Properties

Label 120.4.m.b.59.19
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.19
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65669 + 2.29246i) q^{2} +(-4.82386 - 1.93142i) q^{3} +(-2.51074 - 7.59580i) q^{4} +(-7.20740 + 8.54713i) q^{5} +(12.4193 - 7.85874i) q^{6} -30.0545 q^{7} +(21.5726 + 6.82812i) q^{8} +(19.5392 + 18.6338i) q^{9} +O(q^{10})\) \(q+(-1.65669 + 2.29246i) q^{2} +(-4.82386 - 1.93142i) q^{3} +(-2.51074 - 7.59580i) q^{4} +(-7.20740 + 8.54713i) q^{5} +(12.4193 - 7.85874i) q^{6} -30.0545 q^{7} +(21.5726 + 6.82812i) q^{8} +(19.5392 + 18.6338i) q^{9} +(-7.65352 - 30.6826i) q^{10} -35.6161i q^{11} +(-2.55919 + 41.4904i) q^{12} +58.6475 q^{13} +(49.7911 - 68.8988i) q^{14} +(51.2756 - 27.3096i) q^{15} +(-51.3923 + 38.1422i) q^{16} -14.3949 q^{17} +(-75.0877 + 13.9225i) q^{18} +106.012 q^{19} +(83.0182 + 33.2863i) q^{20} +(144.979 + 58.0479i) q^{21} +(81.6485 + 59.0049i) q^{22} +47.7072i q^{23} +(-90.8752 - 74.6036i) q^{24} +(-21.1068 - 123.205i) q^{25} +(-97.1608 + 134.447i) q^{26} +(-58.2649 - 127.625i) q^{27} +(75.4593 + 228.288i) q^{28} +49.5925 q^{29} +(-22.3415 + 162.791i) q^{30} +181.017i q^{31} +(-2.29829 - 181.005i) q^{32} +(-68.7896 + 171.807i) q^{33} +(23.8480 - 32.9998i) q^{34} +(216.615 - 256.880i) q^{35} +(92.4805 - 195.201i) q^{36} +113.746 q^{37} +(-175.629 + 243.028i) q^{38} +(-282.907 - 113.273i) q^{39} +(-213.843 + 135.171i) q^{40} +53.6178i q^{41} +(-373.258 + 236.191i) q^{42} -490.109i q^{43} +(-270.533 + 89.4229i) q^{44} +(-300.092 + 32.7033i) q^{45} +(-109.367 - 79.0361i) q^{46} -441.575i q^{47} +(321.578 - 84.7326i) q^{48} +560.275 q^{49} +(317.410 + 155.726i) q^{50} +(69.4392 + 27.8027i) q^{51} +(-147.249 - 445.475i) q^{52} -65.6784i q^{53} +(389.103 + 77.8658i) q^{54} +(304.415 + 256.699i) q^{55} +(-648.354 - 205.216i) q^{56} +(-511.387 - 204.754i) q^{57} +(-82.1595 + 113.689i) q^{58} -406.047i q^{59} +(-336.178 - 320.911i) q^{60} +213.568i q^{61} +(-414.975 - 299.890i) q^{62} +(-587.243 - 560.030i) q^{63} +(418.754 + 294.600i) q^{64} +(-422.696 + 501.268i) q^{65} +(-279.898 - 442.329i) q^{66} +825.615i q^{67} +(36.1420 + 109.341i) q^{68} +(92.1426 - 230.133i) q^{69} +(230.023 + 922.152i) q^{70} +157.626 q^{71} +(294.278 + 535.395i) q^{72} +242.743i q^{73} +(-188.442 + 260.758i) q^{74} +(-136.144 + 635.090i) q^{75} +(-266.169 - 805.246i) q^{76} +1070.43i q^{77} +(728.364 - 460.895i) q^{78} +107.503i q^{79} +(44.3984 - 714.163i) q^{80} +(34.5637 + 728.180i) q^{81} +(-122.917 - 88.8281i) q^{82} +1158.62 q^{83} +(76.9153 - 1246.97i) q^{84} +(103.750 - 123.035i) q^{85} +(1123.56 + 811.960i) q^{86} +(-239.227 - 95.7839i) q^{87} +(243.191 - 768.331i) q^{88} -750.147i q^{89} +(422.190 - 742.129i) q^{90} -1762.62 q^{91} +(362.374 - 119.781i) q^{92} +(349.621 - 873.203i) q^{93} +(1012.29 + 731.554i) q^{94} +(-764.070 + 906.098i) q^{95} +(-338.509 + 877.580i) q^{96} -83.2231i q^{97} +(-928.203 + 1284.41i) q^{98} +(663.663 - 695.911i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54} - 2064 q^{60} + 2176 q^{64} - 176 q^{66} + 672 q^{70} - 1600 q^{75} + 2304 q^{76} - 2304 q^{81} - 736 q^{84} - 1432 q^{90} - 2752 q^{91} + 4496 q^{94} + 640 q^{96} + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65669 + 2.29246i −0.585729 + 0.810507i
\(3\) −4.82386 1.93142i −0.928352 0.371702i
\(4\) −2.51074 7.59580i −0.313843 0.949475i
\(5\) −7.20740 + 8.54713i −0.644649 + 0.764478i
\(6\) 12.4193 7.85874i 0.845030 0.534719i
\(7\) −30.0545 −1.62279 −0.811396 0.584497i \(-0.801292\pi\)
−0.811396 + 0.584497i \(0.801292\pi\)
\(8\) 21.5726 + 6.82812i 0.953383 + 0.301763i
\(9\) 19.5392 + 18.6338i 0.723676 + 0.690140i
\(10\) −7.65352 30.6826i −0.242025 0.970270i
\(11\) 35.6161i 0.976241i −0.872776 0.488121i \(-0.837683\pi\)
0.872776 0.488121i \(-0.162317\pi\)
\(12\) −2.55919 + 41.4904i −0.0615646 + 0.998103i
\(13\) 58.6475 1.25122 0.625611 0.780135i \(-0.284850\pi\)
0.625611 + 0.780135i \(0.284850\pi\)
\(14\) 49.7911 68.8988i 0.950517 1.31528i
\(15\) 51.2756 27.3096i 0.882620 0.470088i
\(16\) −51.3923 + 38.1422i −0.803005 + 0.595972i
\(17\) −14.3949 −0.205370 −0.102685 0.994714i \(-0.532743\pi\)
−0.102685 + 0.994714i \(0.532743\pi\)
\(18\) −75.0877 + 13.9225i −0.983241 + 0.182309i
\(19\) 106.012 1.28004 0.640021 0.768357i \(-0.278925\pi\)
0.640021 + 0.768357i \(0.278925\pi\)
\(20\) 83.0182 + 33.2863i 0.928172 + 0.372152i
\(21\) 144.979 + 58.0479i 1.50652 + 0.603195i
\(22\) 81.6485 + 59.0049i 0.791250 + 0.571813i
\(23\) 47.7072i 0.432506i 0.976337 + 0.216253i \(0.0693836\pi\)
−0.976337 + 0.216253i \(0.930616\pi\)
\(24\) −90.8752 74.6036i −0.772909 0.634516i
\(25\) −21.1068 123.205i −0.168855 0.985641i
\(26\) −97.1608 + 134.447i −0.732877 + 1.01412i
\(27\) −58.2649 127.625i −0.415299 0.909685i
\(28\) 75.4593 + 228.288i 0.509302 + 1.54080i
\(29\) 49.5925 0.317555 0.158778 0.987314i \(-0.449245\pi\)
0.158778 + 0.987314i \(0.449245\pi\)
\(30\) −22.3415 + 162.791i −0.135966 + 0.990713i
\(31\) 181.017i 1.04876i 0.851483 + 0.524382i \(0.175704\pi\)
−0.851483 + 0.524382i \(0.824296\pi\)
\(32\) −2.29829 181.005i −0.0126964 0.999919i
\(33\) −68.7896 + 171.807i −0.362871 + 0.906296i
\(34\) 23.8480 32.9998i 0.120291 0.166454i
\(35\) 216.615 256.880i 1.04613 1.24059i
\(36\) 92.4805 195.201i 0.428150 0.903708i
\(37\) 113.746 0.505397 0.252699 0.967545i \(-0.418682\pi\)
0.252699 + 0.967545i \(0.418682\pi\)
\(38\) −175.629 + 243.028i −0.749758 + 1.03748i
\(39\) −282.907 113.273i −1.16158 0.465082i
\(40\) −213.843 + 135.171i −0.845289 + 0.534310i
\(41\) 53.6178i 0.204236i 0.994772 + 0.102118i \(0.0325620\pi\)
−0.994772 + 0.102118i \(0.967438\pi\)
\(42\) −373.258 + 236.191i −1.37131 + 0.867739i
\(43\) 490.109i 1.73816i −0.494669 0.869081i \(-0.664711\pi\)
0.494669 0.869081i \(-0.335289\pi\)
\(44\) −270.533 + 89.4229i −0.926917 + 0.306387i
\(45\) −300.092 + 32.7033i −0.994114 + 0.108336i
\(46\) −109.367 79.0361i −0.350549 0.253331i
\(47\) 441.575i 1.37043i −0.728339 0.685217i \(-0.759707\pi\)
0.728339 0.685217i \(-0.240293\pi\)
\(48\) 321.578 84.7326i 0.966995 0.254794i
\(49\) 560.275 1.63346
\(50\) 317.410 + 155.726i 0.897772 + 0.440461i
\(51\) 69.4392 + 27.8027i 0.190655 + 0.0763363i
\(52\) −147.249 445.475i −0.392688 1.18800i
\(53\) 65.6784i 0.170219i −0.996372 0.0851097i \(-0.972876\pi\)
0.996372 0.0851097i \(-0.0271241\pi\)
\(54\) 389.103 + 77.8658i 0.980559 + 0.196226i
\(55\) 304.415 + 256.699i 0.746316 + 0.629333i
\(56\) −648.354 205.216i −1.54714 0.489699i
\(57\) −511.387 204.754i −1.18833 0.475794i
\(58\) −82.1595 + 113.689i −0.186001 + 0.257381i
\(59\) 406.047i 0.895979i −0.894039 0.447989i \(-0.852140\pi\)
0.894039 0.447989i \(-0.147860\pi\)
\(60\) −336.178 320.911i −0.723341 0.690491i
\(61\) 213.568i 0.448271i 0.974558 + 0.224135i \(0.0719558\pi\)
−0.974558 + 0.224135i \(0.928044\pi\)
\(62\) −414.975 299.890i −0.850031 0.614292i
\(63\) −587.243 560.030i −1.17438 1.11995i
\(64\) 418.754 + 294.600i 0.817878 + 0.575391i
\(65\) −422.696 + 501.268i −0.806600 + 0.956533i
\(66\) −279.898 442.329i −0.522015 0.824953i
\(67\) 825.615i 1.50545i 0.658337 + 0.752723i \(0.271260\pi\)
−0.658337 + 0.752723i \(0.728740\pi\)
\(68\) 36.1420 + 109.341i 0.0644539 + 0.194993i
\(69\) 92.1426 230.133i 0.160763 0.401518i
\(70\) 230.023 + 922.152i 0.392757 + 1.57455i
\(71\) 157.626 0.263476 0.131738 0.991285i \(-0.457944\pi\)
0.131738 + 0.991285i \(0.457944\pi\)
\(72\) 294.278 + 535.395i 0.481681 + 0.876347i
\(73\) 242.743i 0.389190i 0.980884 + 0.194595i \(0.0623393\pi\)
−0.980884 + 0.194595i \(0.937661\pi\)
\(74\) −188.442 + 260.758i −0.296026 + 0.409628i
\(75\) −136.144 + 635.090i −0.209608 + 0.977786i
\(76\) −266.169 805.246i −0.401733 1.21537i
\(77\) 1070.43i 1.58424i
\(78\) 728.364 460.895i 1.05732 0.669053i
\(79\) 107.503i 0.153101i 0.997066 + 0.0765506i \(0.0243907\pi\)
−0.997066 + 0.0765506i \(0.975609\pi\)
\(80\) 44.3984 714.163i 0.0620486 0.998073i
\(81\) 34.5637 + 728.180i 0.0474125 + 0.998875i
\(82\) −122.917 88.8281i −0.165535 0.119627i
\(83\) 1158.62 1.53223 0.766113 0.642706i \(-0.222188\pi\)
0.766113 + 0.642706i \(0.222188\pi\)
\(84\) 76.9153 1246.97i 0.0999066 1.61971i
\(85\) 103.750 123.035i 0.132391 0.157001i
\(86\) 1123.56 + 811.960i 1.40879 + 1.01809i
\(87\) −239.227 95.7839i −0.294803 0.118036i
\(88\) 243.191 768.331i 0.294593 0.930732i
\(89\) 750.147i 0.893431i −0.894676 0.446716i \(-0.852594\pi\)
0.894676 0.446716i \(-0.147406\pi\)
\(90\) 422.190 742.129i 0.494475 0.869192i
\(91\) −1762.62 −2.03047
\(92\) 362.374 119.781i 0.410654 0.135739i
\(93\) 349.621 873.203i 0.389828 0.973623i
\(94\) 1012.29 + 731.554i 1.11075 + 0.802703i
\(95\) −764.070 + 906.098i −0.825179 + 0.978565i
\(96\) −338.509 + 877.580i −0.359885 + 0.932997i
\(97\) 83.2231i 0.0871136i −0.999051 0.0435568i \(-0.986131\pi\)
0.999051 0.0435568i \(-0.0138690\pi\)
\(98\) −928.203 + 1284.41i −0.956762 + 1.32393i
\(99\) 663.663 695.911i 0.673744 0.706482i
\(100\) −882.847 + 469.660i −0.882847 + 0.469660i
\(101\) 978.565 0.964068 0.482034 0.876153i \(-0.339898\pi\)
0.482034 + 0.876153i \(0.339898\pi\)
\(102\) −178.776 + 113.126i −0.173544 + 0.109815i
\(103\) 484.228 0.463228 0.231614 0.972808i \(-0.425599\pi\)
0.231614 + 0.972808i \(0.425599\pi\)
\(104\) 1265.18 + 400.452i 1.19289 + 0.377573i
\(105\) −1541.06 + 820.779i −1.43231 + 0.762855i
\(106\) 150.565 + 108.809i 0.137964 + 0.0997024i
\(107\) 912.615 0.824541 0.412270 0.911062i \(-0.364736\pi\)
0.412270 + 0.911062i \(0.364736\pi\)
\(108\) −823.127 + 763.003i −0.733384 + 0.679815i
\(109\) 1290.42i 1.13395i −0.823736 0.566973i \(-0.808114\pi\)
0.823736 0.566973i \(-0.191886\pi\)
\(110\) −1092.80 + 272.588i −0.947218 + 0.236275i
\(111\) −548.694 219.691i −0.469187 0.187857i
\(112\) 1544.57 1146.35i 1.30311 0.967139i
\(113\) 24.0806 0.0200470 0.0100235 0.999950i \(-0.496809\pi\)
0.0100235 + 0.999950i \(0.496809\pi\)
\(114\) 1316.60 833.120i 1.08167 0.684464i
\(115\) −407.760 343.845i −0.330642 0.278815i
\(116\) −124.514 376.695i −0.0996625 0.301511i
\(117\) 1145.93 + 1092.83i 0.905479 + 0.863519i
\(118\) 930.845 + 672.694i 0.726197 + 0.524801i
\(119\) 432.633 0.333273
\(120\) 1292.62 239.024i 0.983330 0.181832i
\(121\) 62.4941 0.0469527
\(122\) −489.595 353.816i −0.363327 0.262565i
\(123\) 103.558 258.645i 0.0759150 0.189603i
\(124\) 1374.97 454.489i 0.995775 0.329147i
\(125\) 1205.18 + 707.585i 0.862353 + 0.506307i
\(126\) 2256.73 418.434i 1.59560 0.295849i
\(127\) −1018.44 −0.711593 −0.355797 0.934563i \(-0.615790\pi\)
−0.355797 + 0.934563i \(0.615790\pi\)
\(128\) −1369.11 + 471.914i −0.945414 + 0.325873i
\(129\) −946.607 + 2364.22i −0.646078 + 1.61363i
\(130\) −448.860 1799.46i −0.302828 1.21402i
\(131\) 422.320i 0.281666i −0.990033 0.140833i \(-0.955022\pi\)
0.990033 0.140833i \(-0.0449781\pi\)
\(132\) 1477.72 + 91.1484i 0.974390 + 0.0601019i
\(133\) −3186.14 −2.07724
\(134\) −1892.69 1367.79i −1.22017 0.881783i
\(135\) 1510.77 + 421.848i 0.963157 + 0.268940i
\(136\) −310.536 98.2903i −0.195796 0.0619730i
\(137\) 2962.29 1.84734 0.923671 0.383186i \(-0.125173\pi\)
0.923671 + 0.383186i \(0.125173\pi\)
\(138\) 374.918 + 592.492i 0.231269 + 0.365481i
\(139\) 724.141 0.441877 0.220938 0.975288i \(-0.429088\pi\)
0.220938 + 0.975288i \(0.429088\pi\)
\(140\) −2495.07 1000.40i −1.50623 0.603925i
\(141\) −852.867 + 2130.10i −0.509393 + 1.27225i
\(142\) −261.138 + 361.352i −0.154325 + 0.213549i
\(143\) 2088.80i 1.22150i
\(144\) −1714.90 212.364i −0.992420 0.122896i
\(145\) −357.433 + 423.874i −0.204712 + 0.242764i
\(146\) −556.478 402.150i −0.315441 0.227960i
\(147\) −2702.69 1082.13i −1.51642 0.607158i
\(148\) −285.587 863.990i −0.158615 0.479862i
\(149\) −1917.06 −1.05404 −0.527019 0.849854i \(-0.676690\pi\)
−0.527019 + 0.849854i \(0.676690\pi\)
\(150\) −1230.37 1364.25i −0.669729 0.742606i
\(151\) 2586.17i 1.39377i −0.717182 0.696886i \(-0.754568\pi\)
0.717182 0.696886i \(-0.245432\pi\)
\(152\) 2286.95 + 723.862i 1.22037 + 0.386269i
\(153\) −281.266 268.232i −0.148621 0.141734i
\(154\) −2453.91 1773.36i −1.28404 0.927934i
\(155\) −1547.18 1304.66i −0.801758 0.676085i
\(156\) −150.090 + 2433.31i −0.0770310 + 1.24885i
\(157\) 1527.70 0.776586 0.388293 0.921536i \(-0.373065\pi\)
0.388293 + 0.921536i \(0.373065\pi\)
\(158\) −246.446 178.099i −0.124090 0.0896758i
\(159\) −126.853 + 316.823i −0.0632708 + 0.158023i
\(160\) 1563.64 + 1284.93i 0.772602 + 0.634891i
\(161\) 1433.82i 0.701868i
\(162\) −1726.59 1127.13i −0.837366 0.546642i
\(163\) 2775.55i 1.33373i 0.745179 + 0.666865i \(0.232364\pi\)
−0.745179 + 0.666865i \(0.767636\pi\)
\(164\) 407.270 134.621i 0.193917 0.0640981i
\(165\) −972.663 1826.24i −0.458919 0.861650i
\(166\) −1919.47 + 2656.08i −0.897470 + 1.24188i
\(167\) 1484.84i 0.688025i 0.938965 + 0.344013i \(0.111786\pi\)
−0.938965 + 0.344013i \(0.888214\pi\)
\(168\) 2731.21 + 2242.18i 1.25427 + 1.02969i
\(169\) 1242.53 0.565558
\(170\) 110.172 + 441.675i 0.0497047 + 0.199264i
\(171\) 2071.39 + 1975.40i 0.926336 + 0.883409i
\(172\) −3722.77 + 1230.54i −1.65034 + 0.545510i
\(173\) 4487.55i 1.97215i −0.166292 0.986077i \(-0.553179\pi\)
0.166292 0.986077i \(-0.446821\pi\)
\(174\) 615.907 389.735i 0.268343 0.169803i
\(175\) 634.356 + 3702.87i 0.274016 + 1.59949i
\(176\) 1358.48 + 1830.39i 0.581813 + 0.783927i
\(177\) −784.246 + 1958.71i −0.333037 + 0.831784i
\(178\) 1719.68 + 1242.76i 0.724132 + 0.523309i
\(179\) 2713.96i 1.13325i 0.823977 + 0.566623i \(0.191750\pi\)
−0.823977 + 0.566623i \(0.808250\pi\)
\(180\) 1001.86 + 2197.33i 0.414858 + 0.909886i
\(181\) 913.737i 0.375235i −0.982242 0.187618i \(-0.939923\pi\)
0.982242 0.187618i \(-0.0600765\pi\)
\(182\) 2920.12 4040.74i 1.18931 1.64571i
\(183\) 412.489 1030.22i 0.166623 0.416153i
\(184\) −325.750 + 1029.17i −0.130514 + 0.412344i
\(185\) −819.811 + 972.200i −0.325804 + 0.386365i
\(186\) 1422.57 + 2248.12i 0.560795 + 0.886237i
\(187\) 512.692i 0.200490i
\(188\) −3354.12 + 1108.68i −1.30119 + 0.430101i
\(189\) 1751.12 + 3835.72i 0.673945 + 1.47623i
\(190\) −811.364 3252.73i −0.309803 1.24199i
\(191\) −3419.83 −1.29555 −0.647776 0.761831i \(-0.724301\pi\)
−0.647776 + 0.761831i \(0.724301\pi\)
\(192\) −1451.01 2229.90i −0.545405 0.838173i
\(193\) 3786.04i 1.41205i −0.708189 0.706023i \(-0.750487\pi\)
0.708189 0.706023i \(-0.249513\pi\)
\(194\) 190.786 + 137.875i 0.0706062 + 0.0510250i
\(195\) 3007.18 1601.64i 1.10435 0.588185i
\(196\) −1406.71 4255.74i −0.512649 1.55092i
\(197\) 12.8824i 0.00465904i −0.999997 0.00232952i \(-0.999258\pi\)
0.999997 0.00232952i \(-0.000741510\pi\)
\(198\) 495.864 + 2674.33i 0.177977 + 0.959881i
\(199\) 1630.96i 0.580983i 0.956878 + 0.290491i \(0.0938187\pi\)
−0.956878 + 0.290491i \(0.906181\pi\)
\(200\) 385.929 2801.97i 0.136447 0.990647i
\(201\) 1594.61 3982.65i 0.559577 1.39758i
\(202\) −1621.18 + 2243.32i −0.564683 + 0.781384i
\(203\) −1490.48 −0.515326
\(204\) 36.8394 597.251i 0.0126435 0.204980i
\(205\) −458.278 386.445i −0.156134 0.131661i
\(206\) −802.217 + 1110.07i −0.271326 + 0.375449i
\(207\) −888.966 + 932.163i −0.298490 + 0.312994i
\(208\) −3014.03 + 2236.95i −1.00474 + 0.745694i
\(209\) 3775.73i 1.24963i
\(210\) 671.465 4892.60i 0.220645 1.60772i
\(211\) −2482.49 −0.809960 −0.404980 0.914326i \(-0.632721\pi\)
−0.404980 + 0.914326i \(0.632721\pi\)
\(212\) −498.880 + 164.902i −0.161619 + 0.0534222i
\(213\) −760.367 304.442i −0.244598 0.0979345i
\(214\) −1511.92 + 2092.13i −0.482957 + 0.668296i
\(215\) 4189.03 + 3532.41i 1.32879 + 1.12051i
\(216\) −385.485 3151.05i −0.121430 0.992600i
\(217\) 5440.40i 1.70193i
\(218\) 2958.24 + 2137.83i 0.919072 + 0.664185i
\(219\) 468.838 1170.96i 0.144663 0.361306i
\(220\) 1185.53 2956.78i 0.363310 0.906120i
\(221\) −844.228 −0.256963
\(222\) 1412.65 893.898i 0.427076 0.270246i
\(223\) −220.601 −0.0662444 −0.0331222 0.999451i \(-0.510545\pi\)
−0.0331222 + 0.999451i \(0.510545\pi\)
\(224\) 69.0740 + 5440.01i 0.0206036 + 1.62266i
\(225\) 1883.37 2800.63i 0.558035 0.829818i
\(226\) −39.8941 + 55.2038i −0.0117421 + 0.0162482i
\(227\) −1286.28 −0.376094 −0.188047 0.982160i \(-0.560216\pi\)
−0.188047 + 0.982160i \(0.560216\pi\)
\(228\) −271.305 + 4398.48i −0.0788053 + 1.27761i
\(229\) 3473.66i 1.00238i −0.865336 0.501192i \(-0.832895\pi\)
0.865336 0.501192i \(-0.167105\pi\)
\(230\) 1463.78 365.128i 0.419648 0.104677i
\(231\) 2067.44 5163.58i 0.588864 1.47073i
\(232\) 1069.84 + 338.623i 0.302752 + 0.0958264i
\(233\) 1374.39 0.386435 0.193218 0.981156i \(-0.438108\pi\)
0.193218 + 0.981156i \(0.438108\pi\)
\(234\) −4403.71 + 816.519i −1.23025 + 0.228109i
\(235\) 3774.20 + 3182.61i 1.04767 + 0.883449i
\(236\) −3084.25 + 1019.48i −0.850709 + 0.281197i
\(237\) 207.633 518.578i 0.0569080 0.142132i
\(238\) −716.740 + 991.795i −0.195207 + 0.270120i
\(239\) 6110.81 1.65387 0.826936 0.562296i \(-0.190082\pi\)
0.826936 + 0.562296i \(0.190082\pi\)
\(240\) −1593.52 + 3359.27i −0.428589 + 0.903500i
\(241\) 7359.10 1.96698 0.983488 0.180975i \(-0.0579253\pi\)
0.983488 + 0.180975i \(0.0579253\pi\)
\(242\) −103.533 + 143.265i −0.0275016 + 0.0380555i
\(243\) 1239.69 3579.40i 0.327268 0.944931i
\(244\) 1622.22 536.214i 0.425622 0.140687i
\(245\) −4038.13 + 4788.74i −1.05301 + 1.24874i
\(246\) 421.368 + 665.898i 0.109209 + 0.172586i
\(247\) 6217.34 1.60162
\(248\) −1236.01 + 3905.02i −0.316478 + 0.999874i
\(249\) −5589.01 2237.78i −1.42245 0.569531i
\(250\) −3618.72 + 1590.57i −0.915471 + 0.402385i
\(251\) 1602.46i 0.402973i 0.979491 + 0.201486i \(0.0645772\pi\)
−0.979491 + 0.201486i \(0.935423\pi\)
\(252\) −2779.46 + 5866.67i −0.694799 + 1.46653i
\(253\) 1699.14 0.422230
\(254\) 1687.25 2334.74i 0.416801 0.576751i
\(255\) −738.109 + 393.121i −0.181263 + 0.0965419i
\(256\) 1186.34 3920.43i 0.289634 0.957137i
\(257\) −1317.48 −0.319775 −0.159887 0.987135i \(-0.551113\pi\)
−0.159887 + 0.987135i \(0.551113\pi\)
\(258\) −3851.64 6086.84i −0.929429 1.46880i
\(259\) −3418.58 −0.820155
\(260\) 4868.81 + 1952.16i 1.16135 + 0.465645i
\(261\) 969.000 + 924.096i 0.229807 + 0.219158i
\(262\) 968.151 + 699.654i 0.228292 + 0.164980i
\(263\) 621.813i 0.145789i 0.997340 + 0.0728947i \(0.0232237\pi\)
−0.997340 + 0.0728947i \(0.976776\pi\)
\(264\) −2657.09 + 3236.62i −0.619441 + 0.754546i
\(265\) 561.362 + 473.371i 0.130129 + 0.109732i
\(266\) 5278.45 7304.10i 1.21670 1.68362i
\(267\) −1448.85 + 3618.60i −0.332090 + 0.829419i
\(268\) 6271.20 2072.91i 1.42938 0.472474i
\(269\) 105.003 0.0237998 0.0118999 0.999929i \(-0.496212\pi\)
0.0118999 + 0.999929i \(0.496212\pi\)
\(270\) −3469.95 + 2764.50i −0.782127 + 0.623119i
\(271\) 979.683i 0.219600i −0.993954 0.109800i \(-0.964979\pi\)
0.993954 0.109800i \(-0.0350210\pi\)
\(272\) 739.789 549.055i 0.164913 0.122395i
\(273\) 8502.65 + 3404.37i 1.88500 + 0.754731i
\(274\) −4907.61 + 6790.94i −1.08204 + 1.49728i
\(275\) −4388.08 + 751.743i −0.962224 + 0.164843i
\(276\) −1979.39 122.092i −0.431686 0.0266271i
\(277\) −7385.36 −1.60196 −0.800981 0.598690i \(-0.795688\pi\)
−0.800981 + 0.598690i \(0.795688\pi\)
\(278\) −1199.68 + 1660.06i −0.258820 + 0.358144i
\(279\) −3373.04 + 3536.94i −0.723795 + 0.758965i
\(280\) 6426.95 4062.50i 1.37173 0.867074i
\(281\) 2837.82i 0.602457i 0.953552 + 0.301229i \(0.0973967\pi\)
−0.953552 + 0.301229i \(0.902603\pi\)
\(282\) −3470.22 5484.08i −0.732797 1.15806i
\(283\) 3418.04i 0.717955i −0.933346 0.358977i \(-0.883126\pi\)
0.933346 0.358977i \(-0.116874\pi\)
\(284\) −395.759 1197.30i −0.0826901 0.250164i
\(285\) 5435.82 2895.15i 1.12979 0.601733i
\(286\) 4788.48 + 3460.49i 0.990030 + 0.715465i
\(287\) 1611.46i 0.331433i
\(288\) 3327.90 3579.52i 0.680897 0.732379i
\(289\) −4705.79 −0.957823
\(290\) −379.557 1521.63i −0.0768564 0.308114i
\(291\) −160.739 + 401.456i −0.0323803 + 0.0808721i
\(292\) 1843.82 609.465i 0.369526 0.122145i
\(293\) 3323.01i 0.662569i −0.943531 0.331284i \(-0.892518\pi\)
0.943531 0.331284i \(-0.107482\pi\)
\(294\) 6958.25 4403.06i 1.38032 0.873440i
\(295\) 3470.53 + 2926.54i 0.684957 + 0.577592i
\(296\) 2453.79 + 776.669i 0.481837 + 0.152510i
\(297\) −4545.51 + 2075.17i −0.888072 + 0.405432i
\(298\) 3175.98 4394.78i 0.617381 0.854305i
\(299\) 2797.91i 0.541161i
\(300\) 5165.84 560.425i 0.994167 0.107854i
\(301\) 14730.0i 2.82068i
\(302\) 5928.69 + 4284.49i 1.12966 + 0.816372i
\(303\) −4720.46 1890.02i −0.894995 0.358346i
\(304\) −5448.20 + 4043.53i −1.02788 + 0.762870i
\(305\) −1825.39 1539.27i −0.342694 0.288978i
\(306\) 1080.88 200.413i 0.201928 0.0374407i
\(307\) 455.313i 0.0846452i 0.999104 + 0.0423226i \(0.0134757\pi\)
−0.999104 + 0.0423226i \(0.986524\pi\)
\(308\) 8130.73 2687.56i 1.50419 0.497202i
\(309\) −2335.85 935.248i −0.430038 0.172183i
\(310\) 5554.09 1385.42i 1.01758 0.253828i
\(311\) 1672.37 0.304923 0.152462 0.988309i \(-0.451280\pi\)
0.152462 + 0.988309i \(0.451280\pi\)
\(312\) −5329.60 4375.32i −0.967082 0.793921i
\(313\) 3116.09i 0.562721i 0.959602 + 0.281361i \(0.0907857\pi\)
−0.959602 + 0.281361i \(0.909214\pi\)
\(314\) −2530.93 + 3502.20i −0.454869 + 0.629428i
\(315\) 9019.14 982.882i 1.61324 0.175807i
\(316\) 816.569 269.912i 0.145366 0.0480498i
\(317\) 4710.18i 0.834543i −0.908782 0.417272i \(-0.862986\pi\)
0.908782 0.417272i \(-0.137014\pi\)
\(318\) −516.150 815.683i −0.0910196 0.143840i
\(319\) 1766.29i 0.310010i
\(320\) −5536.11 + 1455.84i −0.967119 + 0.254325i
\(321\) −4402.33 1762.64i −0.765464 0.306483i
\(322\) 3286.97 + 2375.39i 0.568869 + 0.411104i
\(323\) −1526.04 −0.262882
\(324\) 5444.33 2090.81i 0.933527 0.358507i
\(325\) −1237.86 7225.67i −0.211275 1.23326i
\(326\) −6362.84 4598.23i −1.08100 0.781204i
\(327\) −2492.35 + 6224.82i −0.421490 + 1.05270i
\(328\) −366.108 + 1156.67i −0.0616309 + 0.194715i
\(329\) 13271.3i 2.22393i
\(330\) 5797.97 + 795.718i 0.967176 + 0.132736i
\(331\) −7743.80 −1.28592 −0.642958 0.765902i \(-0.722293\pi\)
−0.642958 + 0.765902i \(0.722293\pi\)
\(332\) −2908.99 8800.63i −0.480879 1.45481i
\(333\) 2222.51 + 2119.52i 0.365744 + 0.348795i
\(334\) −3403.93 2459.92i −0.557649 0.402996i
\(335\) −7056.64 5950.53i −1.15088 0.970485i
\(336\) −9664.88 + 2546.60i −1.56923 + 0.413477i
\(337\) 8409.42i 1.35932i 0.733528 + 0.679659i \(0.237872\pi\)
−0.733528 + 0.679659i \(0.762128\pi\)
\(338\) −2058.49 + 2848.45i −0.331264 + 0.458389i
\(339\) −116.161 46.5098i −0.0186107 0.00745151i
\(340\) −1195.04 479.154i −0.190618 0.0764288i
\(341\) 6447.13 1.02385
\(342\) −7960.20 + 1475.95i −1.25859 + 0.233363i
\(343\) −6530.10 −1.02797
\(344\) 3346.52 10572.9i 0.524513 1.65713i
\(345\) 1302.87 + 2446.21i 0.203316 + 0.381738i
\(346\) 10287.5 + 7434.50i 1.59844 + 1.15515i
\(347\) 4830.70 0.747336 0.373668 0.927562i \(-0.378100\pi\)
0.373668 + 0.927562i \(0.378100\pi\)
\(348\) −126.917 + 2057.61i −0.0195501 + 0.316953i
\(349\) 6202.35i 0.951301i −0.879634 0.475650i \(-0.842213\pi\)
0.879634 0.475650i \(-0.157787\pi\)
\(350\) −9539.62 4680.28i −1.45690 0.714776i
\(351\) −3417.09 7484.90i −0.519632 1.13822i
\(352\) −6446.68 + 81.8561i −0.976163 + 0.0123947i
\(353\) −7678.75 −1.15779 −0.578893 0.815404i \(-0.696515\pi\)
−0.578893 + 0.815404i \(0.696515\pi\)
\(354\) −3191.01 5042.83i −0.479097 0.757129i
\(355\) −1136.07 + 1347.25i −0.169850 + 0.201422i
\(356\) −5697.96 + 1883.43i −0.848291 + 0.280397i
\(357\) −2086.96 835.596i −0.309394 0.123878i
\(358\) −6221.64 4496.19i −0.918503 0.663775i
\(359\) −12403.8 −1.82352 −0.911762 0.410719i \(-0.865278\pi\)
−0.911762 + 0.410719i \(0.865278\pi\)
\(360\) −6697.08 1343.57i −0.980463 0.196701i
\(361\) 4379.54 0.638509
\(362\) 2094.71 + 1513.78i 0.304131 + 0.219786i
\(363\) −301.463 120.702i −0.0435887 0.0174524i
\(364\) 4425.50 + 13388.5i 0.637250 + 1.92788i
\(365\) −2074.75 1749.54i −0.297528 0.250891i
\(366\) 1678.37 + 2652.37i 0.239699 + 0.378802i
\(367\) 1231.21 0.175119 0.0875597 0.996159i \(-0.472093\pi\)
0.0875597 + 0.996159i \(0.472093\pi\)
\(368\) −1819.66 2451.78i −0.257762 0.347305i
\(369\) −999.102 + 1047.65i −0.140952 + 0.147801i
\(370\) −870.555 3490.02i −0.122319 0.490372i
\(371\) 1973.93i 0.276231i
\(372\) −7510.48 463.258i −1.04677 0.0645667i
\(373\) 5114.70 0.709998 0.354999 0.934867i \(-0.384481\pi\)
0.354999 + 0.934867i \(0.384481\pi\)
\(374\) −1175.32 849.372i −0.162499 0.117433i
\(375\) −4446.95 5740.99i −0.612372 0.790569i
\(376\) 3015.13 9525.93i 0.413546 1.30655i
\(377\) 2908.48 0.397332
\(378\) −11694.3 2340.22i −1.59124 0.318434i
\(379\) 2973.78 0.403041 0.201521 0.979484i \(-0.435412\pi\)
0.201521 + 0.979484i \(0.435412\pi\)
\(380\) 8800.92 + 3528.74i 1.18810 + 0.476370i
\(381\) 4912.83 + 1967.04i 0.660609 + 0.264500i
\(382\) 5665.61 7839.83i 0.758843 1.05005i
\(383\) 4239.61i 0.565623i 0.959175 + 0.282812i \(0.0912671\pi\)
−0.959175 + 0.282812i \(0.908733\pi\)
\(384\) 7515.84 + 367.869i 0.998804 + 0.0488873i
\(385\) −9149.06 7714.98i −1.21112 1.02128i
\(386\) 8679.34 + 6272.30i 1.14447 + 0.827076i
\(387\) 9132.60 9576.37i 1.19958 1.25787i
\(388\) −632.146 + 208.952i −0.0827122 + 0.0273400i
\(389\) −1866.70 −0.243304 −0.121652 0.992573i \(-0.538819\pi\)
−0.121652 + 0.992573i \(0.538819\pi\)
\(390\) −1310.28 + 9547.28i −0.170124 + 1.23960i
\(391\) 686.742i 0.0888237i
\(392\) 12086.6 + 3825.62i 1.55731 + 0.492916i
\(393\) −815.677 + 2037.21i −0.104696 + 0.261485i
\(394\) 29.5323 + 21.3421i 0.00377619 + 0.00272894i
\(395\) −918.839 774.815i −0.117043 0.0986966i
\(396\) −6952.29 3293.79i −0.882237 0.417978i
\(397\) 7085.75 0.895778 0.447889 0.894089i \(-0.352176\pi\)
0.447889 + 0.894089i \(0.352176\pi\)
\(398\) −3738.91 2701.99i −0.470890 0.340298i
\(399\) 15369.5 + 6153.77i 1.92841 + 0.772115i
\(400\) 5784.05 + 5526.74i 0.723006 + 0.690842i
\(401\) 4052.17i 0.504628i −0.967645 0.252314i \(-0.918808\pi\)
0.967645 0.252314i \(-0.0811915\pi\)
\(402\) 6488.29 + 10253.6i 0.804991 + 1.27215i
\(403\) 10616.2i 1.31224i
\(404\) −2456.93 7432.98i −0.302566 0.915358i
\(405\) −6472.96 4952.86i −0.794183 0.607678i
\(406\) 2469.27 3416.87i 0.301841 0.417675i
\(407\) 4051.18i 0.493390i
\(408\) 1308.14 + 1073.91i 0.158732 + 0.130311i
\(409\) 3577.29 0.432483 0.216242 0.976340i \(-0.430620\pi\)
0.216242 + 0.976340i \(0.430620\pi\)
\(410\) 1645.13 410.364i 0.198164 0.0494304i
\(411\) −14289.7 5721.43i −1.71498 0.686660i
\(412\) −1215.77 3678.10i −0.145381 0.439823i
\(413\) 12203.5i 1.45399i
\(414\) −664.202 3582.23i −0.0788497 0.425258i
\(415\) −8350.62 + 9902.85i −0.987749 + 1.17135i
\(416\) −134.789 10615.5i −0.0158860 1.25112i
\(417\) −3493.16 1398.62i −0.410217 0.164246i
\(418\) 8655.71 + 6255.22i 1.01283 + 0.731945i
\(419\) 13722.4i 1.59996i −0.600028 0.799979i \(-0.704844\pi\)
0.600028 0.799979i \(-0.295156\pi\)
\(420\) 10103.7 + 9644.84i 1.17383 + 1.12052i
\(421\) 3588.59i 0.415433i 0.978189 + 0.207717i \(0.0666032\pi\)
−0.978189 + 0.207717i \(0.933397\pi\)
\(422\) 4112.72 5691.00i 0.474417 0.656478i
\(423\) 8228.22 8628.05i 0.945792 0.991749i
\(424\) 448.460 1416.85i 0.0513659 0.162284i
\(425\) 303.832 + 1773.53i 0.0346777 + 0.202421i
\(426\) 1957.62 1238.74i 0.222645 0.140886i
\(427\) 6418.68i 0.727451i
\(428\) −2291.34 6932.04i −0.258776 0.782881i
\(429\) −4034.34 + 10076.1i −0.454032 + 1.13398i
\(430\) −15037.8 + 3751.06i −1.68649 + 0.420679i
\(431\) −8138.32 −0.909534 −0.454767 0.890610i \(-0.650277\pi\)
−0.454767 + 0.890610i \(0.650277\pi\)
\(432\) 7862.28 + 4336.61i 0.875634 + 0.482975i
\(433\) 2624.71i 0.291306i −0.989336 0.145653i \(-0.953472\pi\)
0.989336 0.145653i \(-0.0465284\pi\)
\(434\) 12471.9 + 9013.06i 1.37942 + 0.996868i
\(435\) 2542.88 1354.35i 0.280280 0.149279i
\(436\) −9801.80 + 3239.92i −1.07665 + 0.355881i
\(437\) 5057.53i 0.553626i
\(438\) 1907.65 + 3014.71i 0.208108 + 0.328877i
\(439\) 1733.88i 0.188504i −0.995548 0.0942522i \(-0.969954\pi\)
0.995548 0.0942522i \(-0.0300460\pi\)
\(440\) 4814.26 + 7616.25i 0.521615 + 0.825206i
\(441\) 10947.4 + 10440.1i 1.18209 + 1.12731i
\(442\) 1398.62 1935.36i 0.150511 0.208271i
\(443\) 3608.99 0.387061 0.193531 0.981094i \(-0.438006\pi\)
0.193531 + 0.981094i \(0.438006\pi\)
\(444\) −291.097 + 4719.36i −0.0311146 + 0.504438i
\(445\) 6411.60 + 5406.61i 0.683009 + 0.575950i
\(446\) 365.467 505.718i 0.0388013 0.0536916i
\(447\) 9247.63 + 3702.65i 0.978518 + 0.391788i
\(448\) −12585.4 8854.08i −1.32725 0.933741i
\(449\) 1133.13i 0.119100i 0.998225 + 0.0595499i \(0.0189665\pi\)
−0.998225 + 0.0595499i \(0.981033\pi\)
\(450\) 3300.18 + 8957.33i 0.345716 + 0.938339i
\(451\) 1909.66 0.199384
\(452\) −60.4603 182.911i −0.00629162 0.0190341i
\(453\) −4994.98 + 12475.3i −0.518067 + 1.29391i
\(454\) 2130.97 2948.74i 0.220289 0.304827i
\(455\) 12703.9 15065.4i 1.30894 1.55225i
\(456\) −9633.86 7908.87i −0.989357 0.812208i
\(457\) 2261.32i 0.231466i 0.993280 + 0.115733i \(0.0369217\pi\)
−0.993280 + 0.115733i \(0.963078\pi\)
\(458\) 7963.22 + 5754.78i 0.812439 + 0.587125i
\(459\) 838.720 + 1837.16i 0.0852899 + 0.186822i
\(460\) −1588.00 + 3960.57i −0.160958 + 0.401440i
\(461\) 9091.77 0.918538 0.459269 0.888297i \(-0.348111\pi\)
0.459269 + 0.888297i \(0.348111\pi\)
\(462\) 8412.19 + 13294.0i 0.847122 + 1.33873i
\(463\) 13361.2 1.34114 0.670568 0.741848i \(-0.266050\pi\)
0.670568 + 0.741848i \(0.266050\pi\)
\(464\) −2548.67 + 1891.57i −0.254998 + 0.189254i
\(465\) 4943.52 + 9281.77i 0.493012 + 0.925660i
\(466\) −2276.94 + 3150.74i −0.226346 + 0.313208i
\(467\) 11343.7 1.12404 0.562019 0.827124i \(-0.310025\pi\)
0.562019 + 0.827124i \(0.310025\pi\)
\(468\) 5423.75 11448.0i 0.535711 1.13074i
\(469\) 24813.5i 2.44303i
\(470\) −13548.7 + 3379.60i −1.32969 + 0.331680i
\(471\) −7369.42 2950.63i −0.720945 0.288658i
\(472\) 2772.53 8759.48i 0.270373 0.854211i
\(473\) −17455.8 −1.69687
\(474\) 844.835 + 1335.11i 0.0818662 + 0.129375i
\(475\) −2237.58 13061.2i −0.216141 1.26166i
\(476\) −1086.23 3286.20i −0.104595 0.316434i
\(477\) 1223.84 1283.31i 0.117475 0.123184i
\(478\) −10123.7 + 14008.8i −0.968721 + 1.34048i
\(479\) 3825.30 0.364890 0.182445 0.983216i \(-0.441599\pi\)
0.182445 + 0.983216i \(0.441599\pi\)
\(480\) −5061.02 9218.35i −0.481256 0.876580i
\(481\) 6670.91 0.632364
\(482\) −12191.8 + 16870.4i −1.15211 + 1.59425i
\(483\) −2769.30 + 6916.54i −0.260885 + 0.651580i
\(484\) −156.907 474.692i −0.0147358 0.0445804i
\(485\) 711.318 + 599.822i 0.0665965 + 0.0561577i
\(486\) 6151.84 + 8771.90i 0.574183 + 0.818727i
\(487\) −11327.9 −1.05403 −0.527017 0.849855i \(-0.676689\pi\)
−0.527017 + 0.849855i \(0.676689\pi\)
\(488\) −1458.26 + 4607.21i −0.135272 + 0.427374i
\(489\) 5360.75 13388.9i 0.495750 1.23817i
\(490\) −4288.07 17190.7i −0.395338 1.58489i
\(491\) 17714.2i 1.62817i 0.580747 + 0.814084i \(0.302761\pi\)
−0.580747 + 0.814084i \(0.697239\pi\)
\(492\) −2224.62 137.218i −0.203849 0.0125737i
\(493\) −713.881 −0.0652162
\(494\) −10300.2 + 14253.0i −0.938114 + 1.29812i
\(495\) 1164.76 + 10688.1i 0.105762 + 0.970496i
\(496\) −6904.41 9302.91i −0.625034 0.842163i
\(497\) −4737.38 −0.427567
\(498\) 14389.3 9105.27i 1.29478 0.819311i
\(499\) 16471.4 1.47768 0.738839 0.673882i \(-0.235374\pi\)
0.738839 + 0.673882i \(0.235374\pi\)
\(500\) 2348.79 10930.8i 0.210082 0.977684i
\(501\) 2867.84 7162.65i 0.255740 0.638730i
\(502\) −3673.57 2654.78i −0.326612 0.236033i
\(503\) 14790.4i 1.31108i 0.755162 + 0.655538i \(0.227558\pi\)
−0.755162 + 0.655538i \(0.772442\pi\)
\(504\) −8844.40 16091.1i −0.781669 1.42213i
\(505\) −7052.91 + 8363.92i −0.621486 + 0.737009i
\(506\) −2814.96 + 3895.22i −0.247313 + 0.342221i
\(507\) −5993.79 2399.85i −0.525037 0.210219i
\(508\) 2557.05 + 7735.90i 0.223329 + 0.675640i
\(509\) 14027.9 1.22157 0.610783 0.791798i \(-0.290855\pi\)
0.610783 + 0.791798i \(0.290855\pi\)
\(510\) 321.605 2343.36i 0.0279234 0.203463i
\(511\) 7295.52i 0.631575i
\(512\) 7022.04 + 9214.59i 0.606119 + 0.795374i
\(513\) −6176.77 13529.8i −0.531601 1.16444i
\(514\) 2182.66 3020.27i 0.187301 0.259180i
\(515\) −3490.03 + 4138.76i −0.298619 + 0.354128i
\(516\) 20334.8 + 1254.28i 1.73487 + 0.107009i
\(517\) −15727.2 −1.33787
\(518\) 5663.53 7836.95i 0.480388 0.664741i
\(519\) −8667.35 + 21647.3i −0.733053 + 1.83085i
\(520\) −12541.4 + 7927.43i −1.05764 + 0.668540i
\(521\) 13903.0i 1.16910i −0.811356 0.584552i \(-0.801270\pi\)
0.811356 0.584552i \(-0.198730\pi\)
\(522\) −3723.79 + 690.451i −0.312233 + 0.0578931i
\(523\) 11850.7i 0.990813i −0.868661 0.495407i \(-0.835019\pi\)
0.868661 0.495407i \(-0.164981\pi\)
\(524\) −3207.86 + 1060.34i −0.267435 + 0.0883990i
\(525\) 4091.75 19087.3i 0.340150 1.58674i
\(526\) −1425.48 1030.15i −0.118163 0.0853931i
\(527\) 2605.74i 0.215384i
\(528\) −3017.84 11453.3i −0.248740 0.944021i
\(529\) 9891.02 0.812938
\(530\) −2015.19 + 502.671i −0.165159 + 0.0411974i
\(531\) 7566.19 7933.84i 0.618351 0.648398i
\(532\) 7999.59 + 24201.3i 0.651929 + 1.97229i
\(533\) 3144.55i 0.255545i
\(534\) −5895.21 9316.34i −0.477735 0.754976i
\(535\) −6577.58 + 7800.24i −0.531540 + 0.630344i
\(536\) −5637.39 + 17810.6i −0.454288 + 1.43527i
\(537\) 5241.79 13091.8i 0.421229 1.05205i
\(538\) −173.958 + 240.715i −0.0139402 + 0.0192899i
\(539\) 19954.8i 1.59465i
\(540\) −588.876 12534.6i −0.0469282 0.998898i
\(541\) 19263.3i 1.53086i 0.643519 + 0.765430i \(0.277474\pi\)
−0.643519 + 0.765430i \(0.722526\pi\)
\(542\) 2245.88 + 1623.03i 0.177987 + 0.128626i
\(543\) −1764.81 + 4407.74i −0.139476 + 0.348350i
\(544\) 33.0837 + 2605.55i 0.00260745 + 0.205353i
\(545\) 11029.4 + 9300.60i 0.866878 + 0.730998i
\(546\) −21890.6 + 13852.0i −1.71581 + 1.08573i
\(547\) 5317.24i 0.415629i 0.978168 + 0.207814i \(0.0666350\pi\)
−0.978168 + 0.207814i \(0.933365\pi\)
\(548\) −7437.56 22501.0i −0.579776 1.75400i
\(549\) −3979.57 + 4172.95i −0.309370 + 0.324403i
\(550\) 5546.36 11304.9i 0.429996 0.876442i
\(551\) 5257.40 0.406484
\(552\) 3559.13 4335.40i 0.274432 0.334288i
\(553\) 3230.94i 0.248452i
\(554\) 12235.3 16930.6i 0.938315 1.29840i
\(555\) 5832.38 3106.36i 0.446073 0.237581i
\(556\) −1818.13 5500.43i −0.138680 0.419551i
\(557\) 10227.8i 0.778039i −0.921230 0.389019i \(-0.872814\pi\)
0.921230 0.389019i \(-0.127186\pi\)
\(558\) −2520.21 13592.2i −0.191199 1.03119i
\(559\) 28743.7i 2.17483i
\(560\) −1334.37 + 21463.8i −0.100692 + 1.61967i
\(561\) 990.222 2473.15i 0.0745227 0.186126i
\(562\) −6505.60 4701.40i −0.488296 0.352877i
\(563\) 6371.34 0.476945 0.238472 0.971149i \(-0.423353\pi\)
0.238472 + 0.971149i \(0.423353\pi\)
\(564\) 18321.1 + 1130.08i 1.36783 + 0.0843702i
\(565\) −173.559 + 205.820i −0.0129233 + 0.0153255i
\(566\) 7835.71 + 5662.63i 0.581907 + 0.420527i
\(567\) −1038.80 21885.1i −0.0769407 1.62097i
\(568\) 3400.41 + 1076.29i 0.251193 + 0.0795073i
\(569\) 3929.11i 0.289485i −0.989469 0.144742i \(-0.953765\pi\)
0.989469 0.144742i \(-0.0462353\pi\)
\(570\) −2368.47 + 17257.8i −0.174043 + 1.26816i
\(571\) −4292.81 −0.314621 −0.157310 0.987549i \(-0.550282\pi\)
−0.157310 + 0.987549i \(0.550282\pi\)
\(572\) −15866.1 + 5244.43i −1.15978 + 0.383358i
\(573\) 16496.8 + 6605.14i 1.20273 + 0.481559i
\(574\) 3694.20 + 2669.69i 0.268629 + 0.194130i
\(575\) 5877.77 1006.95i 0.426296 0.0730307i
\(576\) 2692.61 + 13559.2i 0.194778 + 0.980847i
\(577\) 1957.65i 0.141244i 0.997503 + 0.0706221i \(0.0224985\pi\)
−0.997503 + 0.0706221i \(0.977502\pi\)
\(578\) 7796.04 10787.8i 0.561025 0.776322i
\(579\) −7312.42 + 18263.3i −0.524860 + 1.31088i
\(580\) 4117.08 + 1650.75i 0.294746 + 0.118179i
\(581\) −34821.7 −2.48649
\(582\) −654.028 1033.58i −0.0465814 0.0736136i
\(583\) −2339.21 −0.166175
\(584\) −1657.48 + 5236.59i −0.117443 + 0.371047i
\(585\) −17599.7 + 1917.97i −1.24386 + 0.135552i
\(586\) 7617.88 + 5505.21i 0.537016 + 0.388086i
\(587\) −17909.4 −1.25928 −0.629642 0.776886i \(-0.716798\pi\)
−0.629642 + 0.776886i \(0.716798\pi\)
\(588\) −1433.85 + 23246.0i −0.100563 + 1.63036i
\(589\) 19190.0i 1.34246i
\(590\) −12458.6 + 3107.68i −0.869341 + 0.216850i
\(591\) −24.8813 + 62.1428i −0.00173177 + 0.00432523i
\(592\) −5845.66 + 4338.52i −0.405836 + 0.301203i
\(593\) 20213.4 1.39977 0.699887 0.714253i \(-0.253233\pi\)
0.699887 + 0.714253i \(0.253233\pi\)
\(594\) 2773.27 13858.3i 0.191564 0.957262i
\(595\) −3118.16 + 3697.77i −0.214844 + 0.254780i
\(596\) 4813.25 + 14561.6i 0.330803 + 1.00078i
\(597\) 3150.06 7867.51i 0.215952 0.539356i
\(598\) −6414.09 4635.27i −0.438615 0.316974i
\(599\) −8469.13 −0.577695 −0.288848 0.957375i \(-0.593272\pi\)
−0.288848 + 0.957375i \(0.593272\pi\)
\(600\) −7273.46 + 12770.9i −0.494896 + 0.868952i
\(601\) −16288.3 −1.10551 −0.552756 0.833343i \(-0.686424\pi\)
−0.552756 + 0.833343i \(0.686424\pi\)
\(602\) −33768.0 24403.1i −2.28618 1.65215i
\(603\) −15384.3 + 16131.9i −1.03897 + 1.08945i
\(604\) −19644.0 + 6493.21i −1.32335 + 0.437426i
\(605\) −450.420 + 534.145i −0.0302680 + 0.0358943i
\(606\) 12153.1 7690.29i 0.814666 0.515506i
\(607\) −6769.57 −0.452666 −0.226333 0.974050i \(-0.572674\pi\)
−0.226333 + 0.974050i \(0.572674\pi\)
\(608\) −243.646 19188.7i −0.0162519 1.27994i
\(609\) 7189.87 + 2878.74i 0.478404 + 0.191548i
\(610\) 6552.82 1634.54i 0.434944 0.108493i
\(611\) 25897.3i 1.71472i
\(612\) −1331.25 + 2809.90i −0.0879291 + 0.185594i
\(613\) −8543.04 −0.562887 −0.281444 0.959578i \(-0.590813\pi\)
−0.281444 + 0.959578i \(0.590813\pi\)
\(614\) −1043.79 754.313i −0.0686055 0.0495791i
\(615\) 1464.28 + 2749.28i 0.0960090 + 0.180263i
\(616\) −7308.99 + 23091.8i −0.478064 + 1.51038i
\(617\) 9253.24 0.603763 0.301881 0.953346i \(-0.402385\pi\)
0.301881 + 0.953346i \(0.402385\pi\)
\(618\) 6013.80 3805.42i 0.391441 0.247697i
\(619\) 16231.5 1.05396 0.526980 0.849878i \(-0.323324\pi\)
0.526980 + 0.849878i \(0.323324\pi\)
\(620\) −6025.40 + 15027.7i −0.390300 + 0.973433i
\(621\) 6088.64 2779.65i 0.393444 0.179619i
\(622\) −2770.59 + 3833.83i −0.178602 + 0.247143i
\(623\) 22545.3i 1.44985i
\(624\) 18859.7 4969.36i 1.20993 0.318804i
\(625\) −14734.0 + 5200.94i −0.942976 + 0.332860i
\(626\) −7143.51 5162.40i −0.456090 0.329602i
\(627\) −7292.52 + 18213.6i −0.464490 + 1.16010i
\(628\) −3835.67 11604.1i −0.243726 0.737349i
\(629\) −1637.36 −0.103793
\(630\) −12688.7 + 22304.3i −0.802430 + 1.41052i
\(631\) 12901.7i 0.813960i −0.913437 0.406980i \(-0.866582\pi\)
0.913437 0.406980i \(-0.133418\pi\)
\(632\) −734.041 + 2319.11i −0.0462003 + 0.145964i
\(633\) 11975.2 + 4794.72i 0.751928 + 0.301064i
\(634\) 10797.9 + 7803.32i 0.676403 + 0.488816i
\(635\) 7340.33 8704.78i 0.458728 0.543998i
\(636\) 2725.02 + 168.084i 0.169896 + 0.0104795i
\(637\) 32858.7 2.04382
\(638\) 4049.15 + 2926.20i 0.251266 + 0.181582i
\(639\) 3079.90 + 2937.17i 0.190671 + 0.181835i
\(640\) 5834.18 15103.2i 0.360338 0.932822i
\(641\) 13164.5i 0.811182i 0.914055 + 0.405591i \(0.132934\pi\)
−0.914055 + 0.405591i \(0.867066\pi\)
\(642\) 11334.1 7172.00i 0.696761 0.440898i
\(643\) 22712.5i 1.39299i −0.717561 0.696496i \(-0.754741\pi\)
0.717561 0.696496i \(-0.245259\pi\)
\(644\) −10891.0 + 3599.95i −0.666406 + 0.220276i
\(645\) −13384.7 25130.6i −0.817089 1.53414i
\(646\) 2528.17 3498.38i 0.153978 0.213068i
\(647\) 2451.48i 0.148961i −0.997222 0.0744803i \(-0.976270\pi\)
0.997222 0.0744803i \(-0.0237298\pi\)
\(648\) −4226.47 + 15944.7i −0.256221 + 0.966618i
\(649\) −14461.8 −0.874692
\(650\) 18615.3 + 9132.96i 1.12331 + 0.551114i
\(651\) −10507.7 + 26243.7i −0.632609 + 1.57999i
\(652\) 21082.5 6968.70i 1.26634 0.418582i
\(653\) 26329.5i 1.57787i −0.614474 0.788937i \(-0.710632\pi\)
0.614474 0.788937i \(-0.289368\pi\)
\(654\) −10141.1 16026.2i −0.606343 0.958218i
\(655\) 3609.62 + 3043.83i 0.215328 + 0.181576i
\(656\) −2045.10 2755.54i −0.121719 0.164003i
\(657\) −4523.22 + 4743.01i −0.268596 + 0.281647i
\(658\) −30424.0 21986.5i −1.80251 1.30262i
\(659\) 29804.9i 1.76181i 0.473292 + 0.880906i \(0.343066\pi\)
−0.473292 + 0.880906i \(0.656934\pi\)
\(660\) −11429.6 + 11973.4i −0.674086 + 0.706155i
\(661\) 8483.43i 0.499194i −0.968350 0.249597i \(-0.919702\pi\)
0.968350 0.249597i \(-0.0802981\pi\)
\(662\) 12829.1 17752.4i 0.753198 1.04224i
\(663\) 4072.43 + 1630.56i 0.238552 + 0.0955137i
\(664\) 24994.4 + 7911.17i 1.46080 + 0.462369i
\(665\) 22963.8 27232.4i 1.33909 1.58801i
\(666\) −8540.91 + 1583.62i −0.496927 + 0.0921384i
\(667\) 2365.92i 0.137345i
\(668\) 11278.5 3728.05i 0.653262 0.215932i
\(669\) 1064.15 + 426.072i 0.0614981 + 0.0246232i
\(670\) 25332.0 6318.85i 1.46069 0.364356i
\(671\) 7606.44 0.437621
\(672\) 10173.7 26375.3i 0.584019 1.51406i
\(673\) 32692.9i 1.87254i 0.351285 + 0.936268i \(0.385745\pi\)
−0.351285 + 0.936268i \(0.614255\pi\)
\(674\) −19278.3 13931.8i −1.10174 0.796193i
\(675\) −14494.3 + 9872.30i −0.826497 + 0.562941i
\(676\) −3119.68 9438.01i −0.177496 0.536983i
\(677\) 16192.2i 0.919226i 0.888119 + 0.459613i \(0.152012\pi\)
−0.888119 + 0.459613i \(0.847988\pi\)
\(678\) 299.065 189.243i 0.0169403 0.0107195i
\(679\) 2501.23i 0.141367i
\(680\) 3078.26 1945.78i 0.173597 0.109731i
\(681\) 6204.82 + 2484.34i 0.349147 + 0.139795i
\(682\) −10680.9 + 14779.8i −0.599697 + 0.829835i
\(683\) 14545.0 0.814862 0.407431 0.913236i \(-0.366425\pi\)
0.407431 + 0.913236i \(0.366425\pi\)
\(684\) 9804.04 20693.6i 0.548051 1.15678i
\(685\) −21350.4 + 25319.1i −1.19089 + 1.41225i
\(686\) 10818.4 14970.0i 0.602110 0.833174i
\(687\) −6709.09 + 16756.4i −0.372588 + 0.930565i
\(688\) 18693.9 + 25187.9i 1.03590 + 1.39575i
\(689\) 3851.88i 0.212982i
\(690\) −7766.30 1065.85i −0.428490 0.0588062i
\(691\) 8218.62 0.452462 0.226231 0.974074i \(-0.427360\pi\)
0.226231 + 0.974074i \(0.427360\pi\)
\(692\) −34086.6 + 11267.1i −1.87251 + 0.618947i
\(693\) −19946.1 + 20915.3i −1.09335 + 1.14647i
\(694\) −8002.98 + 11074.2i −0.437736 + 0.605721i
\(695\) −5219.17 + 6189.33i −0.284856 + 0.337805i
\(696\) −4506.73 3699.78i −0.245441 0.201494i
\(697\) 771.825i 0.0419440i
\(698\) 14218.6 + 10275.4i 0.771036 + 0.557205i
\(699\) −6629.87 2654.53i −0.358748 0.143639i
\(700\) 26533.6 14115.4i 1.43268 0.762161i
\(701\) 22746.0 1.22554 0.612770 0.790261i \(-0.290055\pi\)
0.612770 + 0.790261i \(0.290055\pi\)
\(702\) 22819.9 + 4566.63i 1.22690 + 0.245522i
\(703\) 12058.4 0.646930
\(704\) 10492.5 14914.4i 0.561721 0.798447i
\(705\) −12059.3 22642.0i −0.644224 1.20957i
\(706\) 12721.3 17603.2i 0.678149 0.938393i
\(707\) −29410.3 −1.56448
\(708\) 16847.0 + 1039.15i 0.894279 + 0.0551606i
\(709\) 16822.0i 0.891062i −0.895266 0.445531i \(-0.853015\pi\)
0.895266 0.445531i \(-0.146985\pi\)
\(710\) −1206.39 4836.39i −0.0637679 0.255643i
\(711\) −2003.18 + 2100.52i −0.105661 + 0.110796i
\(712\) 5122.09 16182.6i 0.269604 0.851782i
\(713\) −8635.84 −0.453597
\(714\) 5373.02 3399.95i 0.281625 0.178207i
\(715\) 17853.2 + 15054.8i 0.933807 + 0.787436i
\(716\) 20614.7 6814.06i 1.07599 0.355661i
\(717\) −29477.7 11802.5i −1.53538 0.614747i
\(718\) 20549.2 28435.1i 1.06809 1.47798i
\(719\) 24046.5 1.24726 0.623631 0.781719i \(-0.285657\pi\)
0.623631 + 0.781719i \(0.285657\pi\)
\(720\) 14175.1 13126.9i 0.733714 0.679459i
\(721\) −14553.3 −0.751722
\(722\) −7255.54 + 10039.9i −0.373994 + 0.517516i
\(723\) −35499.2 14213.5i −1.82605 0.731128i
\(724\) −6940.56 + 2294.16i −0.356276 + 0.117765i
\(725\) −1046.74 6110.05i −0.0536207 0.312995i
\(726\) 776.136 491.125i 0.0396764 0.0251065i
\(727\) −2465.88 −0.125797 −0.0628986 0.998020i \(-0.520034\pi\)
−0.0628986 + 0.998020i \(0.520034\pi\)
\(728\) −38024.4 12035.4i −1.93582 0.612722i
\(729\) −12893.4 + 14872.1i −0.655053 + 0.755583i
\(730\) 7447.98 1857.83i 0.377620 0.0941939i
\(731\) 7055.10i 0.356966i
\(732\) −8861.00 546.561i −0.447421 0.0275976i
\(733\) 31105.2 1.56739 0.783696 0.621145i \(-0.213332\pi\)
0.783696 + 0.621145i \(0.213332\pi\)
\(734\) −2039.74 + 2822.51i −0.102573 + 0.141936i
\(735\) 28728.4 15300.9i 1.44172 0.767868i
\(736\) 8635.23 109.645i 0.432471 0.00549126i
\(737\) 29405.2 1.46968
\(738\) −746.492 4026.04i −0.0372341 0.200814i
\(739\) −12767.8 −0.635548 −0.317774 0.948167i \(-0.602935\pi\)
−0.317774 + 0.948167i \(0.602935\pi\)
\(740\) 9442.97 + 3786.17i 0.469095 + 0.188085i
\(741\) −29991.6 12008.3i −1.48687 0.595324i
\(742\) −4525.17 3270.20i −0.223887 0.161796i
\(743\) 26197.5i 1.29353i 0.762690 + 0.646764i \(0.223878\pi\)
−0.762690 + 0.646764i \(0.776122\pi\)
\(744\) 13504.6 16450.0i 0.665458 0.810600i
\(745\) 13817.0 16385.4i 0.679485 0.805789i
\(746\) −8473.48 + 11725.2i −0.415866 + 0.575458i
\(747\) 22638.5 + 21589.4i 1.10883 + 1.05745i
\(748\) 3894.30 1287.24i 0.190361 0.0629226i
\(749\) −27428.2 −1.33806
\(750\) 20528.2 683.408i 0.999446 0.0332727i
\(751\) 7833.34i 0.380616i 0.981724 + 0.190308i \(0.0609486\pi\)
−0.981724 + 0.190308i \(0.939051\pi\)
\(752\) 16842.7 + 22693.6i 0.816740 + 1.10047i
\(753\) 3095.02 7730.03i 0.149786 0.374101i
\(754\) −4818.45 + 6667.57i −0.232729 + 0.322040i
\(755\) 22104.3 + 18639.6i 1.06551 + 0.898494i
\(756\) 24738.7 22931.7i 1.19013 1.10320i
\(757\) −10981.8 −0.527266 −0.263633 0.964623i \(-0.584921\pi\)
−0.263633 + 0.964623i \(0.584921\pi\)
\(758\) −4926.63 + 6817.26i −0.236073 + 0.326668i
\(759\) −8196.43 3281.76i −0.391978 0.156944i
\(760\) −22669.9 + 14329.7i −1.08201 + 0.683939i
\(761\) 24605.3i 1.17206i −0.810288 0.586032i \(-0.800689\pi\)
0.810288 0.586032i \(-0.199311\pi\)
\(762\) −12648.4 + 8003.69i −0.601317 + 0.380503i
\(763\) 38783.1i 1.84016i
\(764\) 8586.33 + 25976.4i 0.406600 + 1.23009i
\(765\) 4319.81 470.762i 0.204161 0.0222489i
\(766\) −9719.13 7023.72i −0.458442 0.331302i
\(767\) 23813.6i 1.12107i
\(768\) −13294.7 + 16620.3i −0.624652 + 0.780903i
\(769\) −17233.6 −0.808140 −0.404070 0.914728i \(-0.632405\pi\)
−0.404070 + 0.914728i \(0.632405\pi\)
\(770\) 32843.5 8192.51i 1.53714 0.383426i