Properties

Label 120.4.m.b.59.16
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.16
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.12434 + 1.86740i) q^{2} +(0.659128 + 5.15418i) q^{3} +(1.02565 - 7.93398i) q^{4} +(10.6502 + 3.40199i) q^{5} +(-11.0251 - 9.71838i) q^{6} -28.2468 q^{7} +(12.6371 + 18.7698i) q^{8} +(-26.1311 + 6.79452i) q^{9} +O(q^{10})\) \(q+(-2.12434 + 1.86740i) q^{2} +(0.659128 + 5.15418i) q^{3} +(1.02565 - 7.93398i) q^{4} +(10.6502 + 3.40199i) q^{5} +(-11.0251 - 9.71838i) q^{6} -28.2468 q^{7} +(12.6371 + 18.7698i) q^{8} +(-26.1311 + 6.79452i) q^{9} +(-28.9775 + 12.6612i) q^{10} +38.5985i q^{11} +(41.5692 + 0.0568831i) q^{12} +36.1882 q^{13} +(60.0059 - 52.7480i) q^{14} +(-10.5146 + 57.1353i) q^{15} +(-61.8961 - 16.2750i) q^{16} -74.9762 q^{17} +(42.8233 - 63.2310i) q^{18} -136.377 q^{19} +(37.9147 - 81.0091i) q^{20} +(-18.6183 - 145.589i) q^{21} +(-72.0787 - 81.9963i) q^{22} -114.614i q^{23} +(-88.4133 + 77.5054i) q^{24} +(101.853 + 72.4636i) q^{25} +(-76.8760 + 67.5777i) q^{26} +(-52.2439 - 130.206i) q^{27} +(-28.9714 + 224.110i) q^{28} +109.327 q^{29} +(-84.3577 - 141.010i) q^{30} +57.1138i q^{31} +(161.880 - 81.0110i) q^{32} +(-198.943 + 25.4413i) q^{33} +(159.275 - 140.010i) q^{34} +(-300.834 - 96.0952i) q^{35} +(27.1062 + 214.292i) q^{36} -100.427 q^{37} +(289.712 - 254.671i) q^{38} +(23.8526 + 186.520i) q^{39} +(70.7326 + 242.893i) q^{40} +173.978i q^{41} +(311.424 + 274.513i) q^{42} +86.0147i q^{43} +(306.239 + 39.5886i) q^{44} +(-301.416 - 16.5347i) q^{45} +(214.030 + 243.480i) q^{46} +239.821i q^{47} +(43.0868 - 329.751i) q^{48} +454.882 q^{49} +(-351.689 + 36.2627i) q^{50} +(-49.4189 - 386.440i) q^{51} +(37.1165 - 287.116i) q^{52} +476.921i q^{53} +(354.130 + 179.042i) q^{54} +(-131.311 + 411.081i) q^{55} +(-356.957 - 530.186i) q^{56} +(-89.8901 - 702.913i) q^{57} +(-232.247 + 204.156i) q^{58} +762.283i q^{59} +(442.526 + 142.024i) q^{60} -614.842i q^{61} +(-106.654 - 121.329i) q^{62} +(738.120 - 191.924i) q^{63} +(-192.609 + 474.390i) q^{64} +(385.411 + 123.112i) q^{65} +(375.114 - 425.552i) q^{66} +382.405i q^{67} +(-76.8994 + 594.859i) q^{68} +(590.742 - 75.5455i) q^{69} +(818.522 - 357.637i) q^{70} +124.611 q^{71} +(-457.752 - 404.612i) q^{72} -267.766i q^{73} +(213.342 - 187.538i) q^{74} +(-306.356 + 572.731i) q^{75} +(-139.876 + 1082.01i) q^{76} -1090.28i q^{77} +(-398.979 - 351.690i) q^{78} +586.207i q^{79} +(-603.838 - 383.901i) q^{80} +(636.669 - 355.097i) q^{81} +(-324.885 - 369.588i) q^{82} +282.399 q^{83} +(-1174.20 - 1.60677i) q^{84} +(-798.510 - 255.068i) q^{85} +(-160.624 - 182.724i) q^{86} +(72.0602 + 563.489i) q^{87} +(-724.484 + 487.771i) q^{88} +604.782i q^{89} +(671.187 - 527.738i) q^{90} -1022.20 q^{91} +(-909.347 - 117.554i) q^{92} +(-294.375 + 37.6453i) q^{93} +(-447.841 - 509.461i) q^{94} +(-1452.44 - 463.954i) q^{95} +(524.245 + 780.963i) q^{96} +1041.15i q^{97} +(-966.325 + 849.446i) q^{98} +(-262.258 - 1008.62i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54} - 2064 q^{60} + 2176 q^{64} - 176 q^{66} + 672 q^{70} - 1600 q^{75} + 2304 q^{76} - 2304 q^{81} - 736 q^{84} - 1432 q^{90} - 2752 q^{91} + 4496 q^{94} + 640 q^{96} + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12434 + 1.86740i −0.751068 + 0.660225i
\(3\) 0.659128 + 5.15418i 0.126849 + 0.991922i
\(4\) 1.02565 7.93398i 0.128206 0.991748i
\(5\) 10.6502 + 3.40199i 0.952582 + 0.304283i
\(6\) −11.0251 9.71838i −0.750164 0.661252i
\(7\) −28.2468 −1.52518 −0.762592 0.646880i \(-0.776074\pi\)
−0.762592 + 0.646880i \(0.776074\pi\)
\(8\) 12.6371 + 18.7698i 0.558485 + 0.829515i
\(9\) −26.1311 + 6.79452i −0.967819 + 0.251649i
\(10\) −28.9775 + 12.6612i −0.916349 + 0.400381i
\(11\) 38.5985i 1.05799i 0.848625 + 0.528994i \(0.177431\pi\)
−0.848625 + 0.528994i \(0.822569\pi\)
\(12\) 41.5692 + 0.0568831i 0.999999 + 0.00136839i
\(13\) 36.1882 0.772061 0.386031 0.922486i \(-0.373846\pi\)
0.386031 + 0.922486i \(0.373846\pi\)
\(14\) 60.0059 52.7480i 1.14552 1.00696i
\(15\) −10.5146 + 57.1353i −0.180991 + 0.983485i
\(16\) −61.8961 16.2750i −0.967126 0.254297i
\(17\) −74.9762 −1.06967 −0.534835 0.844957i \(-0.679626\pi\)
−0.534835 + 0.844957i \(0.679626\pi\)
\(18\) 42.8233 63.2310i 0.560753 0.827983i
\(19\) −136.377 −1.64669 −0.823345 0.567541i \(-0.807895\pi\)
−0.823345 + 0.567541i \(0.807895\pi\)
\(20\) 37.9147 81.0091i 0.423899 0.905710i
\(21\) −18.6183 145.589i −0.193468 1.51286i
\(22\) −72.0787 81.9963i −0.698510 0.794621i
\(23\) 114.614i 1.03908i −0.854448 0.519538i \(-0.826104\pi\)
0.854448 0.519538i \(-0.173896\pi\)
\(24\) −88.4133 + 77.5054i −0.751971 + 0.659196i
\(25\) 101.853 + 72.4636i 0.814824 + 0.579709i
\(26\) −76.8760 + 67.5777i −0.579870 + 0.509734i
\(27\) −52.2439 130.206i −0.372383 0.928079i
\(28\) −28.9714 + 224.110i −0.195538 + 1.51260i
\(29\) 109.327 0.700050 0.350025 0.936740i \(-0.386173\pi\)
0.350025 + 0.936740i \(0.386173\pi\)
\(30\) −84.3577 141.010i −0.513385 0.858159i
\(31\) 57.1138i 0.330901i 0.986218 + 0.165451i \(0.0529079\pi\)
−0.986218 + 0.165451i \(0.947092\pi\)
\(32\) 161.880 81.0110i 0.894271 0.447527i
\(33\) −198.943 + 25.4413i −1.04944 + 0.134205i
\(34\) 159.275 140.010i 0.803395 0.706223i
\(35\) −300.834 96.0952i −1.45286 0.464087i
\(36\) 27.1062 + 214.292i 0.125492 + 0.992095i
\(37\) −100.427 −0.446221 −0.223110 0.974793i \(-0.571621\pi\)
−0.223110 + 0.974793i \(0.571621\pi\)
\(38\) 289.712 254.671i 1.23678 1.08719i
\(39\) 23.8526 + 186.520i 0.0979353 + 0.765824i
\(40\) 70.7326 + 242.893i 0.279595 + 0.960118i
\(41\) 173.978i 0.662701i 0.943508 + 0.331350i \(0.107504\pi\)
−0.943508 + 0.331350i \(0.892496\pi\)
\(42\) 311.424 + 274.513i 1.14414 + 1.00853i
\(43\) 86.0147i 0.305049i 0.988300 + 0.152525i \(0.0487403\pi\)
−0.988300 + 0.152525i \(0.951260\pi\)
\(44\) 306.239 + 39.5886i 1.04926 + 0.135641i
\(45\) −301.416 16.5347i −0.998499 0.0547743i
\(46\) 214.030 + 243.480i 0.686023 + 0.780416i
\(47\) 239.821i 0.744286i 0.928175 + 0.372143i \(0.121377\pi\)
−0.928175 + 0.372143i \(0.878623\pi\)
\(48\) 43.0868 329.751i 0.129563 0.991571i
\(49\) 454.882 1.32619
\(50\) −351.689 + 36.2627i −0.994726 + 0.102566i
\(51\) −49.4189 386.440i −0.135687 1.06103i
\(52\) 37.1165 287.116i 0.0989832 0.765690i
\(53\) 476.921i 1.23604i 0.786162 + 0.618021i \(0.212065\pi\)
−0.786162 + 0.618021i \(0.787935\pi\)
\(54\) 354.130 + 179.042i 0.892426 + 0.451194i
\(55\) −131.311 + 411.081i −0.321928 + 1.00782i
\(56\) −356.957 530.186i −0.851792 1.26516i
\(57\) −89.8901 702.913i −0.208881 1.63339i
\(58\) −232.247 + 204.156i −0.525785 + 0.462190i
\(59\) 762.283i 1.68205i 0.540997 + 0.841024i \(0.318047\pi\)
−0.540997 + 0.841024i \(0.681953\pi\)
\(60\) 442.526 + 142.024i 0.952164 + 0.305586i
\(61\) 614.842i 1.29053i −0.763958 0.645266i \(-0.776747\pi\)
0.763958 0.645266i \(-0.223253\pi\)
\(62\) −106.654 121.329i −0.218469 0.248529i
\(63\) 738.120 191.924i 1.47610 0.383811i
\(64\) −192.609 + 474.390i −0.376190 + 0.926543i
\(65\) 385.411 + 123.112i 0.735451 + 0.234925i
\(66\) 375.114 425.552i 0.699597 0.793665i
\(67\) 382.405i 0.697287i 0.937256 + 0.348643i \(0.113358\pi\)
−0.937256 + 0.348643i \(0.886642\pi\)
\(68\) −76.8994 + 594.859i −0.137139 + 1.06084i
\(69\) 590.742 75.5455i 1.03068 0.131806i
\(70\) 818.522 357.637i 1.39760 0.610655i
\(71\) 124.611 0.208291 0.104145 0.994562i \(-0.466789\pi\)
0.104145 + 0.994562i \(0.466789\pi\)
\(72\) −457.752 404.612i −0.749258 0.662278i
\(73\) 267.766i 0.429310i −0.976690 0.214655i \(-0.931137\pi\)
0.976690 0.214655i \(-0.0688627\pi\)
\(74\) 213.342 187.538i 0.335142 0.294606i
\(75\) −306.356 + 572.731i −0.471666 + 0.881777i
\(76\) −139.876 + 1082.01i −0.211116 + 1.63310i
\(77\) 1090.28i 1.61363i
\(78\) −398.979 351.690i −0.579172 0.510527i
\(79\) 586.207i 0.834854i 0.908710 + 0.417427i \(0.137068\pi\)
−0.908710 + 0.417427i \(0.862932\pi\)
\(80\) −603.838 383.901i −0.843889 0.536518i
\(81\) 636.669 355.097i 0.873346 0.487101i
\(82\) −324.885 369.588i −0.437532 0.497733i
\(83\) 282.399 0.373462 0.186731 0.982411i \(-0.440211\pi\)
0.186731 + 0.982411i \(0.440211\pi\)
\(84\) −1174.20 1.60677i −1.52518 0.00208705i
\(85\) −798.510 255.068i −1.01895 0.325482i
\(86\) −160.624 182.724i −0.201401 0.229113i
\(87\) 72.0602 + 563.489i 0.0888007 + 0.694395i
\(88\) −724.484 + 487.771i −0.877617 + 0.590870i
\(89\) 604.782i 0.720301i 0.932894 + 0.360151i \(0.117275\pi\)
−0.932894 + 0.360151i \(0.882725\pi\)
\(90\) 671.187 527.738i 0.786104 0.618094i
\(91\) −1022.20 −1.17754
\(92\) −909.347 117.554i −1.03050 0.133216i
\(93\) −294.375 + 37.6453i −0.328228 + 0.0419746i
\(94\) −447.841 509.461i −0.491396 0.559010i
\(95\) −1452.44 463.954i −1.56861 0.501059i
\(96\) 524.245 + 780.963i 0.557349 + 0.830278i
\(97\) 1041.15i 1.08982i 0.838494 + 0.544911i \(0.183437\pi\)
−0.838494 + 0.544911i \(0.816563\pi\)
\(98\) −966.325 + 849.446i −0.996057 + 0.875581i
\(99\) −262.258 1008.62i −0.266242 1.02394i
\(100\) 679.390 733.777i 0.679390 0.733777i
\(101\) −512.592 −0.504998 −0.252499 0.967597i \(-0.581252\pi\)
−0.252499 + 0.967597i \(0.581252\pi\)
\(102\) 826.620 + 728.647i 0.802428 + 0.707321i
\(103\) 588.625 0.563097 0.281548 0.959547i \(-0.409152\pi\)
0.281548 + 0.959547i \(0.409152\pi\)
\(104\) 457.312 + 679.244i 0.431184 + 0.640436i
\(105\) 297.004 1613.89i 0.276044 1.50000i
\(106\) −890.602 1013.14i −0.816065 0.928351i
\(107\) 1877.68 1.69647 0.848233 0.529624i \(-0.177667\pi\)
0.848233 + 0.529624i \(0.177667\pi\)
\(108\) −1086.63 + 280.956i −0.968162 + 0.250324i
\(109\) 833.606i 0.732523i −0.930512 0.366261i \(-0.880638\pi\)
0.930512 0.366261i \(-0.119362\pi\)
\(110\) −488.701 1118.49i −0.423598 0.969486i
\(111\) −66.1945 517.621i −0.0566028 0.442616i
\(112\) 1748.37 + 459.717i 1.47505 + 0.387849i
\(113\) 990.495 0.824583 0.412292 0.911052i \(-0.364729\pi\)
0.412292 + 0.911052i \(0.364729\pi\)
\(114\) 1503.58 + 1325.37i 1.23529 + 1.08888i
\(115\) 389.916 1220.66i 0.316173 0.989804i
\(116\) 112.131 867.395i 0.0897508 0.694272i
\(117\) −945.637 + 245.881i −0.747215 + 0.194288i
\(118\) −1423.49 1619.35i −1.11053 1.26333i
\(119\) 2117.84 1.63144
\(120\) −1205.29 + 524.666i −0.916896 + 0.399127i
\(121\) −158.840 −0.119339
\(122\) 1148.15 + 1306.13i 0.852041 + 0.969277i
\(123\) −896.712 + 114.673i −0.657348 + 0.0840631i
\(124\) 453.140 + 58.5788i 0.328171 + 0.0424237i
\(125\) 838.233 + 1118.25i 0.599791 + 0.800157i
\(126\) −1209.62 + 1786.08i −0.855251 + 1.26283i
\(127\) −1517.02 −1.05995 −0.529976 0.848013i \(-0.677799\pi\)
−0.529976 + 0.848013i \(0.677799\pi\)
\(128\) −476.707 1367.44i −0.329182 0.944266i
\(129\) −443.335 + 56.6946i −0.302585 + 0.0386952i
\(130\) −1048.64 + 458.184i −0.707477 + 0.309119i
\(131\) 968.122i 0.645689i −0.946452 0.322844i \(-0.895361\pi\)
0.946452 0.322844i \(-0.104639\pi\)
\(132\) −2.19560 + 1604.51i −0.00144774 + 1.05799i
\(133\) 3852.22 2.51151
\(134\) −714.102 812.359i −0.460366 0.523710i
\(135\) −113.449 1564.45i −0.0723269 0.997381i
\(136\) −947.478 1407.29i −0.597394 0.887307i
\(137\) −508.245 −0.316951 −0.158476 0.987363i \(-0.550658\pi\)
−0.158476 + 0.987363i \(0.550658\pi\)
\(138\) −1113.87 + 1263.64i −0.687091 + 0.779477i
\(139\) −136.471 −0.0832756 −0.0416378 0.999133i \(-0.513258\pi\)
−0.0416378 + 0.999133i \(0.513258\pi\)
\(140\) −1070.97 + 2288.25i −0.646524 + 1.38137i
\(141\) −1236.08 + 158.073i −0.738274 + 0.0944121i
\(142\) −264.717 + 232.699i −0.156441 + 0.137519i
\(143\) 1396.81i 0.816832i
\(144\) 1727.99 + 4.72917i 0.999996 + 0.00273679i
\(145\) 1164.35 + 371.927i 0.666854 + 0.213013i
\(146\) 500.026 + 568.826i 0.283441 + 0.322441i
\(147\) 299.825 + 2344.54i 0.168226 + 1.31547i
\(148\) −103.004 + 796.790i −0.0572084 + 0.442539i
\(149\) 17.4717 0.00960627 0.00480314 0.999988i \(-0.498471\pi\)
0.00480314 + 0.999988i \(0.498471\pi\)
\(150\) −418.712 1788.76i −0.227918 0.973680i
\(151\) 2010.13i 1.08332i 0.840596 + 0.541662i \(0.182205\pi\)
−0.840596 + 0.541662i \(0.817795\pi\)
\(152\) −1723.41 2559.77i −0.919651 1.36595i
\(153\) 1959.21 509.427i 1.03525 0.269181i
\(154\) 2035.99 + 2316.13i 1.06536 + 1.21194i
\(155\) −194.300 + 608.273i −0.100688 + 0.315211i
\(156\) 1504.31 + 2.05849i 0.772060 + 0.00105648i
\(157\) 1184.99 0.602372 0.301186 0.953565i \(-0.402618\pi\)
0.301186 + 0.953565i \(0.402618\pi\)
\(158\) −1094.68 1245.30i −0.551191 0.627032i
\(159\) −2458.14 + 314.352i −1.22606 + 0.156791i
\(160\) 1999.65 312.068i 0.988041 0.154194i
\(161\) 3237.49i 1.58478i
\(162\) −689.395 + 1943.26i −0.334346 + 0.942451i
\(163\) 2466.08i 1.18502i −0.805564 0.592509i \(-0.798137\pi\)
0.805564 0.592509i \(-0.201863\pi\)
\(164\) 1380.33 + 178.440i 0.657232 + 0.0849625i
\(165\) −2205.33 405.847i −1.04052 0.191486i
\(166\) −599.913 + 527.352i −0.280495 + 0.246569i
\(167\) 1316.99i 0.610249i −0.952312 0.305125i \(-0.901302\pi\)
0.952312 0.305125i \(-0.0986981\pi\)
\(168\) 2497.39 2189.28i 1.14689 1.00540i
\(169\) −887.416 −0.403922
\(170\) 2172.62 949.285i 0.980191 0.428275i
\(171\) 3563.69 926.619i 1.59370 0.414388i
\(172\) 682.439 + 88.2210i 0.302532 + 0.0391093i
\(173\) 1714.78i 0.753598i −0.926295 0.376799i \(-0.877025\pi\)
0.926295 0.376799i \(-0.122975\pi\)
\(174\) −1205.34 1062.48i −0.525152 0.462909i
\(175\) −2877.02 2046.86i −1.24276 0.884162i
\(176\) 628.190 2389.09i 0.269043 1.02321i
\(177\) −3928.94 + 502.442i −1.66846 + 0.213366i
\(178\) −1129.37 1284.76i −0.475561 0.540995i
\(179\) 3149.55i 1.31513i 0.753397 + 0.657566i \(0.228414\pi\)
−0.753397 + 0.657566i \(0.771586\pi\)
\(180\) −440.334 + 2374.47i −0.182336 + 0.983236i
\(181\) 3071.89i 1.26150i 0.775985 + 0.630752i \(0.217253\pi\)
−0.775985 + 0.630752i \(0.782747\pi\)
\(182\) 2171.50 1908.85i 0.884409 0.777438i
\(183\) 3169.00 405.259i 1.28011 0.163703i
\(184\) 2151.28 1448.39i 0.861928 0.580307i
\(185\) −1069.57 341.653i −0.425062 0.135777i
\(186\) 555.053 629.686i 0.218809 0.248230i
\(187\) 2893.96i 1.13170i
\(188\) 1902.73 + 245.973i 0.738144 + 0.0954223i
\(189\) 1475.72 + 3677.90i 0.567953 + 1.41549i
\(190\) 3951.87 1726.69i 1.50894 0.659303i
\(191\) 1462.25 0.553953 0.276977 0.960877i \(-0.410668\pi\)
0.276977 + 0.960877i \(0.410668\pi\)
\(192\) −2572.04 680.059i −0.966777 0.255620i
\(193\) 1745.22i 0.650901i 0.945559 + 0.325450i \(0.105516\pi\)
−0.945559 + 0.325450i \(0.894484\pi\)
\(194\) −1944.24 2211.76i −0.719528 0.818531i
\(195\) −380.504 + 2067.62i −0.139736 + 0.759310i
\(196\) 466.550 3609.03i 0.170026 1.31524i
\(197\) 3.00587i 0.00108710i 1.00000 0.000543552i \(0.000173018\pi\)
−1.00000 0.000543552i \(0.999827\pi\)
\(198\) 2440.62 + 1652.91i 0.875997 + 0.593270i
\(199\) 5110.77i 1.82057i −0.413986 0.910283i \(-0.635864\pi\)
0.413986 0.910283i \(-0.364136\pi\)
\(200\) −73.0025 + 2827.48i −0.0258103 + 0.999667i
\(201\) −1970.98 + 252.054i −0.691654 + 0.0884502i
\(202\) 1088.92 957.213i 0.379288 0.333412i
\(203\) −3088.13 −1.06770
\(204\) −3116.70 4.26487i −1.06967 0.00146373i
\(205\) −591.869 + 1852.89i −0.201649 + 0.631277i
\(206\) −1250.44 + 1099.20i −0.422924 + 0.371771i
\(207\) 778.749 + 2995.00i 0.261482 + 1.00564i
\(208\) −2239.91 588.962i −0.746681 0.196333i
\(209\) 5263.95i 1.74218i
\(210\) 2382.84 + 3983.08i 0.783006 + 1.30885i
\(211\) 1204.36 0.392946 0.196473 0.980509i \(-0.437051\pi\)
0.196473 + 0.980509i \(0.437051\pi\)
\(212\) 3783.89 + 489.155i 1.22584 + 0.158468i
\(213\) 82.1349 + 642.270i 0.0264215 + 0.206608i
\(214\) −3988.82 + 3506.37i −1.27416 + 1.12005i
\(215\) −292.621 + 916.072i −0.0928212 + 0.290584i
\(216\) 1783.73 2626.03i 0.561885 0.827215i
\(217\) 1613.28i 0.504685i
\(218\) 1556.67 + 1770.86i 0.483630 + 0.550175i
\(219\) 1380.11 176.492i 0.425842 0.0544576i
\(220\) 3126.83 + 1463.45i 0.958230 + 0.448480i
\(221\) −2713.25 −0.825851
\(222\) 1107.22 + 975.992i 0.334739 + 0.295064i
\(223\) 2027.95 0.608974 0.304487 0.952516i \(-0.401515\pi\)
0.304487 + 0.952516i \(0.401515\pi\)
\(224\) −4572.60 + 2288.30i −1.36393 + 0.682560i
\(225\) −3153.89 1201.51i −0.934485 0.356003i
\(226\) −2104.15 + 1849.65i −0.619318 + 0.544410i
\(227\) −1702.71 −0.497853 −0.248926 0.968522i \(-0.580078\pi\)
−0.248926 + 0.968522i \(0.580078\pi\)
\(228\) −5669.09 7.75756i −1.64669 0.00225332i
\(229\) 1511.84i 0.436268i −0.975919 0.218134i \(-0.930003\pi\)
0.975919 0.218134i \(-0.0699970\pi\)
\(230\) 1451.15 + 3321.23i 0.416026 + 0.952155i
\(231\) 5619.51 718.636i 1.60059 0.204687i
\(232\) 1381.57 + 2052.04i 0.390967 + 0.580702i
\(233\) −5111.87 −1.43730 −0.718648 0.695374i \(-0.755239\pi\)
−0.718648 + 0.695374i \(0.755239\pi\)
\(234\) 1549.70 2288.22i 0.432935 0.639254i
\(235\) −815.867 + 2554.14i −0.226474 + 0.708994i
\(236\) 6047.94 + 781.837i 1.66817 + 0.215649i
\(237\) −3021.42 + 386.385i −0.828110 + 0.105901i
\(238\) −4499.01 + 3954.84i −1.22533 + 1.07712i
\(239\) −4889.33 −1.32328 −0.661641 0.749820i \(-0.730140\pi\)
−0.661641 + 0.749820i \(0.730140\pi\)
\(240\) 1580.69 3365.33i 0.425138 0.905129i
\(241\) −3939.29 −1.05291 −0.526456 0.850202i \(-0.676480\pi\)
−0.526456 + 0.850202i \(0.676480\pi\)
\(242\) 337.431 296.618i 0.0896318 0.0787907i
\(243\) 2249.88 + 3047.45i 0.593950 + 0.804502i
\(244\) −4878.14 630.613i −1.27988 0.165454i
\(245\) 4844.58 + 1547.50i 1.26330 + 0.403536i
\(246\) 1690.78 1918.12i 0.438212 0.497134i
\(247\) −4935.25 −1.27135
\(248\) −1072.01 + 721.751i −0.274488 + 0.184803i
\(249\) 186.137 + 1455.54i 0.0473734 + 0.370445i
\(250\) −3868.92 810.236i −0.978767 0.204975i
\(251\) 5503.76i 1.38404i −0.721878 0.692020i \(-0.756721\pi\)
0.721878 0.692020i \(-0.243279\pi\)
\(252\) −765.664 6053.08i −0.191398 1.51313i
\(253\) 4423.93 1.09933
\(254\) 3222.67 2832.88i 0.796096 0.699807i
\(255\) 788.345 4283.79i 0.193600 1.05200i
\(256\) 3566.25 + 2014.72i 0.870666 + 0.491874i
\(257\) 4939.16 1.19882 0.599410 0.800442i \(-0.295402\pi\)
0.599410 + 0.800442i \(0.295402\pi\)
\(258\) 835.923 948.321i 0.201714 0.228837i
\(259\) 2836.76 0.680569
\(260\) 1372.06 2931.57i 0.327276 0.699263i
\(261\) −2856.82 + 742.822i −0.677521 + 0.176167i
\(262\) 1807.87 + 2056.62i 0.426300 + 0.484956i
\(263\) 318.680i 0.0747174i 0.999302 + 0.0373587i \(0.0118944\pi\)
−0.999302 + 0.0373587i \(0.988106\pi\)
\(264\) −2991.59 3412.62i −0.697422 0.795576i
\(265\) −1622.48 + 5079.30i −0.376106 + 1.17743i
\(266\) −8183.44 + 7193.63i −1.88631 + 1.65816i
\(267\) −3117.16 + 398.629i −0.714482 + 0.0913696i
\(268\) 3033.99 + 392.214i 0.691532 + 0.0893966i
\(269\) −4006.24 −0.908048 −0.454024 0.890990i \(-0.650012\pi\)
−0.454024 + 0.890990i \(0.650012\pi\)
\(270\) 3162.46 + 3111.57i 0.712818 + 0.701349i
\(271\) 2562.23i 0.574333i −0.957881 0.287166i \(-0.907287\pi\)
0.957881 0.287166i \(-0.0927132\pi\)
\(272\) 4640.73 + 1220.24i 1.03451 + 0.272014i
\(273\) −673.761 5268.60i −0.149369 1.16802i
\(274\) 1079.69 949.096i 0.238052 0.209259i
\(275\) −2796.98 + 3931.37i −0.613325 + 0.862074i
\(276\) 6.51961 4764.42i 0.00142186 1.03907i
\(277\) −825.382 −0.179034 −0.0895170 0.995985i \(-0.528532\pi\)
−0.0895170 + 0.995985i \(0.528532\pi\)
\(278\) 289.911 254.845i 0.0625456 0.0549806i
\(279\) −388.061 1492.45i −0.0832710 0.320252i
\(280\) −1997.97 6860.95i −0.426434 1.46436i
\(281\) 5330.02i 1.13154i 0.824564 + 0.565769i \(0.191421\pi\)
−0.824564 + 0.565769i \(0.808579\pi\)
\(282\) 2330.67 2644.05i 0.492161 0.558337i
\(283\) 1059.77i 0.222603i −0.993787 0.111301i \(-0.964498\pi\)
0.993787 0.111301i \(-0.0355019\pi\)
\(284\) 127.808 988.665i 0.0267042 0.206572i
\(285\) 1433.95 7791.96i 0.298035 1.61949i
\(286\) −2608.40 2967.30i −0.539292 0.613496i
\(287\) 4914.31i 1.01074i
\(288\) −3679.68 + 3216.80i −0.752872 + 0.658167i
\(289\) 708.423 0.144194
\(290\) −3168.01 + 1384.20i −0.641490 + 0.280287i
\(291\) −5366.27 + 686.251i −1.08102 + 0.138243i
\(292\) −2124.45 274.635i −0.425767 0.0550403i
\(293\) 8474.01i 1.68961i 0.535072 + 0.844807i \(0.320285\pi\)
−0.535072 + 0.844807i \(0.679715\pi\)
\(294\) −5015.13 4420.72i −0.994858 0.876944i
\(295\) −2593.28 + 8118.46i −0.511818 + 1.60229i
\(296\) −1269.11 1885.00i −0.249208 0.370147i
\(297\) 5025.75 2016.53i 0.981897 0.393977i
\(298\) −37.1158 + 32.6266i −0.00721497 + 0.00634230i
\(299\) 4147.68i 0.802230i
\(300\) 4229.82 + 3018.04i 0.814030 + 0.580823i
\(301\) 2429.64i 0.465256i
\(302\) −3753.71 4270.20i −0.715238 0.813651i
\(303\) −337.863 2641.99i −0.0640586 0.500919i
\(304\) 8441.22 + 2219.54i 1.59256 + 0.418748i
\(305\) 2091.68 6548.18i 0.392686 1.22934i
\(306\) −3210.73 + 4740.82i −0.599820 + 0.885669i
\(307\) 4523.38i 0.840921i −0.907311 0.420461i \(-0.861869\pi\)
0.907311 0.420461i \(-0.138131\pi\)
\(308\) −8650.28 1118.25i −1.60031 0.206877i
\(309\) 387.979 + 3033.88i 0.0714284 + 0.558548i
\(310\) −723.127 1655.01i −0.132487 0.303221i
\(311\) 6896.96 1.25753 0.628763 0.777597i \(-0.283562\pi\)
0.628763 + 0.777597i \(0.283562\pi\)
\(312\) −3199.52 + 2804.78i −0.580567 + 0.508940i
\(313\) 5946.35i 1.07383i 0.843637 + 0.536913i \(0.180410\pi\)
−0.843637 + 0.536913i \(0.819590\pi\)
\(314\) −2517.32 + 2212.84i −0.452422 + 0.397701i
\(315\) 8514.04 + 467.052i 1.52289 + 0.0835409i
\(316\) 4650.96 + 601.244i 0.827964 + 0.107034i
\(317\) 5914.79i 1.04797i −0.851726 0.523987i \(-0.824444\pi\)
0.851726 0.523987i \(-0.175556\pi\)
\(318\) 4634.90 5258.11i 0.817335 0.927234i
\(319\) 4219.84i 0.740644i
\(320\) −3665.19 + 4397.09i −0.640283 + 0.768139i
\(321\) 1237.63 + 9677.88i 0.215195 + 1.68276i
\(322\) −6045.68 6877.53i −1.04631 1.19028i
\(323\) 10225.0 1.76141
\(324\) −2164.33 5415.52i −0.371113 0.928588i
\(325\) 3685.87 + 2622.32i 0.629094 + 0.447570i
\(326\) 4605.14 + 5238.79i 0.782378 + 0.890029i
\(327\) 4296.55 549.453i 0.726606 0.0929199i
\(328\) −3265.52 + 2198.57i −0.549720 + 0.370108i
\(329\) 6774.17i 1.13517i
\(330\) 5442.76 3256.08i 0.907922 0.543155i
\(331\) 3816.59 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(332\) 289.643 2240.55i 0.0478802 0.370380i
\(333\) 2624.28 682.357i 0.431861 0.112291i
\(334\) 2459.34 + 2797.73i 0.402902 + 0.458339i
\(335\) −1300.94 + 4072.68i −0.212172 + 0.664222i
\(336\) −1217.06 + 9314.40i −0.197608 + 1.51233i
\(337\) 6334.65i 1.02395i 0.859001 + 0.511974i \(0.171086\pi\)
−0.859001 + 0.511974i \(0.828914\pi\)
\(338\) 1885.17 1657.16i 0.303373 0.266679i
\(339\) 652.862 + 5105.19i 0.104598 + 0.817922i
\(340\) −2842.70 + 6073.75i −0.453432 + 0.968810i
\(341\) −2204.50 −0.350090
\(342\) −5840.13 + 8623.28i −0.923386 + 1.36343i
\(343\) −3160.31 −0.497495
\(344\) −1614.48 + 1086.97i −0.253043 + 0.170365i
\(345\) 6548.52 + 1205.12i 1.02191 + 0.188063i
\(346\) 3202.18 + 3642.78i 0.497544 + 0.566003i
\(347\) 1191.58 0.184344 0.0921722 0.995743i \(-0.470619\pi\)
0.0921722 + 0.995743i \(0.470619\pi\)
\(348\) 4544.62 + 6.21883i 0.700049 + 0.000957944i
\(349\) 4817.79i 0.738941i −0.929242 0.369471i \(-0.879539\pi\)
0.929242 0.369471i \(-0.120461\pi\)
\(350\) 9934.09 1024.31i 1.51714 0.156433i
\(351\) −1890.61 4711.91i −0.287503 0.716534i
\(352\) 3126.90 + 6248.33i 0.473478 + 0.946128i
\(353\) −1191.94 −0.179718 −0.0898592 0.995954i \(-0.528642\pi\)
−0.0898592 + 0.995954i \(0.528642\pi\)
\(354\) 7408.16 8404.26i 1.11226 1.26181i
\(355\) 1327.14 + 423.926i 0.198414 + 0.0633794i
\(356\) 4798.33 + 620.296i 0.714357 + 0.0923472i
\(357\) 1395.92 + 10915.7i 0.206947 + 1.61826i
\(358\) −5881.47 6690.72i −0.868282 0.987753i
\(359\) −7172.59 −1.05447 −0.527235 0.849719i \(-0.676771\pi\)
−0.527235 + 0.849719i \(0.676771\pi\)
\(360\) −3498.66 5866.46i −0.512210 0.858860i
\(361\) 11739.8 1.71159
\(362\) −5736.45 6525.75i −0.832876 0.947475i
\(363\) −104.696 818.692i −0.0151381 0.118375i
\(364\) −1048.42 + 8110.12i −0.150968 + 1.16782i
\(365\) 910.936 2851.76i 0.130632 0.408953i
\(366\) −5975.26 + 6778.70i −0.853366 + 0.968110i
\(367\) 1909.09 0.271536 0.135768 0.990741i \(-0.456650\pi\)
0.135768 + 0.990741i \(0.456650\pi\)
\(368\) −1865.35 + 7094.17i −0.264233 + 1.00492i
\(369\) −1182.09 4546.23i −0.166768 0.641374i
\(370\) 2910.14 1271.53i 0.408894 0.178658i
\(371\) 13471.5i 1.88519i
\(372\) −3.24881 + 2374.17i −0.000452803 + 0.330901i
\(373\) −9250.82 −1.28415 −0.642077 0.766640i \(-0.721927\pi\)
−0.642077 + 0.766640i \(0.721927\pi\)
\(374\) 5404.18 + 6147.77i 0.747175 + 0.849982i
\(375\) −5211.17 + 5057.48i −0.717610 + 0.696445i
\(376\) −4501.38 + 3030.63i −0.617397 + 0.415672i
\(377\) 3956.33 0.540481
\(378\) −10003.0 5057.35i −1.36111 0.688154i
\(379\) −13617.5 −1.84561 −0.922803 0.385272i \(-0.874108\pi\)
−0.922803 + 0.385272i \(0.874108\pi\)
\(380\) −5170.70 + 11047.8i −0.698030 + 1.49142i
\(381\) −999.911 7819.00i −0.134454 1.05139i
\(382\) −3106.33 + 2730.61i −0.416057 + 0.365734i
\(383\) 4191.08i 0.559149i 0.960124 + 0.279575i \(0.0901934\pi\)
−0.960124 + 0.279575i \(0.909807\pi\)
\(384\) 6733.84 3358.35i 0.894882 0.446302i
\(385\) 3709.13 11611.7i 0.490999 1.53711i
\(386\) −3259.03 3707.45i −0.429741 0.488871i
\(387\) −584.429 2247.66i −0.0767653 0.295232i
\(388\) 8260.46 + 1067.86i 1.08083 + 0.139722i
\(389\) 9075.46 1.18289 0.591445 0.806346i \(-0.298558\pi\)
0.591445 + 0.806346i \(0.298558\pi\)
\(390\) −3052.75 5102.89i −0.396364 0.662551i
\(391\) 8593.34i 1.11147i
\(392\) 5748.37 + 8538.04i 0.740655 + 1.10009i
\(393\) 4989.87 638.116i 0.640473 0.0819051i
\(394\) −5.61316 6.38549i −0.000717733 0.000816489i
\(395\) −1994.27 + 6243.22i −0.254032 + 0.795267i
\(396\) −8271.36 + 1046.26i −1.04962 + 0.132769i
\(397\) 4124.77 0.521451 0.260726 0.965413i \(-0.416038\pi\)
0.260726 + 0.965413i \(0.416038\pi\)
\(398\) 9543.84 + 10857.0i 1.20198 + 1.36737i
\(399\) 2539.11 + 19855.0i 0.318582 + 2.49122i
\(400\) −5124.96 6142.87i −0.640620 0.767858i
\(401\) 3706.51i 0.461582i −0.973003 0.230791i \(-0.925869\pi\)
0.973003 0.230791i \(-0.0741314\pi\)
\(402\) 3716.36 4216.06i 0.461082 0.523079i
\(403\) 2066.84i 0.255476i
\(404\) −525.740 + 4066.89i −0.0647440 + 0.500830i
\(405\) 7988.68 1615.91i 0.980150 0.198260i
\(406\) 6560.24 5766.76i 0.801919 0.704925i
\(407\) 3876.34i 0.472097i
\(408\) 6628.89 5811.05i 0.804360 0.705123i
\(409\) 2721.73 0.329048 0.164524 0.986373i \(-0.447391\pi\)
0.164524 + 0.986373i \(0.447391\pi\)
\(410\) −2202.76 5041.43i −0.265333 0.607265i
\(411\) −334.999 2619.59i −0.0402050 0.314391i
\(412\) 603.724 4670.14i 0.0721926 0.558450i
\(413\) 21532.1i 2.56543i
\(414\) −7247.18 4908.16i −0.860337 0.582664i
\(415\) 3007.61 + 960.718i 0.355753 + 0.113638i
\(416\) 5858.15 2931.64i 0.690432 0.345518i
\(417\) −89.9517 703.395i −0.0105634 0.0826029i
\(418\) 9829.89 + 11182.4i 1.15023 + 1.30849i
\(419\) 5358.54i 0.624777i −0.949954 0.312389i \(-0.898871\pi\)
0.949954 0.312389i \(-0.101129\pi\)
\(420\) −12499.9 4011.71i −1.45223 0.466075i
\(421\) 9513.73i 1.10136i −0.834718 0.550678i \(-0.814369\pi\)
0.834718 0.550678i \(-0.185631\pi\)
\(422\) −2558.48 + 2249.02i −0.295130 + 0.259433i
\(423\) −1629.47 6266.78i −0.187299 0.720334i
\(424\) −8951.71 + 6026.89i −1.02531 + 0.690310i
\(425\) −7636.55 5433.04i −0.871593 0.620097i
\(426\) −1373.86 1211.02i −0.156252 0.137733i
\(427\) 17367.3i 1.96830i
\(428\) 1925.84 14897.4i 0.217498 1.68247i
\(429\) −7199.40 + 920.675i −0.810233 + 0.103614i
\(430\) −1089.05 2492.49i −0.122136 0.279531i
\(431\) 13279.4 1.48410 0.742049 0.670345i \(-0.233854\pi\)
0.742049 + 0.670345i \(0.233854\pi\)
\(432\) 1114.59 + 8909.50i 0.124134 + 0.992265i
\(433\) 9112.89i 1.01140i −0.862709 0.505701i \(-0.831234\pi\)
0.862709 0.505701i \(-0.168766\pi\)
\(434\) 3012.64 + 3427.16i 0.333206 + 0.379053i
\(435\) −1149.53 + 6246.41i −0.126702 + 0.688488i
\(436\) −6613.81 854.989i −0.726478 0.0939141i
\(437\) 15630.8i 1.71103i
\(438\) −2602.25 + 2952.15i −0.283882 + 0.322053i
\(439\) 17049.8i 1.85363i −0.375519 0.926815i \(-0.622536\pi\)
0.375519 0.926815i \(-0.377464\pi\)
\(440\) −9375.29 + 2730.17i −1.01579 + 0.295808i
\(441\) −11886.6 + 3090.71i −1.28351 + 0.333734i
\(442\) 5763.87 5066.72i 0.620270 0.545247i
\(443\) −1354.27 −0.145245 −0.0726224 0.997360i \(-0.523137\pi\)
−0.0726224 + 0.997360i \(0.523137\pi\)
\(444\) −4174.69 5.71262i −0.446221 0.000610606i
\(445\) −2057.46 + 6441.04i −0.219175 + 0.686146i
\(446\) −4308.05 + 3786.98i −0.457381 + 0.402060i
\(447\) 11.5161 + 90.0521i 0.00121855 + 0.00952867i
\(448\) 5440.60 13400.0i 0.573759 1.41315i
\(449\) 18871.3i 1.98350i 0.128173 + 0.991752i \(0.459089\pi\)
−0.128173 + 0.991752i \(0.540911\pi\)
\(450\) 8943.63 3337.14i 0.936904 0.349588i
\(451\) −6715.27 −0.701130
\(452\) 1015.90 7858.56i 0.105717 0.817778i
\(453\) −10360.6 + 1324.93i −1.07457 + 0.137419i
\(454\) 3617.13 3179.63i 0.373921 0.328695i
\(455\) −10886.6 3477.51i −1.12170 0.358304i
\(456\) 12057.6 10570.0i 1.23826 1.08549i
\(457\) 667.236i 0.0682976i −0.999417 0.0341488i \(-0.989128\pi\)
0.999417 0.0341488i \(-0.0108720\pi\)
\(458\) 2823.21 + 3211.67i 0.288035 + 0.327667i
\(459\) 3917.05 + 9762.34i 0.398327 + 0.992738i
\(460\) −9284.80 4345.56i −0.941100 0.440463i
\(461\) −18594.5 −1.87860 −0.939300 0.343097i \(-0.888524\pi\)
−0.939300 + 0.343097i \(0.888524\pi\)
\(462\) −10595.8 + 12020.5i −1.06701 + 1.21048i
\(463\) −3391.85 −0.340460 −0.170230 0.985404i \(-0.554451\pi\)
−0.170230 + 0.985404i \(0.554451\pi\)
\(464\) −6766.89 1779.29i −0.677036 0.178020i
\(465\) −3263.21 600.529i −0.325436 0.0598900i
\(466\) 10859.4 9545.90i 1.07951 0.948938i
\(467\) −11937.5 −1.18287 −0.591437 0.806351i \(-0.701439\pi\)
−0.591437 + 0.806351i \(0.701439\pi\)
\(468\) 980.924 + 7754.85i 0.0968873 + 0.765958i
\(469\) 10801.7i 1.06349i
\(470\) −3036.41 6949.41i −0.297998 0.682026i
\(471\) 781.059 + 6107.64i 0.0764104 + 0.597506i
\(472\) −14307.9 + 9633.02i −1.39528 + 0.939398i
\(473\) −3320.03 −0.322738
\(474\) 5696.98 6463.00i 0.552049 0.626277i
\(475\) −13890.4 9882.39i −1.34176 0.954600i
\(476\) 2172.16 16802.9i 0.209162 1.61798i
\(477\) −3240.45 12462.5i −0.311049 1.19626i
\(478\) 10386.6 9130.33i 0.993875 0.873664i
\(479\) 6583.62 0.628003 0.314001 0.949423i \(-0.398330\pi\)
0.314001 + 0.949423i \(0.398330\pi\)
\(480\) 2926.48 + 10100.9i 0.278281 + 0.960500i
\(481\) −3634.29 −0.344510
\(482\) 8368.39 7356.22i 0.790809 0.695159i
\(483\) −16686.6 + 2133.92i −1.57198 + 0.201028i
\(484\) −162.915 + 1260.24i −0.0153000 + 0.118354i
\(485\) −3541.98 + 11088.4i −0.331614 + 1.03814i
\(486\) −10470.3 2272.41i −0.977249 0.212096i
\(487\) 19593.7 1.82315 0.911576 0.411133i \(-0.134867\pi\)
0.911576 + 0.411133i \(0.134867\pi\)
\(488\) 11540.4 7769.79i 1.07051 0.720742i
\(489\) 12710.6 1625.46i 1.17545 0.150319i
\(490\) −13181.3 + 5759.33i −1.21525 + 0.530980i
\(491\) 5466.42i 0.502436i 0.967931 + 0.251218i \(0.0808311\pi\)
−0.967931 + 0.251218i \(0.919169\pi\)
\(492\) −9.89638 + 7232.11i −0.000906836 + 0.662700i
\(493\) −8196.89 −0.748822
\(494\) 10484.1 9216.07i 0.954867 0.839374i
\(495\) 638.213 11634.2i 0.0579506 1.05640i
\(496\) 929.527 3535.12i 0.0841471 0.320023i
\(497\) −3519.88 −0.317682
\(498\) −3113.48 2744.46i −0.280158 0.246953i
\(499\) 4021.21 0.360750 0.180375 0.983598i \(-0.442269\pi\)
0.180375 + 0.983598i \(0.442269\pi\)
\(500\) 9731.93 5503.59i 0.870450 0.492256i
\(501\) 6787.99 868.063i 0.605319 0.0774096i
\(502\) 10277.7 + 11691.9i 0.913777 + 1.03951i
\(503\) 17774.3i 1.57558i 0.615946 + 0.787788i \(0.288774\pi\)
−0.615946 + 0.787788i \(0.711226\pi\)
\(504\) 12930.0 + 11429.0i 1.14276 + 1.01010i
\(505\) −5459.20 1743.83i −0.481052 0.153662i
\(506\) −9397.94 + 8261.24i −0.825671 + 0.725805i
\(507\) −584.920 4573.90i −0.0512371 0.400659i
\(508\) −1555.94 + 12036.0i −0.135893 + 1.05120i
\(509\) 20544.9 1.78907 0.894537 0.446995i \(-0.147506\pi\)
0.894537 + 0.446995i \(0.147506\pi\)
\(510\) 6324.82 + 10572.4i 0.549152 + 0.917946i
\(511\) 7563.53i 0.654777i
\(512\) −11338.2 + 2379.66i −0.978677 + 0.205405i
\(513\) 7124.89 + 17757.1i 0.613200 + 1.52826i
\(514\) −10492.5 + 9223.38i −0.900395 + 0.791490i
\(515\) 6268.97 + 2002.49i 0.536396 + 0.171341i
\(516\) −4.89278 + 3575.56i −0.000417427 + 0.305049i
\(517\) −9256.71 −0.787446
\(518\) −6026.24 + 5297.35i −0.511154 + 0.449329i
\(519\) 8838.29 1130.26i 0.747510 0.0955932i
\(520\) 2559.68 + 8789.85i 0.215864 + 0.741270i
\(521\) 18770.8i 1.57843i 0.614114 + 0.789217i \(0.289514\pi\)
−0.614114 + 0.789217i \(0.710486\pi\)
\(522\) 4681.72 6912.83i 0.392555 0.579629i
\(523\) 2828.70i 0.236502i 0.992984 + 0.118251i \(0.0377287\pi\)
−0.992984 + 0.118251i \(0.962271\pi\)
\(524\) −7681.06 992.956i −0.640360 0.0827814i
\(525\) 8653.58 16177.8i 0.719377 1.34487i
\(526\) −595.103 676.986i −0.0493303 0.0561178i
\(527\) 4282.17i 0.353955i
\(528\) 12727.9 + 1663.08i 1.04907 + 0.137077i
\(529\) −969.434 −0.0796773
\(530\) −6038.38 13820.0i −0.494888 1.13265i
\(531\) −5179.35 19919.3i −0.423286 1.62792i
\(532\) 3951.04 30563.5i 0.321991 2.49078i
\(533\) 6295.93i 0.511646i
\(534\) 5877.50 6667.79i 0.476300 0.540344i
\(535\) 19997.6 + 6387.83i 1.61602 + 0.516205i
\(536\) −7177.66 + 4832.48i −0.578410 + 0.389424i
\(537\) −16233.3 + 2075.96i −1.30451 + 0.166823i
\(538\) 8510.62 7481.25i 0.682006 0.599516i
\(539\) 17557.7i 1.40309i
\(540\) −12528.7 704.479i −0.998423 0.0561406i
\(541\) 16230.2i 1.28982i 0.764260 + 0.644908i \(0.223104\pi\)
−0.764260 + 0.644908i \(0.776896\pi\)
\(542\) 4784.69 + 5443.04i 0.379189 + 0.431363i
\(543\) −15833.1 + 2024.77i −1.25131 + 0.160021i
\(544\) −12137.2 + 6073.89i −0.956574 + 0.478706i
\(545\) 2835.92 8878.06i 0.222894 0.697788i
\(546\) 11269.9 + 9934.13i 0.883345 + 0.778648i
\(547\) 9520.53i 0.744184i −0.928196 0.372092i \(-0.878641\pi\)
0.928196 0.372092i \(-0.121359\pi\)
\(548\) −521.282 + 4032.41i −0.0406352 + 0.314336i
\(549\) 4177.56 + 16066.5i 0.324761 + 1.24900i
\(550\) −1399.68 13574.6i −0.108514 1.05241i
\(551\) −14909.7 −1.15276
\(552\) 8883.22 + 10133.4i 0.684955 + 0.781354i
\(553\) 16558.5i 1.27331i
\(554\) 1753.39 1541.32i 0.134467 0.118203i
\(555\) 1055.96 5737.95i 0.0807618 0.438852i
\(556\) −139.971 + 1082.76i −0.0106765 + 0.0825883i
\(557\) 7627.12i 0.580200i −0.956996 0.290100i \(-0.906311\pi\)
0.956996 0.290100i \(-0.0936885\pi\)
\(558\) 3611.36 + 2445.80i 0.273981 + 0.185554i
\(559\) 3112.71i 0.235517i
\(560\) 17056.5 + 10844.0i 1.28709 + 0.818289i
\(561\) 14916.0 1907.49i 1.12256 0.143555i
\(562\) −9953.27 11322.8i −0.747070 0.849862i
\(563\) −4278.28 −0.320263 −0.160131 0.987096i \(-0.551192\pi\)
−0.160131 + 0.987096i \(0.551192\pi\)
\(564\) −13.6417 + 9969.15i −0.00101848 + 0.744286i
\(565\) 10549.0 + 3369.65i 0.785483 + 0.250906i
\(566\) 1979.01 + 2251.31i 0.146968 + 0.167190i
\(567\) −17983.9 + 10030.3i −1.33201 + 0.742919i
\(568\) 1574.72 + 2338.93i 0.116327 + 0.172780i
\(569\) 10517.7i 0.774910i −0.921889 0.387455i \(-0.873354\pi\)
0.921889 0.387455i \(-0.126646\pi\)
\(570\) 11504.5 + 19230.5i 0.845385 + 1.41312i
\(571\) 21394.5 1.56801 0.784003 0.620756i \(-0.213174\pi\)
0.784003 + 0.620756i \(0.213174\pi\)
\(572\) 11082.2 + 1432.64i 0.810091 + 0.104723i
\(573\) 963.813 + 7536.72i 0.0702685 + 0.549478i
\(574\) 9176.98 + 10439.7i 0.667316 + 0.759135i
\(575\) 8305.36 11673.8i 0.602361 0.846663i
\(576\) 1809.84 13705.0i 0.130920 0.991393i
\(577\) 11001.0i 0.793725i −0.917878 0.396862i \(-0.870099\pi\)
0.917878 0.396862i \(-0.129901\pi\)
\(578\) −1504.93 + 1322.91i −0.108299 + 0.0952002i
\(579\) −8995.19 + 1150.32i −0.645643 + 0.0825663i
\(580\) 4145.08 8856.45i 0.296750 0.634042i
\(581\) −7976.88 −0.569599
\(582\) 10118.3 11478.8i 0.720647 0.817545i
\(583\) −18408.4 −1.30772
\(584\) 5025.91 3383.78i 0.356119 0.239763i
\(585\) −10907.7 598.360i −0.770902 0.0422891i
\(586\) −15824.3 18001.7i −1.11552 1.26901i
\(587\) 4095.31 0.287958 0.143979 0.989581i \(-0.454010\pi\)
0.143979 + 0.989581i \(0.454010\pi\)
\(588\) 18909.1 + 25.8751i 1.32619 + 0.00181475i
\(589\) 7789.03i 0.544892i
\(590\) −9651.39 22089.1i −0.673460 1.54134i
\(591\) −15.4928 + 1.98125i −0.00107832 + 0.000137898i
\(592\) 6216.07 + 1634.46i 0.431552 + 0.113473i
\(593\) −11978.2 −0.829490 −0.414745 0.909938i \(-0.636129\pi\)
−0.414745 + 0.909938i \(0.636129\pi\)
\(594\) −6910.73 + 13668.9i −0.477358 + 0.944176i
\(595\) 22555.4 + 7204.85i 1.55408 + 0.496420i
\(596\) 17.9198 138.620i 0.00123159 0.00952700i
\(597\) 26341.8 3368.65i 1.80586 0.230937i
\(598\) 7745.37 + 8811.09i 0.529652 + 0.602529i
\(599\) −13370.9 −0.912056 −0.456028 0.889965i \(-0.650728\pi\)
−0.456028 + 0.889965i \(0.650728\pi\)
\(600\) −14621.5 + 1487.41i −0.994866 + 0.101205i
\(601\) −3829.24 −0.259897 −0.129948 0.991521i \(-0.541481\pi\)
−0.129948 + 0.991521i \(0.541481\pi\)
\(602\) 4537.10 + 5161.38i 0.307174 + 0.349439i
\(603\) −2598.26 9992.66i −0.175471 0.674847i
\(604\) 15948.3 + 2061.69i 1.07438 + 0.138889i
\(605\) −1691.68 540.373i −0.113680 0.0363129i
\(606\) 5651.38 + 4981.56i 0.378831 + 0.333931i
\(607\) −274.138 −0.0183310 −0.00916549 0.999958i \(-0.502918\pi\)
−0.00916549 + 0.999958i \(0.502918\pi\)
\(608\) −22076.8 + 11048.1i −1.47259 + 0.736937i
\(609\) −2035.47 15916.8i −0.135437 1.05908i
\(610\) 7784.61 + 17816.6i 0.516704 + 1.18258i
\(611\) 8678.68i 0.574635i
\(612\) −2032.32 16066.8i −0.134235 1.06121i
\(613\) −9402.87 −0.619541 −0.309770 0.950811i \(-0.600252\pi\)
−0.309770 + 0.950811i \(0.600252\pi\)
\(614\) 8446.94 + 9609.20i 0.555197 + 0.631589i
\(615\) −9940.26 1829.31i −0.651756 0.119943i
\(616\) 20464.4 13778.0i 1.33853 0.901186i
\(617\) 11725.6 0.765082 0.382541 0.923938i \(-0.375049\pi\)
0.382541 + 0.923938i \(0.375049\pi\)
\(618\) −6489.66 5720.48i −0.422415 0.372349i
\(619\) 7217.50 0.468653 0.234326 0.972158i \(-0.424712\pi\)
0.234326 + 0.972158i \(0.424712\pi\)
\(620\) 4626.74 + 2165.45i 0.299700 + 0.140269i
\(621\) −14923.5 + 5987.90i −0.964344 + 0.386934i
\(622\) −14651.5 + 12879.4i −0.944487 + 0.830250i
\(623\) 17083.2i 1.09859i
\(624\) 1559.23 11933.1i 0.100031 0.765554i
\(625\) 5123.06 + 14761.3i 0.327876 + 0.944721i
\(626\) −11104.2 12632.1i −0.708967 0.806517i
\(627\) 27131.4 3469.62i 1.72811 0.220994i
\(628\) 1215.38 9401.68i 0.0772279 0.597401i
\(629\) 7529.67 0.477309
\(630\) −18958.9 + 14906.9i −1.19895 + 0.942708i
\(631\) 7589.28i 0.478803i −0.970921 0.239401i \(-0.923049\pi\)
0.970921 0.239401i \(-0.0769511\pi\)
\(632\) −11003.0 + 7407.94i −0.692524 + 0.466253i
\(633\) 793.828 + 6207.50i 0.0498449 + 0.389772i
\(634\) 11045.3 + 12565.0i 0.691898 + 0.787100i
\(635\) −16156.6 5160.89i −1.00969 0.322525i
\(636\) −27.1288 + 19825.2i −0.00169139 + 1.23604i
\(637\) 16461.4 1.02390
\(638\) −7880.11 8964.37i −0.488992 0.556274i
\(639\) −3256.23 + 846.675i −0.201588 + 0.0524162i
\(640\) −424.991 16185.3i −0.0262488 0.999655i
\(641\) 812.707i 0.0500780i −0.999686 0.0250390i \(-0.992029\pi\)
0.999686 0.0250390i \(-0.00797099\pi\)
\(642\) −20701.6 18248.0i −1.27263 1.12179i
\(643\) 9472.41i 0.580957i 0.956882 + 0.290478i \(0.0938145\pi\)
−0.956882 + 0.290478i \(0.906186\pi\)
\(644\) 25686.2 + 3320.53i 1.57170 + 0.203179i
\(645\) −4914.47 904.410i −0.300011 0.0552110i
\(646\) −21721.5 + 19094.2i −1.32294 + 1.16293i
\(647\) 10796.3i 0.656024i 0.944674 + 0.328012i \(0.106379\pi\)
−0.944674 + 0.328012i \(0.893621\pi\)
\(648\) 14710.7 + 7462.76i 0.891808 + 0.452415i
\(649\) −29423.0 −1.77959
\(650\) −12727.0 + 1312.28i −0.767989 + 0.0791875i
\(651\) 8315.14 1063.36i 0.500609 0.0640189i
\(652\) −19565.8 2529.33i −1.17524 0.151927i
\(653\) 19320.8i 1.15786i −0.815378 0.578929i \(-0.803471\pi\)
0.815378 0.578929i \(-0.196529\pi\)
\(654\) −8101.30 + 9190.60i −0.484382 + 0.549512i
\(655\) 3293.54 10310.7i 0.196472 0.615071i
\(656\) 2831.48 10768.5i 0.168523 0.640915i
\(657\) 1819.34 + 6997.02i 0.108035 + 0.415494i
\(658\) 12650.1 + 14390.7i 0.749470 + 0.852593i
\(659\) 8746.91i 0.517043i 0.966006 + 0.258521i \(0.0832353\pi\)
−0.966006 + 0.258521i \(0.916765\pi\)
\(660\) −5481.89 + 17080.8i −0.323306 + 1.00738i
\(661\) 24966.4i 1.46911i 0.678552 + 0.734553i \(0.262608\pi\)
−0.678552 + 0.734553i \(0.737392\pi\)
\(662\) −8107.73 + 7127.08i −0.476006 + 0.418432i
\(663\) −1788.38 13984.6i −0.104758 0.819179i
\(664\) 3568.70 + 5300.57i 0.208573 + 0.309792i
\(665\) 41026.9 + 13105.2i 2.39241 + 0.764208i
\(666\) −4300.64 + 6350.13i −0.250220 + 0.369464i
\(667\) 12530.4i 0.727404i
\(668\) −10449.0 1350.77i −0.605213 0.0782378i
\(669\) 1336.68 + 10452.4i 0.0772479 + 0.604055i
\(670\) −4841.69 11081.1i −0.279180 0.638958i
\(671\) 23731.9 1.36537
\(672\) −14808.2 22059.7i −0.850060 1.26633i
\(673\) 28415.4i 1.62754i 0.581188 + 0.813769i \(0.302588\pi\)
−0.581188 + 0.813769i \(0.697412\pi\)
\(674\) −11829.3 13457.0i −0.676036 0.769055i
\(675\) 4113.98 17047.6i 0.234589 0.972095i
\(676\) −910.179 + 7040.74i −0.0517853 + 0.400588i
\(677\) 13799.2i 0.783377i 0.920098 + 0.391689i \(0.128109\pi\)
−0.920098 + 0.391689i \(0.871891\pi\)
\(678\) −10920.3 9626.00i −0.618572 0.545257i
\(679\) 29409.2i 1.66218i
\(680\) −5303.26 18211.2i −0.299074 1.02701i
\(681\) −1122.30 8776.05i −0.0631522 0.493831i
\(682\) 4683.12 4116.69i 0.262941 0.231138i
\(683\) 34785.2 1.94878 0.974392 0.224858i \(-0.0721917\pi\)
0.974392 + 0.224858i \(0.0721917\pi\)
\(684\) −3696.67 29224.6i −0.206646 1.63367i
\(685\) −5412.91 1729.04i −0.301922 0.0964428i
\(686\) 6713.58 5901.56i 0.373653 0.328459i
\(687\) 7792.30 996.497i 0.432744 0.0553402i
\(688\) 1399.89 5323.97i 0.0775730 0.295021i
\(689\) 17258.9i 0.954300i
\(690\) −16161.7 + 9668.60i −0.891691 + 0.533445i
\(691\) −19390.7 −1.06752 −0.533760 0.845636i \(-0.679221\pi\)
−0.533760 + 0.845636i \(0.679221\pi\)
\(692\) −13605.0 1758.77i −0.747379 0.0966160i
\(693\) 7407.95 + 28490.3i 0.406068 + 1.56170i
\(694\) −2531.33 + 2225.16i −0.138455 + 0.121709i
\(695\) −1453.44 464.272i −0.0793268 0.0253393i
\(696\) −9665.93 + 8473.40i −0.526417 + 0.461470i
\(697\) 13044.2i 0.708871i
\(698\) 8996.74 + 10234.6i 0.487867 + 0.554995i
\(699\) −3369.38 26347.5i −0.182320 1.42568i
\(700\) −19190.6 + 20726.9i −1.03620 + 1.11915i
\(701\) 21164.3 1.14032 0.570160 0.821534i \(-0.306881\pi\)
0.570160 + 0.821534i \(0.306881\pi\)
\(702\) 12815.3 + 6479.19i 0.689007 + 0.348349i
\(703\) 13696.0 0.734787
\(704\) −18310.7 7434.42i −0.980271 0.398005i
\(705\) −13702.2 2521.62i −0.731994 0.134709i
\(706\) 2532.09 2225.83i 0.134981 0.118654i
\(707\) 14479.1 0.770215
\(708\) −43.3610 + 31687.5i −0.00230171 + 1.68205i
\(709\) 4868.59i 0.257890i 0.991652 + 0.128945i \(0.0411590\pi\)
−0.991652 + 0.128945i \(0.958841\pi\)
\(710\) −3610.93 + 1577.73i −0.190867 + 0.0833957i
\(711\) −3983.00 15318.2i −0.210090 0.807987i
\(712\) −11351.6 + 7642.67i −0.597500 + 0.402277i
\(713\) 6546.06 0.343831
\(714\) −23349.4 20581.9i −1.22385 1.07880i
\(715\) −4751.92 + 14876.3i −0.248548 + 0.778099i
\(716\) 24988.5 + 3230.34i 1.30428 + 0.168608i
\(717\) −3222.69 25200.5i −0.167857 1.31259i
\(718\) 15237.0 13394.1i 0.791979 0.696188i
\(719\) 20252.9 1.05049 0.525246 0.850950i \(-0.323973\pi\)
0.525246 + 0.850950i \(0.323973\pi\)
\(720\) 18387.4 + 5928.98i 0.951745 + 0.306889i
\(721\) −16626.8 −0.858826
\(722\) −24939.3 + 21922.8i −1.28552 + 1.13003i
\(723\) −2596.49 20303.8i −0.133561 1.04441i
\(724\) 24372.4 + 3150.69i 1.25109 + 0.161733i
\(725\) 11135.2 + 7922.19i 0.570417 + 0.405825i
\(726\) 1751.23 + 1543.67i 0.0895239 + 0.0789133i
\(727\) −8380.16 −0.427515 −0.213757 0.976887i \(-0.568570\pi\)
−0.213757 + 0.976887i \(0.568570\pi\)
\(728\) −12917.6 19186.5i −0.657635 0.976783i
\(729\) −14224.1 + 13604.9i −0.722662 + 0.691202i
\(730\) 3390.23 + 7759.19i 0.171888 + 0.393398i
\(731\) 6449.05i 0.326302i
\(732\) 34.9741 25558.5i 0.00176596 1.29053i
\(733\) −26525.6 −1.33662 −0.668311 0.743882i \(-0.732982\pi\)
−0.668311 + 0.743882i \(0.732982\pi\)
\(734\) −4055.57 + 3565.04i −0.203942 + 0.179275i
\(735\) −4782.91 + 25989.8i −0.240027 + 1.30428i
\(736\) −9285.01 18553.8i −0.465014 0.929214i
\(737\) −14760.2 −0.737721
\(738\) 11000.8 + 7450.30i 0.548705 + 0.371611i
\(739\) 16456.9 0.819184 0.409592 0.912269i \(-0.365671\pi\)
0.409592 + 0.912269i \(0.365671\pi\)
\(740\) −3807.67 + 8135.54i −0.189153 + 0.404147i
\(741\) −3252.96 25437.1i −0.161269 1.26108i
\(742\) 25156.7 + 28618.1i 1.24465 + 1.41591i
\(743\) 11323.5i 0.559112i −0.960129 0.279556i \(-0.909813\pi\)
0.960129 0.279556i \(-0.0901873\pi\)
\(744\) −4426.62 5049.62i −0.218129 0.248828i
\(745\) 186.077 + 59.4384i 0.00915076 + 0.00292302i
\(746\) 19651.9 17275.0i 0.964487 0.847830i
\(747\) −7379.41 + 1918.77i −0.361444 + 0.0939814i
\(748\) −22960.6 2968.20i −1.12236 0.145091i
\(749\) −53038.3 −2.58742
\(750\) 1625.99 20475.1i 0.0791636 0.996862i
\(751\) 17017.6i 0.826872i −0.910533 0.413436i \(-0.864328\pi\)
0.910533 0.413436i \(-0.135672\pi\)
\(752\) 3903.08 14844.0i 0.189270 0.719819i
\(753\) 28367.3 3627.68i 1.37286 0.175564i
\(754\) −8404.59 + 7388.04i −0.405938 + 0.356839i
\(755\) −6838.43 + 21408.3i −0.329637 + 1.03196i
\(756\) 30694.0 7936.12i 1.47663 0.381791i
\(757\) −32951.4 −1.58209 −0.791044 0.611759i \(-0.790462\pi\)
−0.791044 + 0.611759i \(0.790462\pi\)
\(758\) 28928.2 25429.3i 1.38618 1.21852i
\(759\) 2915.94 + 22801.7i 0.139449 + 1.09045i
\(760\) −9646.32 33125.1i −0.460406 1.58102i
\(761\) 26158.8i 1.24607i −0.782196 0.623033i \(-0.785900\pi\)
0.782196 0.623033i \(-0.214100\pi\)
\(762\) 16725.3 + 14743.0i 0.795138 + 0.700895i
\(763\) 23546.7i 1.11723i
\(764\) 1499.76 11601.5i 0.0710203 0.549382i
\(765\) 22599.0 + 1239.71i 1.06806 + 0.0585904i
\(766\) −7826.41 8903.28i −0.369164 0.419959i
\(767\) 27585.7i 1.29864i
\(768\) −8033.59 + 19709.0i −0.377457 + 0.926027i
\(769\) 14374.4 0.674065 0.337032 0.941493i \(-0.390577\pi\)
0.337032 + 0.941493i \(0.390577\pi\)
\(770\) 13804.2 + 31593.7i 0.646066 + 1.47865i