577i −14.6969 24.3485 24.3485i 16.0000 + 16.0000i 27.0000i 28.0000 14.6969i
77.1 −2.00000 2.00000i −3.67423 + 3.67423i 8.00000i −3.32577 + 10.6742i 14.6969 9.65153 + 9.65153i 16.0000 16.0000i 27.0000i 28.0000 14.6969i
77.2 −2.00000 2.00000i 3.67423 3.67423i 8.00000i −10.6742 + 3.32577i −14.6969 24.3485 + 24.3485i 16.0000 16.0000i 27.0000i 28.0000 + 14.6969i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by \(\Q(\sqrt{-6}) \)
5.c odd 4 1 inner
120.w even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.w.a 4
3.b odd 2 1 120.4.w.b yes 4
5.c odd 4 1 inner 120.4.w.a 4
8.b even 2 1 120.4.w.b yes 4
15.e even 4 1 120.4.w.b yes 4
24.h odd 2 1 CM 120.4.w.a 4
40.i odd 4 1 120.4.w.b yes 4
120.w even 4 1 inner 120.4.w.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.w.a 4 1.a even 1 1 trivial
120.4.w.a 4 5.c odd 4 1 inner
120.4.w.a 4 24.h odd 2 1 CM
120.4.w.a 4 120.w even 4 1 inner
120.4.w.b yes 4 3.b odd 2 1
120.4.w.b yes 4 8.b even 2 1
120.4.w.b yes 4 15.e even 4 1
120.4.w.b yes 4 40.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(120, [\chi])\):

\( T_{7}^{4} - 68T_{7}^{3} + 2312T_{7}^{2} - 31960T_{7} + 220900 \) Copy content Toggle raw display
\( T_{11}^{2} - 8T_{11} - 2630 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 4 T + 8)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 729 \) Copy content Toggle raw display
$5$ \( T^{4} + 28 T^{3} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( T^{4} - 68 T^{3} + \cdots + 220900 \) Copy content Toggle raw display
$11$ \( (T^{2} - 8 T - 2630)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 97556 T^{2} + 1322500 \) Copy content Toggle raw display
$31$ \( (T^{2} - 114264)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 67240638864 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 10697764900 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 454747922500 \) Copy content Toggle raw display
$79$ \( (T^{2} + 95256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 1736 T + 1506848)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 2237627056900 \) Copy content Toggle raw display
show more
show less