Properties

Label 120.4.r.a
Level $120$
Weight $4$
Character orbit 120.r
Analytic conductor $7.080$
Analytic rank $0$
Dimension $36$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(17,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.17");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.r (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 36 q - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 36 q - 12 q^{7} + 24 q^{13} - 12 q^{15} + 32 q^{21} + 72 q^{25} - 168 q^{27} + 216 q^{31} + 204 q^{33} + 576 q^{37} - 464 q^{45} - 816 q^{51} - 372 q^{55} - 1160 q^{57} + 72 q^{61} - 628 q^{63} - 1080 q^{67} - 900 q^{73} + 720 q^{75} + 1196 q^{81} + 912 q^{85} + 1660 q^{87} + 4080 q^{91} + 2568 q^{93} + 2172 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
17.1 0 −5.18112 0.394983i 0 −11.1795 + 0.136761i 0 10.5113 + 10.5113i 0 26.6880 + 4.09291i 0
17.2 0 −4.96635 + 1.52818i 0 −1.11114 11.1250i 0 9.09927 + 9.09927i 0 22.3293 15.1790i 0
17.3 0 −4.83816 1.89532i 0 8.68358 + 7.04240i 0 −20.0016 20.0016i 0 19.8155 + 18.3397i 0
17.4 0 −4.59064 + 2.43434i 0 −4.14870 + 10.3821i 0 −10.3236 10.3236i 0 15.1480 22.3504i 0
17.5 0 −3.82735 3.51445i 0 11.0949 + 1.37965i 0 7.07013 + 7.07013i 0 2.29721 + 26.9021i 0
17.6 0 −2.43434 + 4.59064i 0 4.14870 10.3821i 0 −10.3236 10.3236i 0 −15.1480 22.3504i 0
17.7 0 −1.52818 + 4.96635i 0 1.11114 + 11.1250i 0 9.09927 + 9.09927i 0 −22.3293 15.1790i 0
17.8 0 −1.43528 4.99399i 0 −0.901387 11.1439i 0 0.0607868 + 0.0607868i 0 −22.8800 + 14.3355i 0
17.9 0 −1.07808 5.08308i 0 −10.2050 + 4.56698i 0 1.68165 + 1.68165i 0 −24.6755 + 10.9599i 0
17.10 0 0.394983 + 5.18112i 0 11.1795 0.136761i 0 10.5113 + 10.5113i 0 −26.6880 + 4.09291i 0
17.11 0 1.89532 + 4.83816i 0 −8.68358 7.04240i 0 −20.0016 20.0016i 0 −19.8155 + 18.3397i 0
17.12 0 1.90672 4.83368i 0 6.19347 + 9.30811i 0 20.8011 + 20.8011i 0 −19.7289 18.4329i 0
17.13 0 3.05156 4.20571i 0 9.28746 6.22439i 0 −21.8991 21.8991i 0 −8.37595 25.6679i 0
17.14 0 3.51445 + 3.82735i 0 −11.0949 1.37965i 0 7.07013 + 7.07013i 0 −2.29721 + 26.9021i 0
17.15 0 4.20571 3.05156i 0 −9.28746 + 6.22439i 0 −21.8991 21.8991i 0 8.37595 25.6679i 0
17.16 0 4.83368 1.90672i 0 −6.19347 9.30811i 0 20.8011 + 20.8011i 0 19.7289 18.4329i 0
17.17 0 4.99399 + 1.43528i 0 0.901387 + 11.1439i 0 0.0607868 + 0.0607868i 0 22.8800 + 14.3355i 0
17.18 0 5.08308 + 1.07808i 0 10.2050 4.56698i 0 1.68165 + 1.68165i 0 24.6755 + 10.9599i 0
113.1 0 −5.18112 + 0.394983i 0 −11.1795 0.136761i 0 10.5113 10.5113i 0 26.6880 4.09291i 0
113.2 0 −4.96635 1.52818i 0 −1.11114 + 11.1250i 0 9.09927 9.09927i 0 22.3293 + 15.1790i 0
See all 36 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 17.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 120.4.r.a 36
3.b odd 2 1 inner 120.4.r.a 36
4.b odd 2 1 240.4.v.e 36
5.c odd 4 1 inner 120.4.r.a 36
12.b even 2 1 240.4.v.e 36
15.e even 4 1 inner 120.4.r.a 36
20.e even 4 1 240.4.v.e 36
60.l odd 4 1 240.4.v.e 36
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.4.r.a 36 1.a even 1 1 trivial
120.4.r.a 36 3.b odd 2 1 inner
120.4.r.a 36 5.c odd 4 1 inner
120.4.r.a 36 15.e even 4 1 inner
240.4.v.e 36 4.b odd 2 1
240.4.v.e 36 12.b even 2 1
240.4.v.e 36 20.e even 4 1
240.4.v.e 36 60.l odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(120, [\chi])\).