Properties

Label 120.4.m.b.59.9
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.9
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.22835 - 1.74197i) q^{2} +(4.99538 - 1.43044i) q^{3} +(1.93108 + 7.76344i) q^{4} +(-10.2117 + 4.55196i) q^{5} +(-13.6232 - 5.51430i) q^{6} +3.90466 q^{7} +(9.22055 - 20.6635i) q^{8} +(22.9077 - 14.2912i) q^{9} +O(q^{10})\) \(q+(-2.22835 - 1.74197i) q^{2} +(4.99538 - 1.43044i) q^{3} +(1.93108 + 7.76344i) q^{4} +(-10.2117 + 4.55196i) q^{5} +(-13.6232 - 5.51430i) q^{6} +3.90466 q^{7} +(9.22055 - 20.6635i) q^{8} +(22.9077 - 14.2912i) q^{9} +(30.6847 + 7.64520i) q^{10} -59.1208i q^{11} +(20.7516 + 36.0190i) q^{12} +63.6374 q^{13} +(-8.70094 - 6.80180i) q^{14} +(-44.5003 + 37.3460i) q^{15} +(-56.5419 + 29.9836i) q^{16} +69.6213 q^{17} +(-75.9411 - 8.05885i) q^{18} +33.0635 q^{19} +(-55.0585 - 70.4880i) q^{20} +(19.5053 - 5.58537i) q^{21} +(-102.987 + 131.742i) q^{22} -90.6431i q^{23} +(16.5023 - 116.412i) q^{24} +(83.5594 - 92.9668i) q^{25} +(-141.806 - 110.854i) q^{26} +(93.9902 - 104.158i) q^{27} +(7.54021 + 30.3136i) q^{28} -172.259 q^{29} +(164.218 - 5.70179i) q^{30} -61.7877i q^{31} +(178.226 + 31.6802i) q^{32} +(-84.5685 - 295.331i) q^{33} +(-155.141 - 121.278i) q^{34} +(-39.8734 + 17.7738i) q^{35} +(155.185 + 150.245i) q^{36} +10.7673 q^{37} +(-73.6770 - 57.5956i) q^{38} +(317.893 - 91.0292i) q^{39} +(-0.0984082 + 252.982i) q^{40} +475.596i q^{41} +(-53.1941 - 21.5314i) q^{42} -59.3761i q^{43} +(458.980 - 114.167i) q^{44} +(-168.875 + 250.212i) q^{45} +(-157.898 + 201.985i) q^{46} +500.434i q^{47} +(-239.559 + 230.659i) q^{48} -327.754 q^{49} +(-348.145 + 61.6045i) q^{50} +(347.785 - 99.5888i) q^{51} +(122.889 + 494.045i) q^{52} -407.866i q^{53} +(-390.883 + 68.3719i) q^{54} +(269.115 + 603.726i) q^{55} +(36.0031 - 80.6840i) q^{56} +(165.165 - 47.2952i) q^{57} +(383.853 + 300.070i) q^{58} -17.5094i q^{59} +(-375.867 - 273.357i) q^{60} -245.109i q^{61} +(-107.632 + 137.685i) q^{62} +(89.4468 - 55.8021i) q^{63} +(-341.963 - 381.058i) q^{64} +(-649.849 + 289.675i) q^{65} +(-326.010 + 805.416i) q^{66} -35.7817i q^{67} +(134.444 + 540.500i) q^{68} +(-129.659 - 452.797i) q^{69} +(119.813 + 29.8519i) q^{70} +889.439 q^{71} +(-84.0841 - 605.126i) q^{72} +617.595i q^{73} +(-23.9933 - 18.7563i) q^{74} +(284.428 - 583.931i) q^{75} +(63.8483 + 256.686i) q^{76} -230.847i q^{77} +(-866.947 - 350.915i) q^{78} -108.663i q^{79} +(440.907 - 563.561i) q^{80} +(320.526 - 654.755i) q^{81} +(828.473 - 1059.79i) q^{82} +628.531 q^{83} +(81.0279 + 140.642i) q^{84} +(-710.955 + 316.913i) q^{85} +(-103.431 + 132.311i) q^{86} +(-860.499 + 246.405i) q^{87} +(-1221.64 - 545.126i) q^{88} +763.668i q^{89} +(812.175 - 263.386i) q^{90} +248.482 q^{91} +(703.702 - 175.039i) q^{92} +(-88.3834 - 308.653i) q^{93} +(871.741 - 1115.14i) q^{94} +(-337.636 + 150.504i) q^{95} +(935.622 - 96.6857i) q^{96} +866.259i q^{97} +(730.350 + 570.937i) q^{98} +(-844.904 - 1354.32i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54} - 2064 q^{60} + 2176 q^{64} - 176 q^{66} + 672 q^{70} - 1600 q^{75} + 2304 q^{76} - 2304 q^{81} - 736 q^{84} - 1432 q^{90} - 2752 q^{91} + 4496 q^{94} + 640 q^{96} + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22835 1.74197i −0.787840 0.615879i
\(3\) 4.99538 1.43044i 0.961362 0.275288i
\(4\) 1.93108 + 7.76344i 0.241385 + 0.970429i
\(5\) −10.2117 + 4.55196i −0.913366 + 0.407139i
\(6\) −13.6232 5.51430i −0.926944 0.375200i
\(7\) 3.90466 0.210832 0.105416 0.994428i \(-0.466383\pi\)
0.105416 + 0.994428i \(0.466383\pi\)
\(8\) 9.22055 20.6635i 0.407495 0.913208i
\(9\) 22.9077 14.2912i 0.848433 0.529302i
\(10\) 30.6847 + 7.64520i 0.970335 + 0.241763i
\(11\) 59.1208i 1.62051i −0.586079 0.810254i \(-0.699329\pi\)
0.586079 0.810254i \(-0.300671\pi\)
\(12\) 20.7516 + 36.0190i 0.499206 + 0.866484i
\(13\) 63.6374 1.35768 0.678840 0.734286i \(-0.262483\pi\)
0.678840 + 0.734286i \(0.262483\pi\)
\(14\) −8.70094 6.80180i −0.166102 0.129847i
\(15\) −44.5003 + 37.3460i −0.765995 + 0.642847i
\(16\) −56.5419 + 29.9836i −0.883466 + 0.468494i
\(17\) 69.6213 0.993273 0.496636 0.867959i \(-0.334568\pi\)
0.496636 + 0.867959i \(0.334568\pi\)
\(18\) −75.9411 8.05885i −0.994416 0.105527i
\(19\) 33.0635 0.399226 0.199613 0.979875i \(-0.436032\pi\)
0.199613 + 0.979875i \(0.436032\pi\)
\(20\) −55.0585 70.4880i −0.615573 0.788080i
\(21\) 19.5053 5.58537i 0.202686 0.0580394i
\(22\) −102.987 + 131.742i −0.998038 + 1.27670i
\(23\) 90.6431i 0.821756i −0.911690 0.410878i \(-0.865222\pi\)
0.911690 0.410878i \(-0.134778\pi\)
\(24\) 16.5023 116.412i 0.140355 0.990101i
\(25\) 83.5594 92.9668i 0.668475 0.743734i
\(26\) −141.806 110.854i −1.06964 0.836167i
\(27\) 93.9902 104.158i 0.669941 0.742414i
\(28\) 7.54021 + 30.3136i 0.0508917 + 0.204597i
\(29\) −172.259 −1.10302 −0.551511 0.834167i \(-0.685949\pi\)
−0.551511 + 0.834167i \(0.685949\pi\)
\(30\) 164.218 5.70179i 0.999398 0.0347000i
\(31\) 61.7877i 0.357981i −0.983851 0.178990i \(-0.942717\pi\)
0.983851 0.178990i \(-0.0572831\pi\)
\(32\) 178.226 + 31.6802i 0.984567 + 0.175010i
\(33\) −84.5685 295.331i −0.446106 1.55789i
\(34\) −155.141 121.278i −0.782541 0.611736i
\(35\) −39.8734 + 17.7738i −0.192567 + 0.0858379i
\(36\) 155.185 + 150.245i 0.718449 + 0.695579i
\(37\) 10.7673 0.0478414 0.0239207 0.999714i \(-0.492385\pi\)
0.0239207 + 0.999714i \(0.492385\pi\)
\(38\) −73.6770 57.5956i −0.314526 0.245875i
\(39\) 317.893 91.0292i 1.30522 0.373752i
\(40\) −0.0984082 + 252.982i −0.000388993 + 1.00000i
\(41\) 475.596i 1.81160i 0.423707 + 0.905799i \(0.360729\pi\)
−0.423707 + 0.905799i \(0.639271\pi\)
\(42\) −53.1941 21.5314i −0.195429 0.0791042i
\(43\) 59.3761i 0.210576i −0.994442 0.105288i \(-0.966424\pi\)
0.994442 0.105288i \(-0.0335764\pi\)
\(44\) 458.980 114.167i 1.57259 0.391166i
\(45\) −168.875 + 250.212i −0.559431 + 0.828877i
\(46\) −157.898 + 201.985i −0.506103 + 0.647413i
\(47\) 500.434i 1.55310i 0.630054 + 0.776551i \(0.283033\pi\)
−0.630054 + 0.776551i \(0.716967\pi\)
\(48\) −239.559 + 230.659i −0.720360 + 0.693600i
\(49\) −327.754 −0.955550
\(50\) −348.145 + 61.6045i −0.984703 + 0.174244i
\(51\) 347.785 99.5888i 0.954895 0.273436i
\(52\) 122.889 + 494.045i 0.327724 + 1.31753i
\(53\) 407.866i 1.05707i −0.848911 0.528535i \(-0.822741\pi\)
0.848911 0.528535i \(-0.177259\pi\)
\(54\) −390.883 + 68.3719i −0.985044 + 0.172301i
\(55\) 269.115 + 603.726i 0.659772 + 1.48012i
\(56\) 36.0031 80.6840i 0.0859128 0.192533i
\(57\) 165.165 47.2952i 0.383800 0.109902i
\(58\) 383.853 + 300.070i 0.869006 + 0.679329i
\(59\) 17.5094i 0.0386360i −0.999813 0.0193180i \(-0.993851\pi\)
0.999813 0.0193180i \(-0.00614950\pi\)
\(60\) −375.867 273.357i −0.808737 0.588170i
\(61\) 245.109i 0.514474i −0.966348 0.257237i \(-0.917188\pi\)
0.966348 0.257237i \(-0.0828122\pi\)
\(62\) −107.632 + 137.685i −0.220473 + 0.282032i
\(63\) 89.4468 55.8021i 0.178877 0.111594i
\(64\) −341.963 381.058i −0.667896 0.744254i
\(65\) −649.849 + 289.675i −1.24006 + 0.552765i
\(66\) −326.010 + 805.416i −0.608015 + 1.50212i
\(67\) 35.7817i 0.0652452i −0.999468 0.0326226i \(-0.989614\pi\)
0.999468 0.0326226i \(-0.0103859\pi\)
\(68\) 134.444 + 540.500i 0.239761 + 0.963901i
\(69\) −129.659 452.797i −0.226219 0.790005i
\(70\) 119.813 + 29.8519i 0.204578 + 0.0509712i
\(71\) 889.439 1.48672 0.743359 0.668893i \(-0.233231\pi\)
0.743359 + 0.668893i \(0.233231\pi\)
\(72\) −84.0841 605.126i −0.137631 0.990484i
\(73\) 617.595i 0.990193i 0.868838 + 0.495096i \(0.164867\pi\)
−0.868838 + 0.495096i \(0.835133\pi\)
\(74\) −23.9933 18.7563i −0.0376914 0.0294646i
\(75\) 284.428 583.931i 0.437906 0.899021i
\(76\) 63.8483 + 256.686i 0.0963671 + 0.387420i
\(77\) 230.847i 0.341655i
\(78\) −866.947 350.915i −1.25849 0.509402i
\(79\) 108.663i 0.154753i −0.997002 0.0773766i \(-0.975346\pi\)
0.997002 0.0773766i \(-0.0246544\pi\)
\(80\) 440.907 563.561i 0.616186 0.787601i
\(81\) 320.526 654.755i 0.439679 0.898155i
\(82\) 828.473 1059.79i 1.11573 1.42725i
\(83\) 628.531 0.831208 0.415604 0.909546i \(-0.363570\pi\)
0.415604 + 0.909546i \(0.363570\pi\)
\(84\) 81.0279 + 140.642i 0.105248 + 0.182682i
\(85\) −710.955 + 316.913i −0.907222 + 0.404400i
\(86\) −103.431 + 132.311i −0.129689 + 0.165900i
\(87\) −860.499 + 246.405i −1.06040 + 0.303649i
\(88\) −1221.64 545.126i −1.47986 0.660348i
\(89\) 763.668i 0.909535i 0.890610 + 0.454768i \(0.150278\pi\)
−0.890610 + 0.454768i \(0.849722\pi\)
\(90\) 812.175 263.386i 0.951230 0.308481i
\(91\) 248.482 0.286242
\(92\) 703.702 175.039i 0.797457 0.198360i
\(93\) −88.3834 308.653i −0.0985477 0.344149i
\(94\) 871.741 1115.14i 0.956524 1.22360i
\(95\) −337.636 + 150.504i −0.364639 + 0.162540i
\(96\) 935.622 96.6857i 0.994703 0.102791i
\(97\) 866.259i 0.906755i 0.891319 + 0.453378i \(0.149781\pi\)
−0.891319 + 0.453378i \(0.850219\pi\)
\(98\) 730.350 + 570.937i 0.752821 + 0.588504i
\(99\) −844.904 1354.32i −0.857738 1.37489i
\(100\) 883.102 + 469.182i 0.883102 + 0.469182i
\(101\) −1542.57 −1.51972 −0.759859 0.650088i \(-0.774732\pi\)
−0.759859 + 0.650088i \(0.774732\pi\)
\(102\) −948.467 383.912i −0.920708 0.372676i
\(103\) 360.822 0.345174 0.172587 0.984994i \(-0.444787\pi\)
0.172587 + 0.984994i \(0.444787\pi\)
\(104\) 586.772 1314.97i 0.553247 1.23984i
\(105\) −173.758 + 145.823i −0.161496 + 0.135532i
\(106\) −710.491 + 908.868i −0.651028 + 0.832803i
\(107\) −1347.63 −1.21757 −0.608785 0.793336i \(-0.708343\pi\)
−0.608785 + 0.793336i \(0.708343\pi\)
\(108\) 990.125 + 528.549i 0.882174 + 0.470923i
\(109\) 1187.79i 1.04376i −0.853019 0.521880i \(-0.825231\pi\)
0.853019 0.521880i \(-0.174769\pi\)
\(110\) 451.990 1814.10i 0.391778 1.57244i
\(111\) 53.7868 15.4019i 0.0459929 0.0131702i
\(112\) −220.777 + 117.076i −0.186263 + 0.0987735i
\(113\) −666.104 −0.554529 −0.277265 0.960794i \(-0.589428\pi\)
−0.277265 + 0.960794i \(0.589428\pi\)
\(114\) −450.432 182.322i −0.370060 0.149790i
\(115\) 412.603 + 925.624i 0.334569 + 0.750564i
\(116\) −332.646 1337.32i −0.266253 1.07041i
\(117\) 1457.79 909.452i 1.15190 0.718623i
\(118\) −30.5008 + 39.0170i −0.0237951 + 0.0304390i
\(119\) 271.847 0.209413
\(120\) 361.383 + 1263.88i 0.274914 + 0.961469i
\(121\) −2164.27 −1.62605
\(122\) −426.972 + 546.187i −0.316854 + 0.405324i
\(123\) 680.309 + 2375.78i 0.498711 + 1.74160i
\(124\) 479.685 119.317i 0.347395 0.0864112i
\(125\) −430.106 + 1329.71i −0.307759 + 0.951464i
\(126\) −296.524 31.4671i −0.209655 0.0222485i
\(127\) 259.670 0.181433 0.0907163 0.995877i \(-0.471084\pi\)
0.0907163 + 0.995877i \(0.471084\pi\)
\(128\) 98.2209 + 1444.82i 0.0678249 + 0.997697i
\(129\) −84.9337 296.606i −0.0579689 0.202440i
\(130\) 1952.69 + 486.521i 1.31740 + 0.328236i
\(131\) 930.506i 0.620601i 0.950639 + 0.310300i \(0.100430\pi\)
−0.950639 + 0.310300i \(0.899570\pi\)
\(132\) 2129.47 1226.85i 1.40414 0.808967i
\(133\) 129.102 0.0841694
\(134\) −62.3306 + 79.7340i −0.0401831 + 0.0514028i
\(135\) −485.682 + 1491.47i −0.309636 + 0.950855i
\(136\) 641.946 1438.62i 0.404753 0.907064i
\(137\) 360.083 0.224554 0.112277 0.993677i \(-0.464186\pi\)
0.112277 + 0.993677i \(0.464186\pi\)
\(138\) −499.833 + 1234.85i −0.308323 + 0.761722i
\(139\) −574.130 −0.350339 −0.175169 0.984538i \(-0.556047\pi\)
−0.175169 + 0.984538i \(0.556047\pi\)
\(140\) −214.985 275.232i −0.129782 0.166152i
\(141\) 715.839 + 2499.86i 0.427550 + 1.49309i
\(142\) −1981.98 1549.38i −1.17130 0.915639i
\(143\) 3762.29i 2.20013i
\(144\) −866.743 + 1494.90i −0.501588 + 0.865107i
\(145\) 1759.06 784.115i 1.00746 0.449084i
\(146\) 1075.83 1376.22i 0.609839 0.780114i
\(147\) −1637.25 + 468.831i −0.918629 + 0.263051i
\(148\) 20.7925 + 83.5913i 0.0115482 + 0.0464267i
\(149\) 1402.68 0.771223 0.385611 0.922661i \(-0.373991\pi\)
0.385611 + 0.922661i \(0.373991\pi\)
\(150\) −1651.00 + 805.737i −0.898688 + 0.438588i
\(151\) 713.088i 0.384306i −0.981365 0.192153i \(-0.938453\pi\)
0.981365 0.192153i \(-0.0615471\pi\)
\(152\) 304.864 683.208i 0.162682 0.364576i
\(153\) 1594.86 994.968i 0.842726 0.525741i
\(154\) −402.128 + 514.407i −0.210418 + 0.269169i
\(155\) 281.255 + 630.961i 0.145748 + 0.326968i
\(156\) 1320.58 + 2292.16i 0.677761 + 1.17641i
\(157\) −1894.80 −0.963192 −0.481596 0.876393i \(-0.659943\pi\)
−0.481596 + 0.876393i \(0.659943\pi\)
\(158\) −189.287 + 242.138i −0.0953093 + 0.121921i
\(159\) −583.427 2037.45i −0.290998 1.01623i
\(160\) −1964.20 + 487.765i −0.970523 + 0.241008i
\(161\) 353.930i 0.173252i
\(162\) −1854.81 + 900.677i −0.899552 + 0.436814i
\(163\) 2482.58i 1.19295i −0.802633 0.596473i \(-0.796568\pi\)
0.802633 0.596473i \(-0.203432\pi\)
\(164\) −3692.26 + 918.414i −1.75803 + 0.437293i
\(165\) 2207.93 + 2630.89i 1.04174 + 1.24130i
\(166\) −1400.59 1094.88i −0.654859 0.511924i
\(167\) 3112.29i 1.44213i 0.692865 + 0.721067i \(0.256348\pi\)
−0.692865 + 0.721067i \(0.743652\pi\)
\(168\) 64.4359 454.548i 0.0295913 0.208745i
\(169\) 1852.72 0.843294
\(170\) 2136.31 + 532.269i 0.963808 + 0.240136i
\(171\) 757.409 472.515i 0.338716 0.211311i
\(172\) 460.962 114.660i 0.204349 0.0508299i
\(173\) 3100.30i 1.36250i −0.732053 0.681248i \(-0.761438\pi\)
0.732053 0.681248i \(-0.238562\pi\)
\(174\) 2346.72 + 949.886i 1.02244 + 0.413855i
\(175\) 326.271 363.004i 0.140936 0.156803i
\(176\) 1772.66 + 3342.80i 0.759199 + 1.43166i
\(177\) −25.0460 87.4660i −0.0106360 0.0371432i
\(178\) 1330.29 1701.72i 0.560164 0.716569i
\(179\) 2018.40i 0.842805i 0.906874 + 0.421402i \(0.138462\pi\)
−0.906874 + 0.421402i \(0.861538\pi\)
\(180\) −2268.62 827.869i −0.939405 0.342809i
\(181\) 1943.41i 0.798079i 0.916934 + 0.399039i \(0.130656\pi\)
−0.916934 + 0.399039i \(0.869344\pi\)
\(182\) −553.705 432.849i −0.225513 0.176291i
\(183\) −350.612 1224.41i −0.141628 0.494596i
\(184\) −1873.01 835.779i −0.750434 0.334861i
\(185\) −109.953 + 49.0123i −0.0436968 + 0.0194781i
\(186\) −340.716 + 841.749i −0.134315 + 0.331828i
\(187\) 4116.06i 1.60961i
\(188\) −3885.09 + 966.379i −1.50718 + 0.374896i
\(189\) 367.000 406.701i 0.141245 0.156524i
\(190\) 1014.54 + 252.777i 0.387383 + 0.0965178i
\(191\) −3928.20 −1.48814 −0.744070 0.668101i \(-0.767107\pi\)
−0.744070 + 0.668101i \(0.767107\pi\)
\(192\) −2253.32 1414.38i −0.846974 0.531634i
\(193\) 456.350i 0.170201i 0.996372 + 0.0851005i \(0.0271211\pi\)
−0.996372 + 0.0851005i \(0.972879\pi\)
\(194\) 1509.00 1930.33i 0.558452 0.714379i
\(195\) −2831.88 + 2376.60i −1.03998 + 0.872780i
\(196\) −632.919 2544.49i −0.230656 0.927294i
\(197\) 4127.07i 1.49260i 0.665611 + 0.746299i \(0.268171\pi\)
−0.665611 + 0.746299i \(0.731829\pi\)
\(198\) −476.446 + 4489.70i −0.171008 + 1.61146i
\(199\) 4395.85i 1.56590i 0.622087 + 0.782948i \(0.286285\pi\)
−0.622087 + 0.782948i \(0.713715\pi\)
\(200\) −1150.56 2583.84i −0.406784 0.913524i
\(201\) −51.1834 178.743i −0.0179612 0.0627242i
\(202\) 3437.39 + 2687.11i 1.19730 + 0.935963i
\(203\) −672.612 −0.232552
\(204\) 1444.75 + 2507.69i 0.495847 + 0.860655i
\(205\) −2164.89 4856.66i −0.737573 1.65465i
\(206\) −804.038 628.542i −0.271942 0.212585i
\(207\) −1295.39 2076.43i −0.434957 0.697206i
\(208\) −3598.18 + 1908.08i −1.19946 + 0.636065i
\(209\) 1954.74i 0.646948i
\(210\) 641.215 22.2635i 0.210705 0.00731586i
\(211\) 4297.34 1.40209 0.701045 0.713117i \(-0.252717\pi\)
0.701045 + 0.713117i \(0.252717\pi\)
\(212\) 3166.44 787.623i 1.02581 0.255161i
\(213\) 4443.09 1272.29i 1.42927 0.409275i
\(214\) 3002.98 + 2347.52i 0.959250 + 0.749876i
\(215\) 270.277 + 606.333i 0.0857337 + 0.192333i
\(216\) −1285.63 2902.56i −0.404981 0.914325i
\(217\) 241.260i 0.0754737i
\(218\) −2069.10 + 2646.81i −0.642830 + 0.822316i
\(219\) 883.431 + 3085.13i 0.272588 + 0.951934i
\(220\) −4167.31 + 3255.10i −1.27709 + 0.997541i
\(221\) 4430.52 1.34855
\(222\) −146.685 59.3741i −0.0443463 0.0179501i
\(223\) 5589.89 1.67859 0.839297 0.543673i \(-0.182967\pi\)
0.839297 + 0.543673i \(0.182967\pi\)
\(224\) 695.910 + 123.700i 0.207578 + 0.0368977i
\(225\) 585.551 3323.82i 0.173497 0.984834i
\(226\) 1484.31 + 1160.33i 0.436881 + 0.341523i
\(227\) 2119.31 0.619662 0.309831 0.950792i \(-0.399727\pi\)
0.309831 + 0.950792i \(0.399727\pi\)
\(228\) 686.120 + 1190.92i 0.199296 + 0.345922i
\(229\) 3484.25i 1.00544i 0.864449 + 0.502721i \(0.167668\pi\)
−0.864449 + 0.502721i \(0.832332\pi\)
\(230\) 692.985 2781.36i 0.198670 0.797379i
\(231\) −330.211 1153.17i −0.0940533 0.328454i
\(232\) −1588.32 + 3559.48i −0.449476 + 1.00729i
\(233\) 635.469 0.178674 0.0893368 0.996001i \(-0.471525\pi\)
0.0893368 + 0.996001i \(0.471525\pi\)
\(234\) −4832.70 512.844i −1.35010 0.143272i
\(235\) −2277.95 5110.31i −0.632329 1.41855i
\(236\) 135.933 33.8120i 0.0374935 0.00932616i
\(237\) −155.435 542.812i −0.0426016 0.148774i
\(238\) −605.771 473.550i −0.164984 0.128973i
\(239\) −3348.65 −0.906302 −0.453151 0.891434i \(-0.649700\pi\)
−0.453151 + 0.891434i \(0.649700\pi\)
\(240\) 1396.36 3445.89i 0.375561 0.926798i
\(241\) −4429.34 −1.18390 −0.591948 0.805976i \(-0.701641\pi\)
−0.591948 + 0.805976i \(0.701641\pi\)
\(242\) 4822.74 + 3770.09i 1.28106 + 1.00145i
\(243\) 664.564 3729.24i 0.175439 0.984490i
\(244\) 1902.88 473.324i 0.499261 0.124186i
\(245\) 3346.94 1491.92i 0.872767 0.389042i
\(246\) 2622.57 6479.15i 0.679712 1.67925i
\(247\) 2104.07 0.542020
\(248\) −1276.75 569.717i −0.326911 0.145875i
\(249\) 3139.75 899.074i 0.799092 0.228821i
\(250\) 3274.75 2213.83i 0.828452 0.560060i
\(251\) 2194.08i 0.551750i 0.961194 + 0.275875i \(0.0889676\pi\)
−0.961194 + 0.275875i \(0.911032\pi\)
\(252\) 605.945 + 586.656i 0.151472 + 0.146650i
\(253\) −5358.89 −1.33166
\(254\) −578.634 452.337i −0.142940 0.111741i
\(255\) −3098.17 + 2600.08i −0.760842 + 0.638522i
\(256\) 2297.96 3390.66i 0.561026 0.827798i
\(257\) 5497.40 1.33431 0.667156 0.744918i \(-0.267511\pi\)
0.667156 + 0.744918i \(0.267511\pi\)
\(258\) −327.417 + 808.894i −0.0790082 + 0.195192i
\(259\) 42.0426 0.0100865
\(260\) −3503.78 4485.67i −0.835751 1.06996i
\(261\) −3946.05 + 2461.78i −0.935842 + 0.583832i
\(262\) 1620.91 2073.49i 0.382215 0.488934i
\(263\) 3495.97i 0.819660i −0.912162 0.409830i \(-0.865588\pi\)
0.912162 0.409830i \(-0.134412\pi\)
\(264\) −6882.35 975.630i −1.60447 0.227446i
\(265\) 1856.59 + 4165.02i 0.430375 + 0.965492i
\(266\) −287.684 224.891i −0.0663121 0.0518382i
\(267\) 1092.38 + 3814.81i 0.250384 + 0.874392i
\(268\) 277.789 69.0973i 0.0633158 0.0157492i
\(269\) −585.602 −0.132732 −0.0663658 0.997795i \(-0.521140\pi\)
−0.0663658 + 0.997795i \(0.521140\pi\)
\(270\) 3680.37 2477.48i 0.829556 0.558424i
\(271\) 7517.66i 1.68511i −0.538609 0.842556i \(-0.681050\pi\)
0.538609 0.842556i \(-0.318950\pi\)
\(272\) −3936.52 + 2087.50i −0.877523 + 0.465343i
\(273\) 1241.26 355.438i 0.275182 0.0787989i
\(274\) −802.391 627.254i −0.176913 0.138298i
\(275\) −5496.27 4940.10i −1.20523 1.08327i
\(276\) 3264.88 1880.99i 0.712038 0.410225i
\(277\) 504.031 0.109330 0.0546648 0.998505i \(-0.482591\pi\)
0.0546648 + 0.998505i \(0.482591\pi\)
\(278\) 1279.36 + 1000.12i 0.276011 + 0.215767i
\(279\) −883.018 1415.42i −0.189480 0.303723i
\(280\) −0.384251 + 987.809i −8.20120e−5 + 0.210832i
\(281\) 7892.83i 1.67561i −0.545969 0.837805i \(-0.683839\pi\)
0.545969 0.837805i \(-0.316161\pi\)
\(282\) 2759.54 6817.53i 0.582725 1.43964i
\(283\) 5494.85i 1.15419i 0.816678 + 0.577094i \(0.195813\pi\)
−0.816678 + 0.577094i \(0.804187\pi\)
\(284\) 1717.58 + 6905.10i 0.358872 + 1.44275i
\(285\) −1471.33 + 1234.79i −0.305805 + 0.256641i
\(286\) −6553.80 + 8383.70i −1.35502 + 1.73335i
\(287\) 1857.04i 0.381943i
\(288\) 4535.49 1821.33i 0.927972 0.372649i
\(289\) −65.8786 −0.0134090
\(290\) −5285.71 1316.95i −1.07030 0.266670i
\(291\) 1239.13 + 4327.30i 0.249619 + 0.871720i
\(292\) −4794.66 + 1192.63i −0.960912 + 0.239018i
\(293\) 688.366i 0.137252i 0.997642 + 0.0686259i \(0.0218615\pi\)
−0.997642 + 0.0686259i \(0.978139\pi\)
\(294\) 4465.06 + 1807.33i 0.885741 + 0.358523i
\(295\) 79.7019 + 178.801i 0.0157302 + 0.0352888i
\(296\) 99.2804 222.490i 0.0194951 0.0436892i
\(297\) −6157.89 5556.77i −1.20309 1.08565i
\(298\) −3125.67 2443.43i −0.607601 0.474980i
\(299\) 5768.29i 1.11568i
\(300\) 5082.57 + 1080.52i 0.978140 + 0.207946i
\(301\) 231.843i 0.0443961i
\(302\) −1242.18 + 1589.01i −0.236686 + 0.302772i
\(303\) −7705.73 + 2206.55i −1.46100 + 0.418360i
\(304\) −1869.47 + 991.364i −0.352702 + 0.187035i
\(305\) 1115.72 + 2502.99i 0.209463 + 0.469903i
\(306\) −5287.12 561.067i −0.987727 0.104817i
\(307\) 5319.52i 0.988929i 0.869198 + 0.494464i \(0.164636\pi\)
−0.869198 + 0.494464i \(0.835364\pi\)
\(308\) 1792.16 445.783i 0.331552 0.0824703i
\(309\) 1802.45 516.134i 0.331837 0.0950220i
\(310\) 472.380 1895.94i 0.0865464 0.347361i
\(311\) 7832.47 1.42810 0.714049 0.700096i \(-0.246859\pi\)
0.714049 + 0.700096i \(0.246859\pi\)
\(312\) 1050.16 7408.13i 0.190557 1.34424i
\(313\) 2374.67i 0.428831i 0.976743 + 0.214416i \(0.0687847\pi\)
−0.976743 + 0.214416i \(0.931215\pi\)
\(314\) 4222.27 + 3300.68i 0.758842 + 0.593210i
\(315\) −659.399 + 976.994i −0.117946 + 0.174754i
\(316\) 843.595 209.836i 0.150177 0.0373551i
\(317\) 4106.84i 0.727643i 0.931469 + 0.363822i \(0.118528\pi\)
−0.931469 + 0.363822i \(0.881472\pi\)
\(318\) −2249.09 + 5556.46i −0.396613 + 0.979845i
\(319\) 10184.1i 1.78746i
\(320\) 5226.60 + 2334.67i 0.913049 + 0.407850i
\(321\) −6731.91 + 1927.69i −1.17052 + 0.335182i
\(322\) −616.536 + 788.681i −0.106703 + 0.136495i
\(323\) 2301.92 0.396540
\(324\) 5702.11 + 1224.00i 0.977728 + 0.209876i
\(325\) 5317.50 5916.17i 0.907575 1.00975i
\(326\) −4324.57 + 5532.05i −0.734711 + 0.939852i
\(327\) −1699.06 5933.47i −0.287334 1.00343i
\(328\) 9827.48 + 4385.25i 1.65437 + 0.738217i
\(329\) 1954.03i 0.327443i
\(330\) −337.094 9708.69i −0.0562316 1.61953i
\(331\) 4379.02 0.727168 0.363584 0.931562i \(-0.381553\pi\)
0.363584 + 0.931562i \(0.381553\pi\)
\(332\) 1213.74 + 4879.56i 0.200641 + 0.806629i
\(333\) 246.654 153.877i 0.0405903 0.0253226i
\(334\) 5421.52 6935.28i 0.888181 1.13617i
\(335\) 162.877 + 365.393i 0.0265639 + 0.0595927i
\(336\) −935.394 + 900.646i −0.151875 + 0.146233i
\(337\) 6774.53i 1.09505i 0.836789 + 0.547525i \(0.184430\pi\)
−0.836789 + 0.547525i \(0.815570\pi\)
\(338\) −4128.50 3227.38i −0.664381 0.519368i
\(339\) −3327.45 + 952.820i −0.533104 + 0.152655i
\(340\) −3833.24 4907.47i −0.611432 0.782778i
\(341\) −3652.94 −0.580111
\(342\) −2510.88 266.454i −0.396996 0.0421291i
\(343\) −2619.06 −0.412292
\(344\) −1226.92 547.480i −0.192300 0.0858085i
\(345\) 3385.16 + 4033.64i 0.528263 + 0.629461i
\(346\) −5400.63 + 6908.56i −0.839133 + 1.07343i
\(347\) 4789.77 0.741004 0.370502 0.928832i \(-0.379186\pi\)
0.370502 + 0.928832i \(0.379186\pi\)
\(348\) −3574.64 6204.60i −0.550635 0.955751i
\(349\) 3221.38i 0.494087i 0.969004 + 0.247043i \(0.0794590\pi\)
−0.969004 + 0.247043i \(0.920541\pi\)
\(350\) −1359.39 + 240.545i −0.207607 + 0.0367362i
\(351\) 5981.29 6628.33i 0.909566 1.00796i
\(352\) 1872.96 10536.8i 0.283605 1.59550i
\(353\) −1778.82 −0.268207 −0.134104 0.990967i \(-0.542815\pi\)
−0.134104 + 0.990967i \(0.542815\pi\)
\(354\) −96.5518 + 238.534i −0.0144962 + 0.0358134i
\(355\) −9082.72 + 4048.69i −1.35792 + 0.605301i
\(356\) −5928.69 + 1474.70i −0.882640 + 0.219548i
\(357\) 1357.98 388.860i 0.201322 0.0576489i
\(358\) 3515.99 4497.69i 0.519066 0.663996i
\(359\) 888.661 0.130645 0.0653227 0.997864i \(-0.479192\pi\)
0.0653227 + 0.997864i \(0.479192\pi\)
\(360\) 3613.15 + 5796.65i 0.528972 + 0.848639i
\(361\) −5765.81 −0.840619
\(362\) 3385.36 4330.59i 0.491520 0.628759i
\(363\) −10811.3 + 3095.85i −1.56322 + 0.447630i
\(364\) 479.839 + 1929.08i 0.0690946 + 0.277778i
\(365\) −2811.27 6306.73i −0.403146 0.904409i
\(366\) −1351.60 + 3339.17i −0.193031 + 0.476889i
\(367\) 2399.81 0.341333 0.170666 0.985329i \(-0.445408\pi\)
0.170666 + 0.985329i \(0.445408\pi\)
\(368\) 2717.81 + 5125.13i 0.384988 + 0.725994i
\(369\) 6796.81 + 10894.8i 0.958883 + 1.53702i
\(370\) 330.391 + 82.3182i 0.0464223 + 0.0115663i
\(371\) 1592.58i 0.222864i
\(372\) 2225.54 1282.19i 0.310185 0.178706i
\(373\) 7562.31 1.04976 0.524881 0.851175i \(-0.324110\pi\)
0.524881 + 0.851175i \(0.324110\pi\)
\(374\) −7170.06 + 9172.03i −0.991324 + 1.26811i
\(375\) −246.478 + 7257.66i −0.0339415 + 0.999424i
\(376\) 10340.7 + 4614.28i 1.41831 + 0.632881i
\(377\) −10962.1 −1.49755
\(378\) −1526.26 + 266.969i −0.207679 + 0.0363265i
\(379\) −7024.75 −0.952077 −0.476038 0.879424i \(-0.657928\pi\)
−0.476038 + 0.879424i \(0.657928\pi\)
\(380\) −1820.43 2330.58i −0.245752 0.314622i
\(381\) 1297.15 371.441i 0.174422 0.0499462i
\(382\) 8753.41 + 6842.81i 1.17242 + 0.916515i
\(383\) 3306.11i 0.441081i 0.975378 + 0.220541i \(0.0707822\pi\)
−0.975378 + 0.220541i \(0.929218\pi\)
\(384\) 2557.37 + 7076.93i 0.339858 + 0.940477i
\(385\) 1050.80 + 2357.35i 0.139101 + 0.312056i
\(386\) 794.948 1016.91i 0.104823 0.134091i
\(387\) −848.553 1360.17i −0.111458 0.178660i
\(388\) −6725.15 + 1672.82i −0.879942 + 0.218877i
\(389\) −4431.14 −0.577551 −0.288776 0.957397i \(-0.593248\pi\)
−0.288776 + 0.957397i \(0.593248\pi\)
\(390\) 10450.4 362.847i 1.35686 0.0471115i
\(391\) 6310.69i 0.816228i
\(392\) −3022.07 + 6772.55i −0.389381 + 0.872616i
\(393\) 1331.03 + 4648.23i 0.170844 + 0.596622i
\(394\) 7189.24 9196.56i 0.919261 1.17593i
\(395\) 494.628 + 1109.63i 0.0630061 + 0.141346i
\(396\) 8882.61 9174.66i 1.12719 1.16425i
\(397\) −10715.8 −1.35469 −0.677343 0.735668i \(-0.736869\pi\)
−0.677343 + 0.735668i \(0.736869\pi\)
\(398\) 7657.44 9795.49i 0.964403 1.23368i
\(399\) 644.912 184.672i 0.0809173 0.0231708i
\(400\) −1937.12 + 7761.93i −0.242140 + 0.970241i
\(401\) 3245.09i 0.404120i 0.979373 + 0.202060i \(0.0647635\pi\)
−0.979373 + 0.202060i \(0.935236\pi\)
\(402\) −197.311 + 487.462i −0.0244800 + 0.0604786i
\(403\) 3932.01i 0.486023i
\(404\) −2978.83 11975.6i −0.366837 1.47478i
\(405\) −292.711 + 8145.21i −0.0359134 + 0.999355i
\(406\) 1498.81 + 1171.67i 0.183214 + 0.143224i
\(407\) 636.571i 0.0775274i
\(408\) 1148.91 8104.73i 0.139411 0.983441i
\(409\) −3135.87 −0.379117 −0.189558 0.981869i \(-0.560706\pi\)
−0.189558 + 0.981869i \(0.560706\pi\)
\(410\) −3636.03 + 14593.5i −0.437977 + 1.75786i
\(411\) 1798.75 515.076i 0.215878 0.0618171i
\(412\) 696.777 + 2801.22i 0.0833198 + 0.334967i
\(413\) 68.3681i 0.00814570i
\(414\) −730.479 + 6883.54i −0.0867176 + 0.817168i
\(415\) −6418.40 + 2861.05i −0.759197 + 0.338418i
\(416\) 11341.8 + 2016.04i 1.33673 + 0.237608i
\(417\) −2868.00 + 821.257i −0.336803 + 0.0964440i
\(418\) −3405.10 + 4355.84i −0.398442 + 0.509692i
\(419\) 7364.44i 0.858655i −0.903149 0.429327i \(-0.858751\pi\)
0.903149 0.429327i \(-0.141249\pi\)
\(420\) −1467.63 1067.37i −0.170507 0.124005i
\(421\) 4582.24i 0.530463i 0.964185 + 0.265231i \(0.0854483\pi\)
−0.964185 + 0.265231i \(0.914552\pi\)
\(422\) −9575.97 7485.83i −1.10462 0.863518i
\(423\) 7151.78 + 11463.8i 0.822060 + 1.31770i
\(424\) −8427.96 3760.75i −0.965325 0.430750i
\(425\) 5817.51 6472.47i 0.663978 0.738731i
\(426\) −12117.0 4904.63i −1.37810 0.557817i
\(427\) 957.065i 0.108468i
\(428\) −2602.37 10462.2i −0.293903 1.18157i
\(429\) −5381.72 18794.1i −0.605669 2.11512i
\(430\) 453.942 1821.94i 0.0509094 0.204329i
\(431\) 5956.76 0.665724 0.332862 0.942976i \(-0.391986\pi\)
0.332862 + 0.942976i \(0.391986\pi\)
\(432\) −2191.35 + 8707.44i −0.244054 + 0.969762i
\(433\) 5990.82i 0.664897i −0.943121 0.332449i \(-0.892125\pi\)
0.943121 0.332449i \(-0.107875\pi\)
\(434\) −420.268 + 537.612i −0.0464827 + 0.0594613i
\(435\) 7665.57 6433.18i 0.844910 0.709075i
\(436\) 9221.34 2293.72i 1.01289 0.251948i
\(437\) 2996.98i 0.328066i
\(438\) 3405.60 8413.65i 0.371521 0.917853i
\(439\) 3323.14i 0.361287i 0.983549 + 0.180644i \(0.0578180\pi\)
−0.983549 + 0.180644i \(0.942182\pi\)
\(440\) 14956.5 + 5.81797i 1.62051 + 0.000630366i
\(441\) −7508.08 + 4683.98i −0.810721 + 0.505775i
\(442\) −9872.74 7717.83i −1.06244 0.830542i
\(443\) 10439.3 1.11961 0.559805 0.828624i \(-0.310876\pi\)
0.559805 + 0.828624i \(0.310876\pi\)
\(444\) 223.439 + 387.828i 0.0238827 + 0.0414538i
\(445\) −3476.18 7798.38i −0.370307 0.830739i
\(446\) −12456.2 9737.41i −1.32246 1.03381i
\(447\) 7006.93 2006.45i 0.741424 0.212308i
\(448\) −1335.25 1487.90i −0.140814 0.156912i
\(449\) 1513.03i 0.159029i −0.996834 0.0795147i \(-0.974663\pi\)
0.996834 0.0795147i \(-0.0253371\pi\)
\(450\) −7094.80 + 6386.61i −0.743227 + 0.669039i
\(451\) 28117.6 2.93571
\(452\) −1286.30 5171.26i −0.133855 0.538132i
\(453\) −1020.03 3562.15i −0.105795 0.369458i
\(454\) −4722.56 3691.77i −0.488195 0.381637i
\(455\) −2537.44 + 1131.08i −0.261444 + 0.116540i
\(456\) 545.624 3848.98i 0.0560333 0.395274i
\(457\) 14449.0i 1.47898i −0.673165 0.739492i \(-0.735066\pi\)
0.673165 0.739492i \(-0.264934\pi\)
\(458\) 6069.47 7764.14i 0.619230 0.792127i
\(459\) 6543.72 7251.60i 0.665435 0.737420i
\(460\) −6389.25 + 4990.68i −0.647610 + 0.505851i
\(461\) −12494.6 −1.26233 −0.631164 0.775649i \(-0.717423\pi\)
−0.631164 + 0.775649i \(0.717423\pi\)
\(462\) −1272.96 + 3144.88i −0.128189 + 0.316695i
\(463\) −1991.33 −0.199881 −0.0999406 0.994993i \(-0.531865\pi\)
−0.0999406 + 0.994993i \(0.531865\pi\)
\(464\) 9739.83 5164.95i 0.974484 0.516760i
\(465\) 2307.53 + 2749.57i 0.230127 + 0.274212i
\(466\) −1416.05 1106.97i −0.140766 0.110041i
\(467\) 1976.98 0.195897 0.0979485 0.995191i \(-0.468772\pi\)
0.0979485 + 0.995191i \(0.468772\pi\)
\(468\) 9875.57 + 9561.21i 0.975424 + 0.944374i
\(469\) 139.715i 0.0137558i
\(470\) −3825.92 + 15355.7i −0.375482 + 1.50703i
\(471\) −9465.23 + 2710.39i −0.925976 + 0.265155i
\(472\) −361.805 161.446i −0.0352827 0.0157440i
\(473\) −3510.36 −0.341240
\(474\) −599.198 + 1480.34i −0.0580634 + 0.143448i
\(475\) 2762.77 3073.81i 0.266872 0.296918i
\(476\) 524.959 + 2110.47i 0.0505493 + 0.203221i
\(477\) −5828.88 9343.28i −0.559509 0.896854i
\(478\) 7461.97 + 5833.25i 0.714022 + 0.558173i
\(479\) 15429.2 1.47177 0.735884 0.677108i \(-0.236767\pi\)
0.735884 + 0.677108i \(0.236767\pi\)
\(480\) −9114.22 + 5246.24i −0.866678 + 0.498869i
\(481\) 685.203 0.0649534
\(482\) 9870.12 + 7715.78i 0.932721 + 0.729137i
\(483\) −506.275 1768.02i −0.0476942 0.166558i
\(484\) −4179.38 16802.1i −0.392503 1.57796i
\(485\) −3943.17 8846.01i −0.369176 0.828200i
\(486\) −7977.11 + 7152.41i −0.744546 + 0.667572i
\(487\) −323.435 −0.0300949 −0.0150475 0.999887i \(-0.504790\pi\)
−0.0150475 + 0.999887i \(0.504790\pi\)
\(488\) −5064.81 2260.04i −0.469822 0.209645i
\(489\) −3551.17 12401.4i −0.328403 1.14685i
\(490\) −10057.0 2505.74i −0.927204 0.231016i
\(491\) 10843.0i 0.996617i −0.867000 0.498308i \(-0.833955\pi\)
0.867000 0.498308i \(-0.166045\pi\)
\(492\) −17130.5 + 9869.36i −1.56972 + 0.904360i
\(493\) −11992.9 −1.09560
\(494\) −4688.61 3665.23i −0.427026 0.333819i
\(495\) 14792.8 + 9984.02i 1.34320 + 0.906562i
\(496\) 1852.62 + 3493.59i 0.167712 + 0.316264i
\(497\) 3472.96 0.313447
\(498\) −8562.63 3465.91i −0.770483 0.311870i
\(499\) −8534.00 −0.765599 −0.382800 0.923831i \(-0.625040\pi\)
−0.382800 + 0.923831i \(0.625040\pi\)
\(500\) −11153.7 771.322i −0.997617 0.0689891i
\(501\) 4451.94 + 15547.1i 0.397002 + 1.38641i
\(502\) 3822.02 4889.18i 0.339811 0.434691i
\(503\) 8197.47i 0.726654i 0.931662 + 0.363327i \(0.118359\pi\)
−0.931662 + 0.363327i \(0.881641\pi\)
\(504\) −328.320 2362.81i −0.0290169 0.208825i
\(505\) 15752.3 7021.71i 1.38806 0.618737i
\(506\) 11941.5 + 9335.03i 1.04914 + 0.820144i
\(507\) 9255.04 2650.20i 0.810711 0.232149i
\(508\) 501.443 + 2015.93i 0.0437951 + 0.176068i
\(509\) 9137.11 0.795669 0.397834 0.917457i \(-0.369762\pi\)
0.397834 + 0.917457i \(0.369762\pi\)
\(510\) 11433.1 396.966i 0.992675 0.0344665i
\(511\) 2411.50i 0.208764i
\(512\) −11027.1 + 3552.60i −0.951823 + 0.306649i
\(513\) 3107.64 3443.82i 0.267458 0.296391i
\(514\) −12250.1 9576.30i −1.05123 0.821775i
\(515\) −3684.63 + 1642.45i −0.315270 + 0.140534i
\(516\) 2138.67 1232.15i 0.182461 0.105121i
\(517\) 29586.1 2.51682
\(518\) −93.6857 73.2370i −0.00794655 0.00621207i
\(519\) −4434.79 15487.2i −0.375078 1.30985i
\(520\) −6.26244 + 16099.1i −0.000528127 + 1.35768i
\(521\) 9974.29i 0.838736i 0.907816 + 0.419368i \(0.137748\pi\)
−0.907816 + 0.419368i \(0.862252\pi\)
\(522\) 13081.5 + 1388.21i 1.09686 + 0.116399i
\(523\) 13425.7i 1.12250i −0.827647 0.561248i \(-0.810321\pi\)
0.827647 0.561248i \(-0.189679\pi\)
\(524\) −7223.92 + 1796.88i −0.602249 + 0.149804i
\(525\) 1110.59 2280.05i 0.0923244 0.189542i
\(526\) −6089.87 + 7790.23i −0.504812 + 0.645761i
\(527\) 4301.74i 0.355573i
\(528\) 13636.8 + 14162.9i 1.12398 + 1.16735i
\(529\) 3950.83 0.324717
\(530\) 3118.22 12515.3i 0.255560 1.02571i
\(531\) −250.229 401.099i −0.0204501 0.0327801i
\(532\) 249.306 + 1002.27i 0.0203172 + 0.0816805i
\(533\) 30265.7i 2.45957i
\(534\) 4211.09 10403.6i 0.341258 0.843088i
\(535\) 13761.6 6134.33i 1.11209 0.495720i
\(536\) −739.375 329.927i −0.0595824 0.0265870i
\(537\) 2887.19 + 10082.7i 0.232014 + 0.810241i
\(538\) 1304.93 + 1020.10i 0.104571 + 0.0817466i
\(539\) 19377.1i 1.54848i
\(540\) −12516.8 890.407i −0.997479 0.0709574i
\(541\) 8972.66i 0.713059i 0.934284 + 0.356530i \(0.116040\pi\)
−0.934284 + 0.356530i \(0.883960\pi\)
\(542\) −13095.5 + 16752.0i −1.03783 + 1.32760i
\(543\) 2779.92 + 9708.06i 0.219701 + 0.767243i
\(544\) 12408.3 + 2205.62i 0.977943 + 0.173833i
\(545\) 5406.77 + 12129.4i 0.424955 + 0.953334i
\(546\) −3385.13 1370.21i −0.265330 0.107398i
\(547\) 1210.47i 0.0946175i 0.998880 + 0.0473087i \(0.0150645\pi\)
−0.998880 + 0.0473087i \(0.984936\pi\)
\(548\) 695.349 + 2795.48i 0.0542041 + 0.217914i
\(549\) −3502.88 5614.87i −0.272312 0.436497i
\(550\) 3642.11 + 20582.6i 0.282364 + 1.59572i
\(551\) −5695.48 −0.440355
\(552\) −10551.9 1495.82i −0.813622 0.115338i
\(553\) 424.291i 0.0326269i
\(554\) −1123.16 878.008i −0.0861343 0.0673339i
\(555\) −479.148 + 402.116i −0.0366463 + 0.0307547i
\(556\) −1108.69 4457.22i −0.0845666 0.339979i
\(557\) 13253.5i 1.00820i −0.863644 0.504102i \(-0.831824\pi\)
0.863644 0.504102i \(-0.168176\pi\)
\(558\) −497.938 + 4692.23i −0.0377767 + 0.355982i
\(559\) 3778.54i 0.285895i
\(560\) 1721.59 2200.51i 0.129912 0.166051i
\(561\) −5887.77 20561.3i −0.443105 1.54741i
\(562\) −13749.1 + 17588.0i −1.03197 + 1.32011i
\(563\) −7028.69 −0.526152 −0.263076 0.964775i \(-0.584737\pi\)
−0.263076 + 0.964775i \(0.584737\pi\)
\(564\) −18025.2 + 10384.8i −1.34574 + 0.775318i
\(565\) 6802.09 3032.08i 0.506488 0.225771i
\(566\) 9571.87 12244.5i 0.710840 0.909316i
\(567\) 1251.54 2556.60i 0.0926983 0.189360i
\(568\) 8201.11 18378.9i 0.605829 1.35768i
\(569\) 15183.3i 1.11866i 0.828945 + 0.559330i \(0.188942\pi\)
−0.828945 + 0.559330i \(0.811058\pi\)
\(570\) 5429.61 188.521i 0.398985 0.0138531i
\(571\) −20286.3 −1.48679 −0.743395 0.668853i \(-0.766786\pi\)
−0.743395 + 0.668853i \(0.766786\pi\)
\(572\) 29208.3 7265.29i 2.13507 0.531079i
\(573\) −19622.9 + 5619.05i −1.43064 + 0.409667i
\(574\) 3234.91 4138.13i 0.235231 0.300910i
\(575\) −8426.80 7574.08i −0.611168 0.549324i
\(576\) −13279.3 3842.12i −0.960601 0.277931i
\(577\) 11832.9i 0.853744i −0.904312 0.426872i \(-0.859615\pi\)
0.904312 0.426872i \(-0.140385\pi\)
\(578\) 146.801 + 114.759i 0.0105642 + 0.00825836i
\(579\) 652.780 + 2279.64i 0.0468542 + 0.163625i
\(580\) 9484.32 + 12142.2i 0.678991 + 0.869270i
\(581\) 2454.20 0.175245
\(582\) 4776.81 11801.2i 0.340215 0.840511i
\(583\) −24113.4 −1.71299
\(584\) 12761.7 + 5694.57i 0.904252 + 0.403498i
\(585\) −10746.8 + 15922.9i −0.759528 + 1.12535i
\(586\) 1199.11 1533.92i 0.0845306 0.108133i
\(587\) −18390.7 −1.29313 −0.646565 0.762859i \(-0.723795\pi\)
−0.646565 + 0.762859i \(0.723795\pi\)
\(588\) −6801.41 11805.4i −0.477016 0.827968i
\(589\) 2042.92i 0.142915i
\(590\) 133.863 537.270i 0.00934074 0.0374899i
\(591\) 5903.52 + 20616.3i 0.410894 + 1.43493i
\(592\) −608.803 + 322.843i −0.0422663 + 0.0224134i
\(593\) −26626.5 −1.84388 −0.921939 0.387335i \(-0.873396\pi\)
−0.921939 + 0.387335i \(0.873396\pi\)
\(594\) 4042.20 + 23109.3i 0.279215 + 1.59627i
\(595\) −2776.04 + 1237.44i −0.191271 + 0.0852605i
\(596\) 2708.69 + 10889.6i 0.186162 + 0.748417i
\(597\) 6287.98 + 21958.9i 0.431072 + 1.50539i
\(598\) −10048.2 + 12853.8i −0.687126 + 0.878979i
\(599\) −13589.0 −0.926929 −0.463465 0.886115i \(-0.653394\pi\)
−0.463465 + 0.886115i \(0.653394\pi\)
\(600\) −9443.50 11261.5i −0.642549 0.766245i
\(601\) 271.371 0.0184184 0.00920920 0.999958i \(-0.497069\pi\)
0.00920920 + 0.999958i \(0.497069\pi\)
\(602\) −403.864 + 516.628i −0.0273426 + 0.0349770i
\(603\) −511.361 819.676i −0.0345344 0.0553562i
\(604\) 5536.01 1377.03i 0.372942 0.0927659i
\(605\) 22100.9 9851.65i 1.48518 0.662027i
\(606\) 21014.8 + 8506.19i 1.40869 + 0.570199i
\(607\) −21346.6 −1.42740 −0.713701 0.700451i \(-0.752982\pi\)
−0.713701 + 0.700451i \(0.752982\pi\)
\(608\) 5892.76 + 1047.46i 0.393064 + 0.0698684i
\(609\) −3359.96 + 962.129i −0.223567 + 0.0640188i
\(610\) 1873.90 7521.08i 0.124381 0.499213i
\(611\) 31846.3i 2.10862i
\(612\) 10804.2 + 10460.3i 0.713616 + 0.690900i
\(613\) 25625.9 1.68845 0.844227 0.535986i \(-0.180060\pi\)
0.844227 + 0.535986i \(0.180060\pi\)
\(614\) 9266.45 11853.8i 0.609061 0.779118i
\(615\) −17761.6 21164.1i −1.16458 1.38768i
\(616\) −4770.10 2128.53i −0.312002 0.139222i
\(617\) 25139.3 1.64031 0.820154 0.572142i \(-0.193888\pi\)
0.820154 + 0.572142i \(0.193888\pi\)
\(618\) −4915.57 1989.68i −0.319957 0.129509i
\(619\) 2383.46 0.154765 0.0773824 0.997001i \(-0.475344\pi\)
0.0773824 + 0.997001i \(0.475344\pi\)
\(620\) −4355.30 + 3401.94i −0.282118 + 0.220363i
\(621\) −9441.19 8519.56i −0.610083 0.550529i
\(622\) −17453.5 13643.9i −1.12511 0.879536i
\(623\) 2981.86i 0.191759i
\(624\) −15244.9 + 14678.6i −0.978019 + 0.941687i
\(625\) −1660.65 15536.5i −0.106282 0.994336i
\(626\) 4136.60 5291.59i 0.264108 0.337851i
\(627\) −2796.13 9764.67i −0.178097 0.621951i
\(628\) −3659.00 14710.1i −0.232500 0.934710i
\(629\) 749.633 0.0475196
\(630\) 3171.27 1028.43i 0.200550 0.0650376i
\(631\) 13751.7i 0.867585i −0.901013 0.433793i \(-0.857175\pi\)
0.901013 0.433793i \(-0.142825\pi\)
\(632\) −2245.35 1001.93i −0.141322 0.0630611i
\(633\) 21466.9 6147.07i 1.34792 0.385978i
\(634\) 7153.99 9151.47i 0.448140 0.573267i
\(635\) −2651.68 + 1182.00i −0.165714 + 0.0738684i
\(636\) 14691.0 8463.87i 0.915934 0.527695i
\(637\) −20857.4 −1.29733
\(638\) 17740.4 22693.7i 1.10086 1.40823i
\(639\) 20375.0 12711.1i 1.26138 0.786923i
\(640\) −7579.76 14307.0i −0.468151 0.883649i
\(641\) 7866.10i 0.484699i −0.970189 0.242350i \(-0.922082\pi\)
0.970189 0.242350i \(-0.0779181\pi\)
\(642\) 18359.0 + 7431.21i 1.12862 + 0.456832i
\(643\) 27498.6i 1.68653i 0.537498 + 0.843265i \(0.319370\pi\)
−0.537498 + 0.843265i \(0.680630\pi\)
\(644\) 2747.72 683.468i 0.168129 0.0418205i
\(645\) 2217.46 + 2642.25i 0.135368 + 0.161300i
\(646\) −5129.49 4009.88i −0.312410 0.244221i
\(647\) 2282.05i 0.138666i −0.997594 0.0693328i \(-0.977913\pi\)
0.997594 0.0693328i \(-0.0220870\pi\)
\(648\) −10574.1 12660.4i −0.641035 0.767511i
\(649\) −1035.17 −0.0626100
\(650\) −22155.0 + 3920.35i −1.33691 + 0.236567i
\(651\) −345.107 1205.19i −0.0207770 0.0725576i
\(652\) 19273.3 4794.05i 1.15767 0.287960i
\(653\) 12749.7i 0.764065i 0.924149 + 0.382032i \(0.124776\pi\)
−0.924149 + 0.382032i \(0.875224\pi\)
\(654\) −6549.83 + 16181.6i −0.391619 + 0.967506i
\(655\) −4235.62 9502.09i −0.252671 0.566836i
\(656\) −14260.1 26891.1i −0.848724 1.60049i
\(657\) 8826.15 + 14147.7i 0.524111 + 0.840113i
\(658\) 3403.85 4354.25i 0.201666 0.257973i
\(659\) 11221.7i 0.663329i −0.943397 0.331664i \(-0.892390\pi\)
0.943397 0.331664i \(-0.107610\pi\)
\(660\) −16161.1 + 22221.6i −0.953135 + 1.31056i
\(661\) 16408.1i 0.965506i 0.875756 + 0.482753i \(0.160363\pi\)
−0.875756 + 0.482753i \(0.839637\pi\)
\(662\) −9757.98 7628.11i −0.572892 0.447848i
\(663\) 22132.1 6337.57i 1.29644 0.371238i
\(664\) 5795.40 12987.7i 0.338713 0.759066i
\(665\) −1318.35 + 587.665i −0.0768775 + 0.0342687i
\(666\) −817.681 86.7721i −0.0475743 0.00504857i
\(667\) 15614.1i 0.906416i
\(668\) −24162.1 + 6010.09i −1.39949 + 0.348110i
\(669\) 27923.6 7995.98i 1.61374 0.462096i
\(670\) 273.558 1097.95i 0.0157738 0.0633097i
\(671\) −14491.0 −0.833710
\(672\) 3653.28 377.525i 0.209715 0.0216716i
\(673\) 9153.75i 0.524296i 0.965028 + 0.262148i \(0.0844309\pi\)
−0.965028 + 0.262148i \(0.915569\pi\)
\(674\) 11801.0 15096.0i 0.674419 0.862725i
\(675\) −1829.46 17441.3i −0.104320 0.994544i
\(676\) 3577.75 + 14383.5i 0.203559 + 0.818358i
\(677\) 17813.6i 1.01128i −0.862746 0.505638i \(-0.831257\pi\)
0.862746 0.505638i \(-0.168743\pi\)
\(678\) 9074.50 + 3673.10i 0.514018 + 0.208060i
\(679\) 3382.45i 0.191173i
\(680\) −6.85131 + 17612.9i −0.000386376 + 0.993273i
\(681\) 10586.8 3031.53i 0.595720 0.170585i
\(682\) 8140.03 + 6363.31i 0.457035 + 0.357278i
\(683\) −1277.22 −0.0715540 −0.0357770 0.999360i \(-0.511391\pi\)
−0.0357770 + 0.999360i \(0.511391\pi\)
\(684\) 5130.96 + 4967.63i 0.286823 + 0.277693i
\(685\) −3677.07 + 1639.08i −0.205100 + 0.0914250i
\(686\) 5836.19 + 4562.33i 0.324820 + 0.253922i
\(687\) 4984.00 + 17405.2i 0.276785 + 0.966593i
\(688\) 1780.31 + 3357.23i 0.0986536 + 0.186037i
\(689\) 25955.5i 1.43516i
\(690\) −516.828 14885.2i −0.0285149 0.821261i
\(691\) −6041.97 −0.332630 −0.166315 0.986073i \(-0.553187\pi\)
−0.166315 + 0.986073i \(0.553187\pi\)
\(692\) 24069.0 5986.94i 1.32221 0.328886i
\(693\) −3299.06 5288.16i −0.180838 0.289871i
\(694\) −10673.3 8343.64i −0.583793 0.456369i
\(695\) 5862.87 2613.42i 0.319988 0.142637i
\(696\) −2842.67 + 20052.9i −0.154815 + 1.09210i
\(697\) 33111.6i 1.79941i
\(698\) 5611.54 7178.35i 0.304298 0.389262i
\(699\) 3174.41 908.998i 0.171770 0.0491866i
\(700\) 3448.21 + 1831.99i 0.186186 + 0.0989184i
\(701\) 8649.55 0.466033 0.233016 0.972473i \(-0.425140\pi\)
0.233016 + 0.972473i \(0.425140\pi\)
\(702\) −24874.8 + 4351.01i −1.33737 + 0.233929i
\(703\) 356.005 0.0190995
\(704\) −22528.5 + 20217.1i −1.20607 + 1.08233i
\(705\) −18689.2 22269.5i −0.998407 1.18967i
\(706\) 3963.83 + 3098.65i 0.211304 + 0.165183i
\(707\) −6023.21 −0.320405
\(708\) 630.671 363.347i 0.0334775 0.0192873i
\(709\) 32669.4i 1.73050i 0.501339 + 0.865251i \(0.332841\pi\)
−0.501339 + 0.865251i \(0.667159\pi\)
\(710\) 27292.2 + 6799.94i 1.44262 + 0.359433i
\(711\) −1552.91 2489.21i −0.0819112 0.131298i
\(712\) 15780.1 + 7041.44i 0.830594 + 0.370631i
\(713\) −5600.63 −0.294173
\(714\) −3703.44 1499.05i −0.194115 0.0785720i
\(715\) 17125.8 + 38419.6i 0.895760 + 2.00952i
\(716\) −15669.7 + 3897.69i −0.817883 + 0.203441i
\(717\) −16727.8 + 4790.03i −0.871285 + 0.249494i
\(718\) −1980.25 1548.02i −0.102928 0.0804618i
\(719\) −35829.6 −1.85844 −0.929221 0.369524i \(-0.879521\pi\)
−0.929221 + 0.369524i \(0.879521\pi\)
\(720\) 2046.22 19211.0i 0.105914 0.994375i
\(721\) 1408.89 0.0727736
\(722\) 12848.2 + 10043.9i 0.662274 + 0.517720i
\(723\) −22126.3 + 6335.89i −1.13815 + 0.325912i
\(724\) −15087.5 + 3752.87i −0.774479 + 0.192644i
\(725\) −14393.8 + 16014.4i −0.737343 + 0.820356i
\(726\) 29484.3 + 11934.4i 1.50725 + 0.610093i
\(727\) 15633.8 0.797561 0.398781 0.917046i \(-0.369434\pi\)
0.398781 + 0.917046i \(0.369434\pi\)
\(728\) 2291.14 5134.52i 0.116642 0.261398i
\(729\) −2014.70 19579.6i −0.102357 0.994748i
\(730\) −4721.64 + 18950.7i −0.239392 + 0.960819i
\(731\) 4133.84i 0.209159i
\(732\) 8828.58 5086.39i 0.445784 0.256828i
\(733\) −6139.39 −0.309364 −0.154682 0.987964i \(-0.549435\pi\)
−0.154682 + 0.987964i \(0.549435\pi\)
\(734\) −5347.62 4180.40i −0.268916 0.210220i
\(735\) 14585.1 12240.3i 0.731946 0.614272i
\(736\) 2871.59 16154.9i 0.143816 0.809074i
\(737\) −2115.44 −0.105730
\(738\) 3832.75 36117.3i 0.191173 1.80148i
\(739\) −23289.0 −1.15927 −0.579634 0.814877i \(-0.696804\pi\)
−0.579634 + 0.814877i \(0.696804\pi\)
\(740\) −592.832 758.966i −0.0294499 0.0377029i
\(741\) 10510.7 3009.74i 0.521078 0.149211i
\(742\) −2774.22 + 3548.82i −0.137257 + 0.175581i
\(743\) 22930.0i 1.13219i −0.824339 0.566096i \(-0.808453\pi\)
0.824339 0.566096i \(-0.191547\pi\)
\(744\) −7192.81 1019.64i −0.354437 0.0502444i
\(745\) −14323.8 + 6384.95i −0.704409 + 0.313995i
\(746\) −16851.5 13173.3i −0.827045 0.646527i
\(747\) 14398.2 8982.44i 0.705225 0.439960i
\(748\) 31954.8 7948.45i 1.56201 0.388535i
\(749\) −5262.02 −0.256702
\(750\) 13191.9 15743.2i 0.642265 0.766483i
\(751\) 10373.1i 0.504023i −0.967724 0.252011i \(-0.918908\pi\)
0.967724 0.252011i \(-0.0810920\pi\)
\(752\) −15004.8 28295.5i −0.727620 1.37211i
\(753\) 3138.49 + 10960.3i 0.151890 + 0.530431i
\(754\) 24427.4 + 19095.7i 1.17983 + 0.922311i
\(755\) 3245.95 + 7281.87i 0.156466 + 0.351013i
\(756\) 3866.10 + 2063.81i 0.185990 + 0.0992856i
\(757\) 19427.2 0.932753 0.466377 0.884586i \(-0.345559\pi\)
0.466377 + 0.884586i \(0.345559\pi\)
\(758\) 15653.6 + 12236.9i 0.750085 + 0.586364i
\(759\) −26769.7 + 7665.55i −1.28021 + 0.366590i
\(760\) −3.25372 + 8364.47i −0.000155296 + 0.399225i
\(761\) 17770.0i 0.846467i −0.906021 0.423233i \(-0.860895\pi\)
0.906021 0.423233i \(-0.139105\pi\)
\(762\) −3537.54 1431.89i −0.168178 0.0680736i
\(763\) 4637.92i 0.220058i
\(764\) −7585.68 30496.4i −0.359215 1.44414i
\(765\) −11757.3 + 17420.1i −0.555667 + 0.823301i
\(766\) 5759.14 7367.16i 0.271653 0.347502i
\(767\) 1114.25i 0.0524553i
\(768\) 6629.08 20224.7i 0.311466 0.950257i
\(769\) 6380.37 0.299196 0.149598 0.988747i \(-0.452202\pi\)
0.149598 + 0.988747i \(0.452202\pi\)
\(770\) 1764.87 7083.46i 0.0825993 0.3