Properties

Label 120.4.m.b.59.5
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.5
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73183 - 0.732884i) q^{2} +(-2.64167 - 4.47455i) q^{3} +(6.92576 + 4.00422i) q^{4} +(-10.4671 - 3.92924i) q^{5} +(3.93726 + 14.1597i) q^{6} -4.10158 q^{7} +(-15.9854 - 16.0146i) q^{8} +(-13.0432 + 23.6406i) q^{9} +O(q^{10})\) \(q+(-2.73183 - 0.732884i) q^{2} +(-2.64167 - 4.47455i) q^{3} +(6.92576 + 4.00422i) q^{4} +(-10.4671 - 3.92924i) q^{5} +(3.93726 + 14.1597i) q^{6} -4.10158 q^{7} +(-15.9854 - 16.0146i) q^{8} +(-13.0432 + 23.6406i) q^{9} +(25.7147 + 18.4052i) q^{10} -5.96978i q^{11} +(-0.378480 - 41.5675i) q^{12} -33.0570 q^{13} +(11.2048 + 3.00598i) q^{14} +(10.0691 + 57.2155i) q^{15} +(31.9324 + 55.4646i) q^{16} +50.6136 q^{17} +(52.9575 - 55.0228i) q^{18} +74.1386 q^{19} +(-56.7594 - 69.1258i) q^{20} +(10.8350 + 18.3527i) q^{21} +(-4.37515 + 16.3084i) q^{22} +184.927i q^{23} +(-29.4302 + 113.833i) q^{24} +(94.1221 + 82.2559i) q^{25} +(90.3061 + 24.2270i) q^{26} +(140.237 - 4.08828i) q^{27} +(-28.4065 - 16.4236i) q^{28} +98.3905 q^{29} +(14.4252 - 163.682i) q^{30} +192.624i q^{31} +(-46.5846 - 174.922i) q^{32} +(-26.7121 + 15.7702i) q^{33} +(-138.268 - 37.0939i) q^{34} +(42.9318 + 16.1161i) q^{35} +(-184.996 + 111.501i) q^{36} -350.946 q^{37} +(-202.534 - 54.3350i) q^{38} +(87.3258 + 147.915i) q^{39} +(104.396 + 230.438i) q^{40} -292.535i q^{41} +(-16.1490 - 58.0772i) q^{42} +80.8246i q^{43} +(23.9043 - 41.3453i) q^{44} +(229.414 - 196.199i) q^{45} +(135.530 - 505.188i) q^{46} +63.1702i q^{47} +(163.824 - 289.402i) q^{48} -326.177 q^{49} +(-196.841 - 293.689i) q^{50} +(-133.705 - 226.473i) q^{51} +(-228.945 - 132.368i) q^{52} +178.821i q^{53} +(-386.098 - 91.6086i) q^{54} +(-23.4567 + 62.4865i) q^{55} +(65.5652 + 65.6852i) q^{56} +(-195.850 - 331.737i) q^{57} +(-268.786 - 72.1088i) q^{58} +479.870i q^{59} +(-159.367 + 436.580i) q^{60} -635.627i q^{61} +(141.171 - 526.215i) q^{62} +(53.4975 - 96.9635i) q^{63} +(-0.936778 + 511.999i) q^{64} +(346.013 + 129.889i) q^{65} +(84.5304 - 23.5046i) q^{66} +288.505i q^{67} +(350.538 + 202.668i) q^{68} +(827.464 - 488.515i) q^{69} +(-105.471 - 75.4904i) q^{70} -1062.20 q^{71} +(587.094 - 169.021i) q^{72} +980.889i q^{73} +(958.725 + 257.203i) q^{74} +(119.418 - 638.447i) q^{75} +(513.467 + 296.868i) q^{76} +24.4855i q^{77} +(-130.154 - 468.079i) q^{78} +804.239i q^{79} +(-116.307 - 706.026i) q^{80} +(-388.752 - 616.695i) q^{81} +(-214.394 + 799.156i) q^{82} -300.045 q^{83} +(1.55237 + 170.492i) q^{84} +(-529.780 - 198.873i) q^{85} +(59.2350 - 220.799i) q^{86} +(-259.915 - 440.253i) q^{87} +(-95.6038 + 95.4290i) q^{88} +1112.49i q^{89} +(-770.511 + 367.849i) q^{90} +135.586 q^{91} +(-740.488 + 1280.76i) q^{92} +(861.905 - 508.849i) q^{93} +(46.2964 - 172.570i) q^{94} +(-776.020 - 291.309i) q^{95} +(-659.638 + 670.532i) q^{96} -1217.88i q^{97} +(891.059 + 239.050i) q^{98} +(141.129 + 77.8648i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54} - 2064 q^{60} + 2176 q^{64} - 176 q^{66} + 672 q^{70} - 1600 q^{75} + 2304 q^{76} - 2304 q^{81} - 736 q^{84} - 1432 q^{90} - 2752 q^{91} + 4496 q^{94} + 640 q^{96} + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73183 0.732884i −0.965847 0.259114i
\(3\) −2.64167 4.47455i −0.508390 0.861127i
\(4\) 6.92576 + 4.00422i 0.865720 + 0.500528i
\(5\) −10.4671 3.92924i −0.936210 0.351442i
\(6\) 3.93726 + 14.1597i 0.267897 + 0.963448i
\(7\) −4.10158 −0.221464 −0.110732 0.993850i \(-0.535320\pi\)
−0.110732 + 0.993850i \(0.535320\pi\)
\(8\) −15.9854 16.0146i −0.706460 0.707753i
\(9\) −13.0432 + 23.6406i −0.483080 + 0.875576i
\(10\) 25.7147 + 18.4052i 0.813172 + 0.582024i
\(11\) 5.96978i 0.163632i −0.996647 0.0818162i \(-0.973928\pi\)
0.996647 0.0818162i \(-0.0260720\pi\)
\(12\) −0.378480 41.5675i −0.00910482 0.999959i
\(13\) −33.0570 −0.705259 −0.352630 0.935763i \(-0.614712\pi\)
−0.352630 + 0.935763i \(0.614712\pi\)
\(14\) 11.2048 + 3.00598i 0.213901 + 0.0573844i
\(15\) 10.0691 + 57.2155i 0.173323 + 0.984865i
\(16\) 31.9324 + 55.4646i 0.498943 + 0.866635i
\(17\) 50.6136 0.722095 0.361047 0.932547i \(-0.382419\pi\)
0.361047 + 0.932547i \(0.382419\pi\)
\(18\) 52.9575 55.0228i 0.693455 0.720500i
\(19\) 74.1386 0.895188 0.447594 0.894237i \(-0.352281\pi\)
0.447594 + 0.894237i \(0.352281\pi\)
\(20\) −56.7594 69.1258i −0.634589 0.772850i
\(21\) 10.8350 + 18.3527i 0.112590 + 0.190709i
\(22\) −4.37515 + 16.3084i −0.0423994 + 0.158044i
\(23\) 184.927i 1.67652i 0.545273 + 0.838259i \(0.316426\pi\)
−0.545273 + 0.838259i \(0.683574\pi\)
\(24\) −29.4302 + 113.833i −0.250309 + 0.968166i
\(25\) 94.1221 + 82.2559i 0.752977 + 0.658047i
\(26\) 90.3061 + 24.2270i 0.681173 + 0.182742i
\(27\) 140.237 4.08828i 0.999575 0.0291404i
\(28\) −28.4065 16.4236i −0.191726 0.110849i
\(29\) 98.3905 0.630023 0.315011 0.949088i \(-0.397992\pi\)
0.315011 + 0.949088i \(0.397992\pi\)
\(30\) 14.4252 163.682i 0.0877887 0.996139i
\(31\) 192.624i 1.11601i 0.829838 + 0.558004i \(0.188433\pi\)
−0.829838 + 0.558004i \(0.811567\pi\)
\(32\) −46.5846 174.922i −0.257346 0.966319i
\(33\) −26.7121 + 15.7702i −0.140908 + 0.0831890i
\(34\) −138.268 37.0939i −0.697433 0.187105i
\(35\) 42.9318 + 16.1161i 0.207337 + 0.0778319i
\(36\) −184.996 + 111.501i −0.856463 + 0.516209i
\(37\) −350.946 −1.55933 −0.779665 0.626196i \(-0.784611\pi\)
−0.779665 + 0.626196i \(0.784611\pi\)
\(38\) −202.534 54.3350i −0.864614 0.231955i
\(39\) 87.3258 + 147.915i 0.358547 + 0.607318i
\(40\) 104.396 + 230.438i 0.412660 + 0.910885i
\(41\) 292.535i 1.11430i −0.830412 0.557150i \(-0.811895\pi\)
0.830412 0.557150i \(-0.188105\pi\)
\(42\) −16.1490 58.0772i −0.0593296 0.213369i
\(43\) 80.8246i 0.286643i 0.989676 + 0.143321i \(0.0457782\pi\)
−0.989676 + 0.143321i \(0.954222\pi\)
\(44\) 23.9043 41.3453i 0.0819026 0.141660i
\(45\) 229.414 196.199i 0.759979 0.649948i
\(46\) 135.530 505.188i 0.434408 1.61926i
\(47\) 63.1702i 0.196049i 0.995184 + 0.0980246i \(0.0312524\pi\)
−0.995184 + 0.0980246i \(0.968748\pi\)
\(48\) 163.824 289.402i 0.492625 0.870242i
\(49\) −326.177 −0.950954
\(50\) −196.841 293.689i −0.556751 0.830679i
\(51\) −133.705 226.473i −0.367105 0.621815i
\(52\) −228.945 132.368i −0.610557 0.353002i
\(53\) 178.821i 0.463453i 0.972781 + 0.231726i \(0.0744374\pi\)
−0.972781 + 0.231726i \(0.925563\pi\)
\(54\) −386.098 91.6086i −0.972987 0.230858i
\(55\) −23.4567 + 62.4865i −0.0575073 + 0.153194i
\(56\) 65.5652 + 65.6852i 0.156456 + 0.156742i
\(57\) −195.850 331.737i −0.455104 0.770871i
\(58\) −268.786 72.1088i −0.608506 0.163247i
\(59\) 479.870i 1.05888i 0.848348 + 0.529439i \(0.177598\pi\)
−0.848348 + 0.529439i \(0.822402\pi\)
\(60\) −159.367 + 436.580i −0.342904 + 0.939371i
\(61\) 635.627i 1.33416i −0.744986 0.667080i \(-0.767544\pi\)
0.744986 0.667080i \(-0.232456\pi\)
\(62\) 141.171 526.215i 0.289173 1.07789i
\(63\) 53.4975 96.9635i 0.106985 0.193909i
\(64\) −0.936778 + 511.999i −0.00182965 + 0.999998i
\(65\) 346.013 + 129.889i 0.660271 + 0.247858i
\(66\) 84.5304 23.5046i 0.157651 0.0438366i
\(67\) 288.505i 0.526067i 0.964787 + 0.263033i \(0.0847229\pi\)
−0.964787 + 0.263033i \(0.915277\pi\)
\(68\) 350.538 + 202.668i 0.625132 + 0.361429i
\(69\) 827.464 488.515i 1.44369 0.852324i
\(70\) −105.471 75.4904i −0.180088 0.128898i
\(71\) −1062.20 −1.77549 −0.887743 0.460340i \(-0.847727\pi\)
−0.887743 + 0.460340i \(0.847727\pi\)
\(72\) 587.094 169.021i 0.960969 0.276658i
\(73\) 980.889i 1.57266i 0.617805 + 0.786332i \(0.288022\pi\)
−0.617805 + 0.786332i \(0.711978\pi\)
\(74\) 958.725 + 257.203i 1.50607 + 0.404044i
\(75\) 119.418 638.447i 0.183857 0.982953i
\(76\) 513.467 + 296.868i 0.774982 + 0.448067i
\(77\) 24.4855i 0.0362387i
\(78\) −130.154 468.079i −0.188937 0.679480i
\(79\) 804.239i 1.14537i 0.819777 + 0.572683i \(0.194097\pi\)
−0.819777 + 0.572683i \(0.805903\pi\)
\(80\) −116.307 706.026i −0.162544 0.986701i
\(81\) −388.752 616.695i −0.533267 0.845947i
\(82\) −214.394 + 799.156i −0.288730 + 1.07624i
\(83\) −300.045 −0.396798 −0.198399 0.980121i \(-0.563574\pi\)
−0.198399 + 0.980121i \(0.563574\pi\)
\(84\) 1.55237 + 170.492i 0.00201639 + 0.221455i
\(85\) −529.780 198.873i −0.676032 0.253775i
\(86\) 59.2350 220.799i 0.0742730 0.276853i
\(87\) −259.915 440.253i −0.320297 0.542530i
\(88\) −95.6038 + 95.4290i −0.115811 + 0.115600i
\(89\) 1112.49i 1.32499i 0.749066 + 0.662495i \(0.230502\pi\)
−0.749066 + 0.662495i \(0.769498\pi\)
\(90\) −770.511 + 367.849i −0.902433 + 0.430830i
\(91\) 135.586 0.156190
\(92\) −740.488 + 1280.76i −0.839144 + 1.45139i
\(93\) 861.905 508.849i 0.961026 0.567367i
\(94\) 46.2964 172.570i 0.0507990 0.189354i
\(95\) −776.020 291.309i −0.838083 0.314607i
\(96\) −659.638 + 670.532i −0.701292 + 0.712874i
\(97\) 1217.88i 1.27481i −0.770529 0.637405i \(-0.780008\pi\)
0.770529 0.637405i \(-0.219992\pi\)
\(98\) 891.059 + 239.050i 0.918476 + 0.246405i
\(99\) 141.129 + 77.8648i 0.143273 + 0.0790475i
\(100\) 322.496 + 946.571i 0.322496 + 0.946571i
\(101\) −461.131 −0.454300 −0.227150 0.973860i \(-0.572941\pi\)
−0.227150 + 0.973860i \(0.572941\pi\)
\(102\) 199.279 + 716.675i 0.193447 + 0.695700i
\(103\) 1363.74 1.30460 0.652299 0.757962i \(-0.273805\pi\)
0.652299 + 0.757962i \(0.273805\pi\)
\(104\) 528.428 + 529.396i 0.498237 + 0.499150i
\(105\) −41.2994 234.674i −0.0383848 0.218112i
\(106\) 131.055 488.509i 0.120087 0.447624i
\(107\) 626.784 0.566295 0.283147 0.959076i \(-0.408621\pi\)
0.283147 + 0.959076i \(0.408621\pi\)
\(108\) 987.615 + 533.224i 0.879938 + 0.475088i
\(109\) 472.473i 0.415181i 0.978216 + 0.207590i \(0.0665621\pi\)
−0.978216 + 0.207590i \(0.933438\pi\)
\(110\) 109.875 153.511i 0.0952379 0.133061i
\(111\) 927.084 + 1570.33i 0.792747 + 1.34278i
\(112\) −130.973 227.492i −0.110498 0.191929i
\(113\) −507.424 −0.422429 −0.211214 0.977440i \(-0.567742\pi\)
−0.211214 + 0.977440i \(0.567742\pi\)
\(114\) 291.903 + 1049.78i 0.239818 + 0.862467i
\(115\) 726.622 1935.65i 0.589199 1.56957i
\(116\) 681.429 + 393.978i 0.545424 + 0.315344i
\(117\) 431.168 781.487i 0.340697 0.617508i
\(118\) 351.689 1310.92i 0.274370 1.02271i
\(119\) −207.596 −0.159918
\(120\) 755.326 1075.86i 0.574596 0.818437i
\(121\) 1295.36 0.973224
\(122\) −465.841 + 1736.42i −0.345699 + 1.28859i
\(123\) −1308.96 + 772.781i −0.959555 + 0.566499i
\(124\) −771.309 + 1334.07i −0.558594 + 0.966152i
\(125\) −661.986 1230.81i −0.473679 0.880698i
\(126\) −217.209 + 225.680i −0.153576 + 0.159565i
\(127\) 2049.23 1.43181 0.715903 0.698199i \(-0.246015\pi\)
0.715903 + 0.698199i \(0.246015\pi\)
\(128\) 377.795 1398.01i 0.260880 0.965371i
\(129\) 361.654 213.512i 0.246836 0.145726i
\(130\) −850.053 608.422i −0.573497 0.410478i
\(131\) 1677.53i 1.11883i 0.828888 + 0.559415i \(0.188974\pi\)
−0.828888 + 0.559415i \(0.811026\pi\)
\(132\) −248.149 + 2.25944i −0.163626 + 0.00148984i
\(133\) −304.085 −0.198252
\(134\) 211.440 788.145i 0.136311 0.508100i
\(135\) −1483.94 508.231i −0.946053 0.324011i
\(136\) −809.077 810.559i −0.510131 0.511065i
\(137\) −1839.77 −1.14731 −0.573657 0.819096i \(-0.694476\pi\)
−0.573657 + 0.819096i \(0.694476\pi\)
\(138\) −2618.51 + 728.105i −1.61524 + 0.449133i
\(139\) −1598.25 −0.975264 −0.487632 0.873049i \(-0.662139\pi\)
−0.487632 + 0.873049i \(0.662139\pi\)
\(140\) 232.803 + 283.525i 0.140539 + 0.171159i
\(141\) 282.658 166.875i 0.168823 0.0996694i
\(142\) 2901.74 + 778.466i 1.71485 + 0.460052i
\(143\) 197.343i 0.115403i
\(144\) −1727.71 + 31.4650i −0.999834 + 0.0182089i
\(145\) −1029.87 386.600i −0.589833 0.221417i
\(146\) 718.878 2679.62i 0.407498 1.51895i
\(147\) 861.652 + 1459.50i 0.483455 + 0.818892i
\(148\) −2430.57 1405.27i −1.34994 0.780489i
\(149\) −533.530 −0.293346 −0.146673 0.989185i \(-0.546856\pi\)
−0.146673 + 0.989185i \(0.546856\pi\)
\(150\) −794.138 + 1656.61i −0.432274 + 0.901742i
\(151\) 3056.41i 1.64720i −0.567173 0.823599i \(-0.691963\pi\)
0.567173 0.823599i \(-0.308037\pi\)
\(152\) −1185.13 1187.30i −0.632414 0.633572i
\(153\) −660.162 + 1196.53i −0.348830 + 0.632249i
\(154\) 17.9450 66.8901i 0.00938994 0.0350011i
\(155\) 756.866 2016.22i 0.392213 1.04482i
\(156\) 12.5114 + 1374.10i 0.00642126 + 0.705230i
\(157\) −1429.75 −0.726794 −0.363397 0.931634i \(-0.618383\pi\)
−0.363397 + 0.931634i \(0.618383\pi\)
\(158\) 589.414 2197.04i 0.296780 1.10625i
\(159\) 800.145 472.387i 0.399092 0.235615i
\(160\) −199.705 + 2013.98i −0.0986756 + 0.995120i
\(161\) 758.491i 0.371289i
\(162\) 610.037 + 1969.61i 0.295858 + 0.955232i
\(163\) 600.115i 0.288372i 0.989551 + 0.144186i \(0.0460564\pi\)
−0.989551 + 0.144186i \(0.953944\pi\)
\(164\) 1171.38 2026.03i 0.557739 0.964673i
\(165\) 341.564 60.1105i 0.161156 0.0283612i
\(166\) 819.671 + 219.898i 0.383246 + 0.102816i
\(167\) 1087.44i 0.503883i 0.967742 + 0.251942i \(0.0810691\pi\)
−0.967742 + 0.251942i \(0.918931\pi\)
\(168\) 120.710 466.893i 0.0554345 0.214414i
\(169\) −1104.23 −0.502609
\(170\) 1301.52 + 931.555i 0.587187 + 0.420276i
\(171\) −967.002 + 1752.68i −0.432447 + 0.783805i
\(172\) −323.640 + 559.772i −0.143473 + 0.248152i
\(173\) 374.343i 0.164513i 0.996611 + 0.0822567i \(0.0262127\pi\)
−0.996611 + 0.0822567i \(0.973787\pi\)
\(174\) 387.389 + 1393.18i 0.168781 + 0.606994i
\(175\) −386.049 337.379i −0.166757 0.145734i
\(176\) 331.111 190.629i 0.141809 0.0816433i
\(177\) 2147.20 1267.66i 0.911829 0.538322i
\(178\) 815.329 3039.14i 0.343323 1.27974i
\(179\) 1886.45i 0.787708i −0.919173 0.393854i \(-0.871142\pi\)
0.919173 0.393854i \(-0.128858\pi\)
\(180\) 2374.49 440.204i 0.983246 0.182283i
\(181\) 986.271i 0.405022i 0.979280 + 0.202511i \(0.0649101\pi\)
−0.979280 + 0.202511i \(0.935090\pi\)
\(182\) −370.397 99.3688i −0.150855 0.0404709i
\(183\) −2844.15 + 1679.12i −1.14888 + 0.678273i
\(184\) 2961.53 2956.12i 1.18656 1.18439i
\(185\) 3673.41 + 1378.95i 1.45986 + 0.548015i
\(186\) −2727.50 + 758.411i −1.07522 + 0.298975i
\(187\) 302.152i 0.118158i
\(188\) −252.947 + 437.501i −0.0981281 + 0.169724i
\(189\) −575.191 + 16.7684i −0.221370 + 0.00645355i
\(190\) 1906.46 + 1364.54i 0.727941 + 0.521021i
\(191\) 3513.46 1.33102 0.665510 0.746389i \(-0.268214\pi\)
0.665510 + 0.746389i \(0.268214\pi\)
\(192\) 2293.44 1348.34i 0.862056 0.506813i
\(193\) 3049.07i 1.13719i 0.822619 + 0.568593i \(0.192512\pi\)
−0.822619 + 0.568593i \(0.807488\pi\)
\(194\) −892.561 + 3327.02i −0.330320 + 1.23127i
\(195\) −332.856 1891.37i −0.122238 0.694585i
\(196\) −2259.02 1306.09i −0.823260 0.475979i
\(197\) 3893.24i 1.40803i 0.710186 + 0.704014i \(0.248611\pi\)
−0.710186 + 0.704014i \(0.751389\pi\)
\(198\) −328.474 316.144i −0.117897 0.113472i
\(199\) 2888.21i 1.02884i −0.857537 0.514422i \(-0.828006\pi\)
0.857537 0.514422i \(-0.171994\pi\)
\(200\) −187.278 2822.22i −0.0662127 0.997806i
\(201\) 1290.93 762.134i 0.453010 0.267447i
\(202\) 1259.73 + 337.956i 0.438784 + 0.117715i
\(203\) −403.556 −0.139528
\(204\) −19.1563 2103.88i −0.00657454 0.722065i
\(205\) −1149.44 + 3062.01i −0.391612 + 1.04322i
\(206\) −3725.51 999.466i −1.26004 0.338039i
\(207\) −4371.77 2412.03i −1.46792 0.809892i
\(208\) −1055.59 1833.50i −0.351884 0.611202i
\(209\) 442.591i 0.146482i
\(210\) −59.1659 + 671.356i −0.0194421 + 0.220609i
\(211\) −1800.81 −0.587550 −0.293775 0.955875i \(-0.594912\pi\)
−0.293775 + 0.955875i \(0.594912\pi\)
\(212\) −716.041 + 1238.47i −0.231971 + 0.401220i
\(213\) 2805.97 + 4752.85i 0.902638 + 1.52892i
\(214\) −1712.27 459.360i −0.546954 0.146735i
\(215\) 317.579 846.003i 0.100738 0.268358i
\(216\) −2307.20 2180.48i −0.726784 0.686866i
\(217\) 790.062i 0.247156i
\(218\) 346.268 1290.71i 0.107579 0.401001i
\(219\) 4389.04 2591.19i 1.35426 0.799526i
\(220\) −412.666 + 338.841i −0.126463 + 0.103839i
\(221\) −1673.14 −0.509264
\(222\) −1381.77 4969.31i −0.417740 1.50233i
\(223\) 3394.93 1.01947 0.509734 0.860332i \(-0.329744\pi\)
0.509734 + 0.860332i \(0.329744\pi\)
\(224\) 191.070 + 717.458i 0.0569929 + 0.214005i
\(225\) −3172.22 + 1152.22i −0.939918 + 0.341399i
\(226\) 1386.19 + 371.883i 0.408001 + 0.109457i
\(227\) −1666.84 −0.487366 −0.243683 0.969855i \(-0.578356\pi\)
−0.243683 + 0.969855i \(0.578356\pi\)
\(228\) −28.0600 3081.76i −0.00815053 0.895151i
\(229\) 5278.56i 1.52322i 0.648037 + 0.761609i \(0.275590\pi\)
−0.648037 + 0.761609i \(0.724410\pi\)
\(230\) −3403.62 + 4755.34i −0.975773 + 1.36330i
\(231\) 109.562 64.6826i 0.0312061 0.0184234i
\(232\) −1572.81 1575.69i −0.445086 0.445901i
\(233\) −469.587 −0.132033 −0.0660165 0.997819i \(-0.521029\pi\)
−0.0660165 + 0.997819i \(0.521029\pi\)
\(234\) −1750.62 + 1818.89i −0.489066 + 0.508139i
\(235\) 248.211 661.211i 0.0689000 0.183543i
\(236\) −1921.51 + 3323.47i −0.529998 + 0.916692i
\(237\) 3598.61 2124.53i 0.986306 0.582292i
\(238\) 567.116 + 152.144i 0.154456 + 0.0414370i
\(239\) 130.148 0.0352242 0.0176121 0.999845i \(-0.494394\pi\)
0.0176121 + 0.999845i \(0.494394\pi\)
\(240\) −2851.90 + 2385.51i −0.767040 + 0.641599i
\(241\) 5560.04 1.48611 0.743057 0.669228i \(-0.233375\pi\)
0.743057 + 0.669228i \(0.233375\pi\)
\(242\) −3538.70 949.350i −0.939986 0.252176i
\(243\) −1732.48 + 3368.59i −0.457360 + 0.889281i
\(244\) 2545.19 4402.20i 0.667784 1.15501i
\(245\) 3414.14 + 1281.63i 0.890292 + 0.334205i
\(246\) 4142.22 1151.79i 1.07357 0.298517i
\(247\) −2450.80 −0.631340
\(248\) 3084.80 3079.16i 0.789859 0.788415i
\(249\) 792.619 + 1342.57i 0.201728 + 0.341693i
\(250\) 906.389 + 3847.53i 0.229300 + 0.973356i
\(251\) 6537.02i 1.64388i 0.569576 + 0.821939i \(0.307107\pi\)
−0.569576 + 0.821939i \(0.692893\pi\)
\(252\) 758.775 457.330i 0.189676 0.114322i
\(253\) 1103.97 0.274332
\(254\) −5598.13 1501.85i −1.38291 0.371001i
\(255\) 509.636 + 2895.88i 0.125155 + 0.711166i
\(256\) −2056.65 + 3542.23i −0.502111 + 0.864803i
\(257\) 2769.77 0.672270 0.336135 0.941814i \(-0.390880\pi\)
0.336135 + 0.941814i \(0.390880\pi\)
\(258\) −1144.45 + 318.228i −0.276165 + 0.0767906i
\(259\) 1439.43 0.345336
\(260\) 1876.30 + 2285.09i 0.447550 + 0.545060i
\(261\) −1283.32 + 2326.01i −0.304351 + 0.551633i
\(262\) 1229.44 4582.73i 0.289904 1.08062i
\(263\) 2001.24i 0.469207i −0.972091 0.234604i \(-0.924621\pi\)
0.972091 0.234604i \(-0.0753792\pi\)
\(264\) 679.555 + 175.692i 0.158423 + 0.0409586i
\(265\) 702.632 1871.75i 0.162877 0.433889i
\(266\) 830.708 + 222.859i 0.191481 + 0.0513698i
\(267\) 4977.91 2938.84i 1.14098 0.673611i
\(268\) −1155.24 + 1998.12i −0.263311 + 0.455427i
\(269\) −2476.45 −0.561307 −0.280654 0.959809i \(-0.590551\pi\)
−0.280654 + 0.959809i \(0.590551\pi\)
\(270\) 3681.39 + 2475.95i 0.829787 + 0.558081i
\(271\) 1616.36i 0.362313i 0.983454 + 0.181156i \(0.0579840\pi\)
−0.983454 + 0.181156i \(0.942016\pi\)
\(272\) 1616.21 + 2807.27i 0.360284 + 0.625792i
\(273\) −358.173 606.686i −0.0794052 0.134499i
\(274\) 5025.93 + 1348.34i 1.10813 + 0.297285i
\(275\) 491.049 561.888i 0.107678 0.123211i
\(276\) 7686.94 69.9911i 1.67645 0.0152644i
\(277\) −5749.66 −1.24716 −0.623580 0.781759i \(-0.714323\pi\)
−0.623580 + 0.781759i \(0.714323\pi\)
\(278\) 4366.14 + 1171.33i 0.941956 + 0.252704i
\(279\) −4553.74 2512.43i −0.977151 0.539122i
\(280\) −428.187 945.158i −0.0913894 0.201729i
\(281\) 7754.89i 1.64633i −0.567804 0.823164i \(-0.692207\pi\)
0.567804 0.823164i \(-0.307793\pi\)
\(282\) −894.472 + 248.717i −0.188883 + 0.0525209i
\(283\) 4931.44i 1.03584i 0.855428 + 0.517922i \(0.173294\pi\)
−0.855428 + 0.517922i \(0.826706\pi\)
\(284\) −7356.52 4253.27i −1.53707 0.888680i
\(285\) 746.512 + 4241.88i 0.155156 + 0.881639i
\(286\) 144.630 539.107i 0.0299025 0.111462i
\(287\) 1199.86i 0.246778i
\(288\) 4742.88 + 1180.26i 0.970405 + 0.241484i
\(289\) −2351.26 −0.478579
\(290\) 2530.09 + 1810.90i 0.512317 + 0.366688i
\(291\) −5449.44 + 3217.22i −1.09777 + 0.648100i
\(292\) −3927.70 + 6793.41i −0.787162 + 1.36149i
\(293\) 688.926i 0.137363i −0.997639 0.0686817i \(-0.978121\pi\)
0.997639 0.0686817i \(-0.0218793\pi\)
\(294\) −1284.24 4618.58i −0.254757 0.916194i
\(295\) 1885.53 5022.87i 0.372134 0.991332i
\(296\) 5610.00 + 5620.28i 1.10160 + 1.10362i
\(297\) −24.4061 837.181i −0.00476831 0.163563i
\(298\) 1457.51 + 391.016i 0.283327 + 0.0760099i
\(299\) 6113.13i 1.18238i
\(300\) 3383.55 3943.55i 0.651164 0.758937i
\(301\) 331.508i 0.0634811i
\(302\) −2239.99 + 8349.58i −0.426811 + 1.59094i
\(303\) 1218.16 + 2063.35i 0.230961 + 0.391210i
\(304\) 2367.42 + 4112.07i 0.446648 + 0.775801i
\(305\) −2497.53 + 6653.20i −0.468880 + 1.24905i
\(306\) 2680.37 2784.90i 0.500740 0.520269i
\(307\) 6625.29i 1.23168i −0.787872 0.615839i \(-0.788817\pi\)
0.787872 0.615839i \(-0.211183\pi\)
\(308\) −98.0454 + 169.581i −0.0181385 + 0.0313726i
\(309\) −3602.56 6102.14i −0.663244 1.12343i
\(310\) −3545.28 + 4953.28i −0.649544 + 0.907507i
\(311\) 5355.88 0.976540 0.488270 0.872693i \(-0.337628\pi\)
0.488270 + 0.872693i \(0.337628\pi\)
\(312\) 972.875 3762.97i 0.176533 0.682808i
\(313\) 57.6042i 0.0104025i −0.999986 0.00520125i \(-0.998344\pi\)
0.999986 0.00520125i \(-0.00165562\pi\)
\(314\) 3905.84 + 1047.84i 0.701971 + 0.188322i
\(315\) −940.959 + 804.726i −0.168308 + 0.143940i
\(316\) −3220.35 + 5569.97i −0.573288 + 0.991567i
\(317\) 7806.30i 1.38311i −0.722325 0.691554i \(-0.756926\pi\)
0.722325 0.691554i \(-0.243074\pi\)
\(318\) −2532.06 + 704.066i −0.446512 + 0.124157i
\(319\) 587.370i 0.103092i
\(320\) 2021.57 5355.49i 0.353155 0.935565i
\(321\) −1655.76 2804.58i −0.287898 0.487652i
\(322\) −555.886 + 2072.07i −0.0962059 + 0.358608i
\(323\) 3752.43 0.646410
\(324\) −223.016 5827.73i −0.0382401 0.999269i
\(325\) −3111.40 2719.14i −0.531044 0.464094i
\(326\) 439.815 1639.41i 0.0747212 0.278523i
\(327\) 2114.10 1248.12i 0.357523 0.211074i
\(328\) −4684.84 + 4676.28i −0.788650 + 0.787208i
\(329\) 259.097i 0.0434179i
\(330\) −977.147 86.1149i −0.163001 0.0143651i
\(331\) −6218.44 −1.03262 −0.516308 0.856403i \(-0.672694\pi\)
−0.516308 + 0.856403i \(0.672694\pi\)
\(332\) −2078.04 1201.45i −0.343516 0.198608i
\(333\) 4577.45 8296.57i 0.753282 1.36531i
\(334\) 796.966 2970.69i 0.130563 0.486674i
\(335\) 1133.61 3019.82i 0.184882 0.492509i
\(336\) −671.938 + 1187.00i −0.109099 + 0.192727i
\(337\) 8547.36i 1.38162i 0.723038 + 0.690808i \(0.242745\pi\)
−0.723038 + 0.690808i \(0.757255\pi\)
\(338\) 3016.57 + 809.274i 0.485444 + 0.130233i
\(339\) 1340.45 + 2270.49i 0.214758 + 0.363765i
\(340\) −2872.80 3498.71i −0.458233 0.558071i
\(341\) 1149.92 0.182615
\(342\) 3926.19 4079.31i 0.620773 0.644983i
\(343\) 2744.68 0.432067
\(344\) 1294.38 1292.01i 0.202872 0.202501i
\(345\) −10580.7 + 1862.05i −1.65114 + 0.290579i
\(346\) 274.350 1022.64i 0.0426276 0.158895i
\(347\) −11848.5 −1.83303 −0.916517 0.399996i \(-0.869012\pi\)
−0.916517 + 0.399996i \(0.869012\pi\)
\(348\) −37.2389 4089.85i −0.00573625 0.629997i
\(349\) 3765.09i 0.577480i −0.957408 0.288740i \(-0.906764\pi\)
0.957408 0.288740i \(-0.0932363\pi\)
\(350\) 807.360 + 1204.59i 0.123301 + 0.183966i
\(351\) −4635.80 + 135.146i −0.704960 + 0.0205515i
\(352\) −1044.25 + 278.100i −0.158121 + 0.0421101i
\(353\) −7721.18 −1.16418 −0.582092 0.813123i \(-0.697766\pi\)
−0.582092 + 0.813123i \(0.697766\pi\)
\(354\) −6794.83 + 1889.37i −1.02017 + 0.283670i
\(355\) 11118.2 + 4173.63i 1.66223 + 0.623980i
\(356\) −4454.67 + 7704.87i −0.663195 + 1.14707i
\(357\) 548.399 + 928.897i 0.0813007 + 0.137710i
\(358\) −1382.55 + 5153.45i −0.204106 + 0.760805i
\(359\) −1277.28 −0.187778 −0.0938892 0.995583i \(-0.529930\pi\)
−0.0938892 + 0.995583i \(0.529930\pi\)
\(360\) −6809.33 537.667i −0.996897 0.0787154i
\(361\) −1362.46 −0.198639
\(362\) 722.822 2694.32i 0.104947 0.391189i
\(363\) −3421.92 5796.16i −0.494777 0.838070i
\(364\) 939.036 + 542.917i 0.135217 + 0.0781774i
\(365\) 3854.15 10267.1i 0.552700 1.47234i
\(366\) 9000.31 2502.63i 1.28539 0.357417i
\(367\) 4874.49 0.693315 0.346657 0.937992i \(-0.387317\pi\)
0.346657 + 0.937992i \(0.387317\pi\)
\(368\) −10256.9 + 5905.15i −1.45293 + 0.836487i
\(369\) 6915.70 + 3815.58i 0.975655 + 0.538296i
\(370\) −9024.50 6459.24i −1.26800 0.907568i
\(371\) 733.449i 0.102638i
\(372\) 8006.89 72.9044i 1.11596 0.0101611i
\(373\) −9969.36 −1.38390 −0.691949 0.721946i \(-0.743248\pi\)
−0.691949 + 0.721946i \(0.743248\pi\)
\(374\) −221.442 + 825.428i −0.0306164 + 0.114123i
\(375\) −3758.58 + 6213.49i −0.517580 + 0.855635i
\(376\) 1011.65 1009.80i 0.138755 0.138501i
\(377\) −3252.50 −0.444330
\(378\) 1583.61 + 375.740i 0.215482 + 0.0511269i
\(379\) −3910.73 −0.530028 −0.265014 0.964245i \(-0.585377\pi\)
−0.265014 + 0.964245i \(0.585377\pi\)
\(380\) −4208.06 5124.89i −0.568076 0.691846i
\(381\) −5413.38 9169.36i −0.727916 1.23297i
\(382\) −9598.16 2574.96i −1.28556 0.344886i
\(383\) 2301.53i 0.307056i −0.988144 0.153528i \(-0.950936\pi\)
0.988144 0.153528i \(-0.0490636\pi\)
\(384\) −7253.46 + 2002.61i −0.963936 + 0.266133i
\(385\) 96.2095 256.293i 0.0127358 0.0339270i
\(386\) 2234.61 8329.53i 0.294660 1.09835i
\(387\) −1910.74 1054.21i −0.250978 0.138471i
\(388\) 4876.65 8434.71i 0.638078 1.10363i
\(389\) 13438.1 1.75152 0.875758 0.482751i \(-0.160362\pi\)
0.875758 + 0.482751i \(0.160362\pi\)
\(390\) −476.853 + 5410.85i −0.0619138 + 0.702536i
\(391\) 9359.82i 1.21060i
\(392\) 5214.06 + 5223.61i 0.671810 + 0.673041i
\(393\) 7506.20 4431.49i 0.963455 0.568801i
\(394\) 2853.29 10635.6i 0.364839 1.35994i
\(395\) 3160.05 8418.08i 0.402530 1.07230i
\(396\) 665.637 + 1104.38i 0.0844685 + 0.140145i
\(397\) 10501.3 1.32757 0.663786 0.747922i \(-0.268949\pi\)
0.663786 + 0.747922i \(0.268949\pi\)
\(398\) −2116.73 + 7890.10i −0.266588 + 0.993706i
\(399\) 803.293 + 1360.64i 0.100789 + 0.170720i
\(400\) −1556.75 + 7847.07i −0.194594 + 0.980884i
\(401\) 13566.8i 1.68951i −0.535155 0.844754i \(-0.679747\pi\)
0.535155 0.844754i \(-0.320253\pi\)
\(402\) −4085.15 + 1135.92i −0.506838 + 0.140932i
\(403\) 6367.58i 0.787076i
\(404\) −3193.69 1846.47i −0.393297 0.227390i
\(405\) 1645.97 + 7982.54i 0.201948 + 0.979396i
\(406\) 1102.45 + 295.760i 0.134762 + 0.0361535i
\(407\) 2095.07i 0.255157i
\(408\) −1489.57 + 5761.48i −0.180747 + 0.699108i
\(409\) −7673.26 −0.927674 −0.463837 0.885921i \(-0.653528\pi\)
−0.463837 + 0.885921i \(0.653528\pi\)
\(410\) 5384.17 7522.47i 0.648550 0.906118i
\(411\) 4860.06 + 8232.13i 0.583282 + 0.987983i
\(412\) 9444.96 + 5460.73i 1.12942 + 0.652988i
\(413\) 1968.22i 0.234504i
\(414\) 10175.2 + 9793.25i 1.20793 + 1.16259i
\(415\) 3140.61 + 1178.95i 0.371486 + 0.139451i
\(416\) 1539.95 + 5782.42i 0.181496 + 0.681506i
\(417\) 4222.05 + 7151.44i 0.495814 + 0.839827i
\(418\) −324.368 + 1209.08i −0.0379554 + 0.141479i
\(419\) 1239.80i 0.144554i 0.997385 + 0.0722768i \(0.0230265\pi\)
−0.997385 + 0.0722768i \(0.976973\pi\)
\(420\) 653.657 1790.67i 0.0759409 0.208037i
\(421\) 1701.96i 0.197027i −0.995136 0.0985134i \(-0.968591\pi\)
0.995136 0.0985134i \(-0.0314087\pi\)
\(422\) 4919.51 + 1319.79i 0.567483 + 0.152242i
\(423\) −1493.38 823.939i −0.171656 0.0947075i
\(424\) 2863.76 2858.52i 0.328010 0.327411i
\(425\) 4763.86 + 4163.27i 0.543721 + 0.475172i
\(426\) −4182.14 15040.4i −0.475647 1.71059i
\(427\) 2607.07i 0.295469i
\(428\) 4340.96 + 2509.79i 0.490253 + 0.283446i
\(429\) 883.021 521.315i 0.0993769 0.0586698i
\(430\) −1487.59 + 2078.38i −0.166833 + 0.233090i
\(431\) −9669.03 −1.08061 −0.540303 0.841471i \(-0.681690\pi\)
−0.540303 + 0.841471i \(0.681690\pi\)
\(432\) 4704.84 + 7647.62i 0.523985 + 0.851727i
\(433\) 11871.2i 1.31753i −0.752348 0.658766i \(-0.771079\pi\)
0.752348 0.658766i \(-0.228921\pi\)
\(434\) −579.023 + 2158.31i −0.0640415 + 0.238715i
\(435\) 990.708 + 5629.46i 0.109197 + 0.620487i
\(436\) −1891.89 + 3272.24i −0.207810 + 0.359430i
\(437\) 13710.2i 1.50080i
\(438\) −13889.1 + 3862.02i −1.51518 + 0.421311i
\(439\) 16373.4i 1.78009i 0.455868 + 0.890047i \(0.349329\pi\)
−0.455868 + 0.890047i \(0.650671\pi\)
\(440\) 1375.66 623.219i 0.149050 0.0675245i
\(441\) 4254.38 7711.01i 0.459387 0.832632i
\(442\) 4570.72 + 1226.21i 0.491871 + 0.131957i
\(443\) 13008.8 1.39519 0.697594 0.716493i \(-0.254254\pi\)
0.697594 + 0.716493i \(0.254254\pi\)
\(444\) 132.826 + 14588.0i 0.0141974 + 1.55927i
\(445\) 4371.26 11644.6i 0.465657 1.24047i
\(446\) −9274.36 2488.09i −0.984650 0.264158i
\(447\) 1409.41 + 2387.31i 0.149134 + 0.252608i
\(448\) 3.84227 2100.00i 0.000405201 0.221464i
\(449\) 9615.94i 1.01070i 0.862914 + 0.505350i \(0.168637\pi\)
−0.862914 + 0.505350i \(0.831363\pi\)
\(450\) 9510.42 822.799i 0.996278 0.0861936i
\(451\) −1746.37 −0.182336
\(452\) −3514.30 2031.84i −0.365705 0.211437i
\(453\) −13676.0 + 8074.02i −1.41845 + 0.837418i
\(454\) 4553.52 + 1221.60i 0.470721 + 0.126283i
\(455\) −1419.20 532.750i −0.146226 0.0548917i
\(456\) −2181.92 + 8439.39i −0.224074 + 0.866690i
\(457\) 3926.38i 0.401900i 0.979601 + 0.200950i \(0.0644030\pi\)
−0.979601 + 0.200950i \(0.935597\pi\)
\(458\) 3868.57 14420.1i 0.394687 1.47120i
\(459\) 7097.88 206.923i 0.721788 0.0210421i
\(460\) 12783.2 10496.3i 1.29570 1.06390i
\(461\) −360.528 −0.0364240 −0.0182120 0.999834i \(-0.505797\pi\)
−0.0182120 + 0.999834i \(0.505797\pi\)
\(462\) −346.708 + 96.4058i −0.0349141 + 0.00970823i
\(463\) −14036.6 −1.40894 −0.704468 0.709735i \(-0.748815\pi\)
−0.704468 + 0.709735i \(0.748815\pi\)
\(464\) 3141.84 + 5457.19i 0.314346 + 0.546000i
\(465\) −11021.1 + 1939.56i −1.09912 + 0.193430i
\(466\) 1282.83 + 344.153i 0.127524 + 0.0342115i
\(467\) 4186.44 0.414829 0.207415 0.978253i \(-0.433495\pi\)
0.207415 + 0.978253i \(0.433495\pi\)
\(468\) 6115.42 3685.90i 0.604028 0.364061i
\(469\) 1183.32i 0.116505i
\(470\) −1162.66 + 1624.40i −0.114105 + 0.159422i
\(471\) 3776.93 + 6397.49i 0.369494 + 0.625862i
\(472\) 7684.95 7670.90i 0.749424 0.748054i
\(473\) 482.505 0.0469040
\(474\) −11387.8 + 3166.50i −1.10350 + 0.306840i
\(475\) 6978.08 + 6098.34i 0.674056 + 0.589076i
\(476\) −1437.76 831.260i −0.138444 0.0800435i
\(477\) −4227.44 2332.40i −0.405788 0.223885i
\(478\) −355.543 95.3836i −0.0340212 0.00912708i
\(479\) −3466.07 −0.330624 −0.165312 0.986241i \(-0.552863\pi\)
−0.165312 + 0.986241i \(0.552863\pi\)
\(480\) 9539.21 4426.68i 0.907090 0.420936i
\(481\) 11601.2 1.09973
\(482\) −15189.1 4074.86i −1.43536 0.385072i
\(483\) −3393.91 + 2003.68i −0.319727 + 0.188759i
\(484\) 8971.37 + 5186.92i 0.842540 + 0.487126i
\(485\) −4785.33 + 12747.7i −0.448022 + 1.19349i
\(486\) 7201.62 7932.71i 0.672165 0.740401i
\(487\) 2368.19 0.220355 0.110178 0.993912i \(-0.464858\pi\)
0.110178 + 0.993912i \(0.464858\pi\)
\(488\) −10179.3 + 10160.7i −0.944256 + 0.942530i
\(489\) 2685.25 1585.31i 0.248325 0.146605i
\(490\) −8387.56 6003.36i −0.773288 0.553478i
\(491\) 19310.1i 1.77485i 0.460953 + 0.887424i \(0.347508\pi\)
−0.460953 + 0.887424i \(0.652492\pi\)
\(492\) −12160.0 + 110.719i −1.11425 + 0.0101455i
\(493\) 4979.90 0.454936
\(494\) 6695.17 + 1796.15i 0.609777 + 0.163589i
\(495\) −1171.27 1369.55i −0.106353 0.124357i
\(496\) −10683.8 + 6150.94i −0.967172 + 0.556825i
\(497\) 4356.68 0.393207
\(498\) −1181.36 4248.55i −0.106301 0.382294i
\(499\) −2257.79 −0.202551 −0.101275 0.994858i \(-0.532292\pi\)
−0.101275 + 0.994858i \(0.532292\pi\)
\(500\) 343.693 11175.1i 0.0307408 0.999527i
\(501\) 4865.79 2872.65i 0.433907 0.256169i
\(502\) 4790.88 17858.0i 0.425951 1.58773i
\(503\) 171.197i 0.0151755i −0.999971 0.00758776i \(-0.997585\pi\)
0.999971 0.00758776i \(-0.00241528\pi\)
\(504\) −2408.01 + 693.254i −0.212820 + 0.0612698i
\(505\) 4826.73 + 1811.90i 0.425320 + 0.159660i
\(506\) −3015.86 809.083i −0.264963 0.0710833i
\(507\) 2917.02 + 4940.94i 0.255521 + 0.432810i
\(508\) 14192.5 + 8205.57i 1.23954 + 0.716660i
\(509\) −872.727 −0.0759979 −0.0379989 0.999278i \(-0.512098\pi\)
−0.0379989 + 0.999278i \(0.512098\pi\)
\(510\) 730.109 8284.56i 0.0633917 0.719307i
\(511\) 4023.19i 0.348289i
\(512\) 8214.45 8169.49i 0.709045 0.705163i
\(513\) 10396.9 303.099i 0.894808 0.0260861i
\(514\) −7566.53 2029.92i −0.649310 0.174194i
\(515\) −14274.5 5358.48i −1.22138 0.458491i
\(516\) 3359.68 30.5905i 0.286631 0.00260983i
\(517\) 377.112 0.0320800
\(518\) −3932.28 1054.94i −0.333542 0.0894813i
\(519\) 1675.02 988.892i 0.141667 0.0836368i
\(520\) −3451.01 7617.59i −0.291032 0.642410i
\(521\) 783.069i 0.0658481i 0.999458 + 0.0329240i \(0.0104819\pi\)
−0.999458 + 0.0329240i \(0.989518\pi\)
\(522\) 5210.51 5413.72i 0.436893 0.453931i
\(523\) 10952.6i 0.915727i −0.889023 0.457863i \(-0.848615\pi\)
0.889023 0.457863i \(-0.151385\pi\)
\(524\) −6717.22 + 11618.2i −0.560006 + 0.968593i
\(525\) −489.804 + 2618.64i −0.0407177 + 0.217689i
\(526\) −1466.67 + 5467.03i −0.121578 + 0.453182i
\(527\) 9749.40i 0.805864i
\(528\) −1727.67 977.995i −0.142400 0.0806094i
\(529\) −22030.9 −1.81071
\(530\) −3291.24 + 4598.34i −0.269741 + 0.376867i
\(531\) −11344.4 6259.03i −0.927128 0.511523i
\(532\) −2106.02 1217.63i −0.171631 0.0992308i
\(533\) 9670.35i 0.785871i
\(534\) −15752.6 + 4380.18i −1.27656 + 0.354960i
\(535\) −6560.64 2462.79i −0.530170 0.199020i
\(536\) 4620.30 4611.85i 0.372325 0.371645i
\(537\) −8441.00 + 4983.37i −0.678317 + 0.400463i
\(538\) 6765.23 + 1814.95i 0.542137 + 0.145442i
\(539\) 1947.20i 0.155607i
\(540\) −8242.34 9461.91i −0.656841 0.754029i
\(541\) 8779.37i 0.697698i −0.937179 0.348849i \(-0.886573\pi\)
0.937179 0.348849i \(-0.113427\pi\)
\(542\) 1184.60 4415.61i 0.0938801 0.349939i
\(543\) 4413.12 2605.40i 0.348775 0.205909i
\(544\) −2357.82 8853.46i −0.185828 0.697774i
\(545\) 1856.46 4945.44i 0.145912 0.388696i
\(546\) 533.837 + 1919.86i 0.0418427 + 0.150481i
\(547\) 4135.81i 0.323281i 0.986850 + 0.161640i \(0.0516784\pi\)
−0.986850 + 0.161640i \(0.948322\pi\)
\(548\) −12741.8 7366.85i −0.993253 0.574263i
\(549\) 15026.6 + 8290.59i 1.16816 + 0.644506i
\(550\) −1753.26 + 1175.10i −0.135926 + 0.0911025i
\(551\) 7294.54 0.563989
\(552\) −21050.7 5442.43i −1.62315 0.419647i
\(553\) 3298.65i 0.253658i
\(554\) 15707.1 + 4213.83i 1.20457 + 0.323156i
\(555\) −3533.73 20079.6i −0.270267 1.53573i
\(556\) −11069.1 6399.75i −0.844306 0.488147i
\(557\) 13645.6i 1.03803i −0.854765 0.519015i \(-0.826299\pi\)
0.854765 0.519015i \(-0.173701\pi\)
\(558\) 10598.7 + 10200.9i 0.804084 + 0.773902i
\(559\) 2671.82i 0.202157i
\(560\) 477.041 + 2895.82i 0.0359976 + 0.218519i
\(561\) −1351.99 + 798.186i −0.101749 + 0.0600703i
\(562\) −5683.43 + 21185.0i −0.426586 + 1.59010i
\(563\) 10861.6 0.813076 0.406538 0.913634i \(-0.366736\pi\)
0.406538 + 0.913634i \(0.366736\pi\)
\(564\) 2625.83 23.9087i 0.196041 0.00178499i
\(565\) 5311.28 + 1993.79i 0.395482 + 0.148459i
\(566\) 3614.18 13471.9i 0.268401 1.00047i
\(567\) 1594.50 + 2529.42i 0.118100 + 0.187347i
\(568\) 16979.6 + 17010.7i 1.25431 + 1.25661i
\(569\) 4479.34i 0.330024i 0.986292 + 0.165012i \(0.0527663\pi\)
−0.986292 + 0.165012i \(0.947234\pi\)
\(570\) 1069.46 12135.2i 0.0785873 0.891732i
\(571\) 9122.59 0.668596 0.334298 0.942467i \(-0.391501\pi\)
0.334298 + 0.942467i \(0.391501\pi\)
\(572\) −790.206 + 1366.75i −0.0577626 + 0.0999069i
\(573\) −9281.40 15721.1i −0.676677 1.14618i
\(574\) 879.355 3277.80i 0.0639435 0.238350i
\(575\) −15211.3 + 17405.7i −1.10323 + 1.26238i
\(576\) −12091.7 6700.23i −0.874691 0.484681i
\(577\) 12703.2i 0.916533i −0.888815 0.458267i \(-0.848471\pi\)
0.888815 0.458267i \(-0.151529\pi\)
\(578\) 6423.24 + 1723.20i 0.462234 + 0.124006i
\(579\) 13643.2 8054.64i 0.979262 0.578134i
\(580\) −5584.58 6801.32i −0.399806 0.486913i
\(581\) 1230.66 0.0878765
\(582\) 17244.8 4795.09i 1.22821 0.341517i
\(583\) 1067.52 0.0758359
\(584\) 15708.6 15679.9i 1.11306 1.11102i
\(585\) −7583.75 + 6485.77i −0.535982 + 0.458382i
\(586\) −504.903 + 1882.03i −0.0355927 + 0.132672i
\(587\) 584.550 0.0411021 0.0205511 0.999789i \(-0.493458\pi\)
0.0205511 + 0.999789i \(0.493458\pi\)
\(588\) 123.452 + 13558.4i 0.00865826 + 0.950914i
\(589\) 14280.9i 0.999038i
\(590\) −8832.12 + 12339.7i −0.616292 + 0.861049i
\(591\) 17420.5 10284.6i 1.21249 0.715827i
\(592\) −11206.6 19465.1i −0.778018 1.35137i
\(593\) 9207.43 0.637612 0.318806 0.947820i \(-0.396718\pi\)
0.318806 + 0.947820i \(0.396718\pi\)
\(594\) −546.883 + 2304.92i −0.0377759 + 0.159212i
\(595\) 2172.93 + 815.694i 0.149717 + 0.0562020i
\(596\) −3695.11 2136.38i −0.253955 0.146828i
\(597\) −12923.5 + 7629.71i −0.885966 + 0.523054i
\(598\) −4480.21 + 16700.0i −0.306371 + 1.14200i
\(599\) 14077.4 0.960246 0.480123 0.877201i \(-0.340592\pi\)
0.480123 + 0.877201i \(0.340592\pi\)
\(600\) −12133.4 + 8293.36i −0.825576 + 0.564291i
\(601\) 9056.37 0.614670 0.307335 0.951601i \(-0.400563\pi\)
0.307335 + 0.951601i \(0.400563\pi\)
\(602\) −242.957 + 905.623i −0.0164488 + 0.0613130i
\(603\) −6820.41 3763.01i −0.460611 0.254132i
\(604\) 12238.5 21168.0i 0.824469 1.42601i
\(605\) −13558.7 5089.79i −0.911142 0.342032i
\(606\) −1815.59 6529.50i −0.121705 0.437694i
\(607\) −21455.8 −1.43470 −0.717350 0.696713i \(-0.754645\pi\)
−0.717350 + 0.696713i \(0.754645\pi\)
\(608\) −3453.72 12968.5i −0.230373 0.865037i
\(609\) 1066.06 + 1805.73i 0.0709344 + 0.120151i
\(610\) 11698.9 16345.0i 0.776513 1.08490i
\(611\) 2088.22i 0.138266i
\(612\) −9363.32 + 5643.48i −0.618447 + 0.372752i
\(613\) 9740.71 0.641800 0.320900 0.947113i \(-0.396015\pi\)
0.320900 + 0.947113i \(0.396015\pi\)
\(614\) −4855.57 + 18099.1i −0.319145 + 1.18961i
\(615\) 16737.5 2945.58i 1.09744 0.193134i
\(616\) 392.126 391.409i 0.0256481 0.0256012i
\(617\) 3739.84 0.244020 0.122010 0.992529i \(-0.461066\pi\)
0.122010 + 0.992529i \(0.461066\pi\)
\(618\) 5369.41 + 19310.2i 0.349498 + 1.25691i
\(619\) −21751.2 −1.41237 −0.706183 0.708029i \(-0.749585\pi\)
−0.706183 + 0.708029i \(0.749585\pi\)
\(620\) 13315.3 10933.2i 0.862507 0.708207i
\(621\) 756.032 + 25933.5i 0.0488543 + 1.67581i
\(622\) −14631.3 3925.24i −0.943188 0.253035i
\(623\) 4562.98i 0.293438i
\(624\) −5415.55 + 9566.78i −0.347428 + 0.613746i
\(625\) 2092.94 + 15484.2i 0.133948 + 0.990988i
\(626\) −42.2172 + 157.365i −0.00269543 + 0.0100472i
\(627\) −1980.40 + 1169.18i −0.126139 + 0.0744698i
\(628\) −9902.12 5725.05i −0.629200 0.363781i
\(629\) −17762.7 −1.12598
\(630\) 3160.31 1508.76i 0.199857 0.0954133i
\(631\) 5974.16i 0.376906i −0.982082 0.188453i \(-0.939653\pi\)
0.982082 0.188453i \(-0.0603472\pi\)
\(632\) 12879.6 12856.0i 0.810637 0.809155i
\(633\) 4757.15 + 8057.82i 0.298704 + 0.505955i
\(634\) −5721.11 + 21325.5i −0.358382 + 1.33587i
\(635\) −21449.5 8051.91i −1.34047 0.503197i
\(636\) 7433.15 67.6803i 0.463434 0.00421965i
\(637\) 10782.4 0.670669
\(638\) −430.474 + 1604.59i −0.0267126 + 0.0995712i
\(639\) 13854.4 25110.9i 0.857702 1.55457i
\(640\) −9447.54 + 13148.7i −0.583511 + 0.812105i
\(641\) 7044.53i 0.434075i 0.976163 + 0.217038i \(0.0696394\pi\)
−0.976163 + 0.217038i \(0.930361\pi\)
\(642\) 2467.81 + 8875.10i 0.151708 + 0.545595i
\(643\) 2177.00i 0.133519i −0.997769 0.0667595i \(-0.978734\pi\)
0.997769 0.0667595i \(-0.0212660\pi\)
\(644\) 3037.17 5253.13i 0.185840 0.321432i
\(645\) −4624.42 + 813.834i −0.282304 + 0.0496817i
\(646\) −10251.0 2750.09i −0.624333 0.167494i
\(647\) 15827.7i 0.961747i −0.876790 0.480873i \(-0.840320\pi\)
0.876790 0.480873i \(-0.159680\pi\)
\(648\) −3661.81 + 16083.8i −0.221990 + 0.975049i
\(649\) 2864.72 0.173267
\(650\) 6506.99 + 9708.50i 0.392654 + 0.585844i
\(651\) −3535.17 + 2087.08i −0.212833 + 0.125652i
\(652\) −2403.00 + 4156.26i −0.144338 + 0.249650i
\(653\) 18484.0i 1.10771i −0.832613 0.553856i \(-0.813156\pi\)
0.832613 0.553856i \(-0.186844\pi\)
\(654\) −6690.09 + 1860.25i −0.400005 + 0.111226i
\(655\) 6591.43 17559.0i 0.393204 1.04746i
\(656\) 16225.4 9341.34i 0.965691 0.555973i
\(657\) −23188.8 12793.9i −1.37699 0.759722i
\(658\) −189.888 + 707.809i −0.0112502 + 0.0419350i
\(659\) 11168.2i 0.660169i 0.943951 + 0.330084i \(0.107077\pi\)
−0.943951 + 0.330084i \(0.892923\pi\)
\(660\) 2606.29 + 951.387i 0.153711 + 0.0561101i
\(661\) 6525.85i 0.384003i −0.981395 0.192002i \(-0.938502\pi\)
0.981395 0.192002i \(-0.0614979\pi\)
\(662\) 16987.7 + 4557.39i 0.997350 + 0.267565i
\(663\) 4419.87 + 7486.53i 0.258905 + 0.438541i
\(664\) 4796.32 + 4805.11i 0.280321 + 0.280835i
\(665\) 3182.90 + 1194.82i 0.185606 + 0.0696742i
\(666\) −18585.2 + 19310.1i −1.08133 + 1.12350i
\(667\) 18195.0i 1.05624i
\(668\) −4354.35 + 7531.34i −0.252208 + 0.436222i
\(669\) −8968.28 15190.8i −0.518287 0.877892i
\(670\) −5309.99 + 7418.83i −0.306183 + 0.427782i
\(671\) −3794.55 −0.218312
\(672\) 2705.56 2750.24i 0.155311 0.157876i
\(673\) 10707.9i 0.613313i −0.951820 0.306656i \(-0.900790\pi\)
0.951820 0.306656i \(-0.0992103\pi\)
\(674\) 6264.22 23349.9i 0.357995 1.33443i
\(675\) 13535.6 + 11150.5i 0.771833 + 0.635826i
\(676\) −7647.65 4421.59i −0.435119 0.251570i
\(677\) 5626.13i 0.319394i 0.987166 + 0.159697i \(0.0510517\pi\)
−0.987166 + 0.159697i \(0.948948\pi\)
\(678\) −1997.86 7184.99i −0.113167 0.406988i
\(679\) 4995.21i 0.282325i
\(680\) 5283.84 + 11663.3i 0.297980 + 0.657745i
\(681\) 4403.24 + 7458.35i 0.247772 + 0.419684i
\(682\) −3141.39 842.759i −0.176378 0.0473181i
\(683\) 8947.12 0.501247 0.250624 0.968085i \(-0.419364\pi\)
0.250624 + 0.968085i \(0.419364\pi\)
\(684\) −13715.3 + 8266.54i −0.766695 + 0.462104i
\(685\) 19257.1 + 7228.90i 1.07413 + 0.403215i
\(686\) −7497.99 2011.53i −0.417310 0.111954i
\(687\) 23619.2 13944.2i 1.31168 0.774388i
\(688\) −4482.91 + 2580.92i −0.248414 + 0.143018i
\(689\) 5911.30i 0.326854i
\(690\) 30269.2 + 2667.60i 1.67004 + 0.147179i
\(691\) −2216.99 −0.122053 −0.0610263 0.998136i \(-0.519437\pi\)
−0.0610263 + 0.998136i \(0.519437\pi\)
\(692\) −1498.96 + 2592.61i −0.0823435 + 0.142423i
\(693\) −578.851 319.368i −0.0317298 0.0175062i
\(694\) 32368.2 + 8683.60i 1.77043 + 0.474964i
\(695\) 16729.1 + 6279.91i 0.913052 + 0.342749i
\(696\) −2895.65 + 11200.1i −0.157700 + 0.609967i
\(697\) 14806.3i 0.804631i
\(698\) −2759.37 + 10285.6i −0.149633 + 0.557757i
\(699\) 1240.49 + 2101.19i 0.0671242 + 0.113697i
\(700\) −1322.74 3882.43i −0.0714214 0.209632i
\(701\) −34614.1 −1.86499 −0.932493 0.361188i \(-0.882371\pi\)
−0.932493 + 0.361188i \(0.882371\pi\)
\(702\) 12763.3 + 3028.31i 0.686208 + 0.162815i
\(703\) −26018.7 −1.39589
\(704\) 3056.52 + 5.59236i 0.163632 + 0.000299389i
\(705\) −3614.31 + 636.069i −0.193082 + 0.0339798i
\(706\) 21092.9 + 5658.73i 1.12442 + 0.301656i
\(707\) 1891.37 0.100611
\(708\) 19947.0 181.621i 1.05883 0.00964089i
\(709\) 21114.8i 1.11845i 0.829015 + 0.559226i \(0.188902\pi\)
−0.829015 + 0.559226i \(0.811098\pi\)
\(710\) −27314.1 19549.9i −1.44377 1.03337i
\(711\) −19012.7 10489.8i −1.00286 0.553304i
\(712\) 17816.2 17783.6i 0.937766 0.936052i
\(713\) −35621.3 −1.87101
\(714\) −817.358 2939.50i −0.0428416 0.154073i
\(715\) 775.409 2065.62i 0.0405576 0.108042i
\(716\) 7553.76 13065.1i 0.394270 0.681935i
\(717\) −343.809 582.355i −0.0179076 0.0303325i
\(718\) 3489.32 + 936.101i 0.181365 + 0.0486560i
\(719\) −26234.0 −1.36073 −0.680363 0.732875i \(-0.738178\pi\)
−0.680363 + 0.732875i \(0.738178\pi\)
\(720\) 18207.9 + 6459.26i 0.942454 + 0.334337i
\(721\) −5593.50 −0.288922
\(722\) 3722.02 + 998.528i 0.191855 + 0.0514700i
\(723\) −14687.8 24878.7i −0.755525 1.27973i
\(724\) −3949.25 + 6830.68i −0.202725 + 0.350636i
\(725\) 9260.72 + 8093.20i 0.474393 + 0.414585i
\(726\) 5100.18 + 18342.0i 0.260724 + 0.937651i
\(727\) 1445.23 0.0737287 0.0368643 0.999320i \(-0.488263\pi\)
0.0368643 + 0.999320i \(0.488263\pi\)
\(728\) −2167.39 2171.36i −0.110342 0.110544i
\(729\) 19649.6 1146.65i 0.998302 0.0582560i
\(730\) −18053.5 + 25223.3i −0.915328 + 1.27885i
\(731\) 4090.83i 0.206983i
\(732\) −26421.4 + 240.572i −1.33410 + 0.0121473i
\(733\) 19855.7 1.00053 0.500265 0.865872i \(-0.333236\pi\)
0.500265 + 0.865872i \(0.333236\pi\)
\(734\) −13316.3 3572.44i −0.669636 0.179647i
\(735\) −3284.32 18662.4i −0.164822 0.936561i
\(736\) 32347.8 8614.74i 1.62005 0.431445i
\(737\) 1722.31 0.0860815
\(738\) −16096.1 15491.9i −0.802853 0.772717i
\(739\) −6549.70 −0.326028 −0.163014 0.986624i \(-0.552122\pi\)
−0.163014 + 0.986624i \(0.552122\pi\)
\(740\) 19919.5 + 24259.4i 0.989534 + 1.20513i
\(741\) 6474.21 + 10966.2i 0.320966 + 0.543664i
\(742\) −537.533 + 2003.66i −0.0265950 + 0.0991328i
\(743\) 22234.5i 1.09785i −0.835870 0.548927i \(-0.815037\pi\)
0.835870 0.548927i \(-0.184963\pi\)
\(744\) −21926.9 5668.96i −1.08048 0.279347i
\(745\) 5584.54 + 2096.37i 0.274633 + 0.103094i
\(746\) 27234.6 + 7306.39i 1.33663 + 0.358587i
\(747\) 3913.53 7093.23i 0.191685 0.347427i
\(748\) 1209.89 2092.63i 0.0591414 0.102292i
\(749\) −2570.80 −0.125414
\(750\) 14821.6 14219.6i 0.721609 0.692301i
\(751\) 9278.78i 0.450849i −0.974261 0.225424i \(-0.927623\pi\)
0.974261 0.225424i \(-0.0723769\pi\)
\(752\) −3503.71 + 2017.17i −0.169903 + 0.0978174i
\(753\) 29250.2 17268.7i 1.41559 0.835730i
\(754\) 8885.27 + 2383.70i 0.429154 + 0.115132i
\(755\) −12009.4 + 31991.8i −0.578895 + 1.54212i
\(756\) −4050.78 2187.06i −0.194875 0.105215i
\(757\) 990.407 0.0475521 0.0237761 0.999717i \(-0.492431\pi\)
0.0237761 + 0.999717i \(0.492431\pi\)
\(758\) 10683.4 + 2866.11i 0.511926 + 0.137337i
\(759\) −2916.33 4939.77i −0.139468 0.236235i
\(760\) 7739.75 + 17084.3i 0.369408 + 0.815413i
\(761\) 10150.9i 0.483533i 0.970334 + 0.241766i \(0.0777268\pi\)
−0.970334 + 0.241766i \(0.922273\pi\)
\(762\) 8068.34 + 29016.5i 0.383576 + 1.37947i
\(763\) 1937.88i 0.0919477i
\(764\) 24333.4 + 14068.7i 1.15229 + 0.666213i
\(765\) 11611.5 9930.36i 0.548777 0.469324i
\(766\) −1686.75 + 6287.38i −0.0795625 + 0.296569i
\(767\) 15863.1i 0.746784i
\(768\) 21282.9 154.842i 0.999974 0.00727524i
\(769\) 10878.0 0.510103 0.255051 0.966927i \(-0.417908\pi\)
0.255051 + 0.966927i \(0.417908\pi\)
\(770\) −450.661 + 629.638i −0.0210918 + 0.0294683i