Properties

Label 120.4.m.b.59.1
Level $120$
Weight $4$
Character 120.59
Analytic conductor $7.080$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [120,4,Mod(59,120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("120.59");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 120 = 2^{3} \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 120.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.08022920069\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 59.1
Character \(\chi\) \(=\) 120.59
Dual form 120.4.m.b.59.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.80496 - 0.363625i) q^{2} +(3.73183 - 3.61572i) q^{3} +(7.73555 + 2.03990i) q^{4} +(2.66357 - 10.8584i) q^{5} +(-11.7824 + 8.78495i) q^{6} +26.3409 q^{7} +(-20.9561 - 8.53468i) q^{8} +(0.853113 - 26.9865i) q^{9} +O(q^{10})\) \(q+(-2.80496 - 0.363625i) q^{2} +(3.73183 - 3.61572i) q^{3} +(7.73555 + 2.03990i) q^{4} +(2.66357 - 10.8584i) q^{5} +(-11.7824 + 8.78495i) q^{6} +26.3409 q^{7} +(-20.9561 - 8.53468i) q^{8} +(0.853113 - 26.9865i) q^{9} +(-11.4196 + 29.4889i) q^{10} +37.4262i q^{11} +(36.2435 - 20.3570i) q^{12} +30.8736 q^{13} +(-73.8850 - 9.57820i) q^{14} +(-29.3211 - 50.1525i) q^{15} +(55.6776 + 31.5596i) q^{16} -54.0168 q^{17} +(-12.2059 + 75.3858i) q^{18} -4.70847 q^{19} +(42.7543 - 78.5625i) q^{20} +(98.2997 - 95.2413i) q^{21} +(13.6091 - 104.979i) q^{22} -129.048i q^{23} +(-109.064 + 43.9215i) q^{24} +(-110.811 - 57.8443i) q^{25} +(-86.5990 - 11.2264i) q^{26} +(-94.3921 - 103.794i) q^{27} +(203.761 + 53.7329i) q^{28} +230.566 q^{29} +(64.0076 + 151.337i) q^{30} -123.860i q^{31} +(-144.697 - 108.769i) q^{32} +(135.323 + 139.668i) q^{33} +(151.515 + 19.6419i) q^{34} +(70.1608 - 286.021i) q^{35} +(61.6492 - 207.015i) q^{36} -349.557 q^{37} +(13.2070 + 1.71212i) q^{38} +(115.215 - 111.630i) q^{39} +(-148.491 + 204.818i) q^{40} +74.8414i q^{41} +(-310.358 + 231.403i) q^{42} +364.853i q^{43} +(-76.3458 + 289.512i) q^{44} +(-290.759 - 81.1439i) q^{45} +(-46.9252 + 361.975i) q^{46} +45.7642i q^{47} +(321.890 - 83.5397i) q^{48} +350.842 q^{49} +(289.786 + 202.544i) q^{50} +(-201.582 + 195.310i) q^{51} +(238.824 + 62.9791i) q^{52} +682.936i q^{53} +(227.024 + 325.460i) q^{54} +(406.390 + 99.6872i) q^{55} +(-552.003 - 224.811i) q^{56} +(-17.5712 + 17.0245i) q^{57} +(-646.728 - 83.8397i) q^{58} +256.129i q^{59} +(-124.508 - 447.770i) q^{60} +435.099i q^{61} +(-45.0386 + 347.422i) q^{62} +(22.4718 - 710.849i) q^{63} +(366.318 + 357.708i) q^{64} +(82.2339 - 335.238i) q^{65} +(-328.787 - 440.970i) q^{66} -862.064i q^{67} +(-417.850 - 110.189i) q^{68} +(-466.603 - 481.586i) q^{69} +(-300.802 + 776.763i) q^{70} +366.537 q^{71} +(-248.199 + 558.252i) q^{72} -215.240i q^{73} +(980.492 + 127.108i) q^{74} +(-622.676 + 184.796i) q^{75} +(-36.4226 - 9.60482i) q^{76} +985.839i q^{77} +(-363.764 + 271.223i) q^{78} -340.273i q^{79} +(490.988 - 520.510i) q^{80} +(-727.544 - 46.0451i) q^{81} +(27.2142 - 209.927i) q^{82} +605.094 q^{83} +(954.686 - 536.222i) q^{84} +(-143.878 + 586.538i) q^{85} +(132.670 - 1023.40i) q^{86} +(860.434 - 833.664i) q^{87} +(319.421 - 784.308i) q^{88} +517.431i q^{89} +(786.060 + 333.332i) q^{90} +813.237 q^{91} +(263.246 - 998.260i) q^{92} +(-447.843 - 462.225i) q^{93} +(16.6410 - 128.367i) q^{94} +(-12.5413 + 51.1265i) q^{95} +(-933.264 + 117.278i) q^{96} +1441.60i q^{97} +(-984.097 - 127.575i) q^{98} +(1010.00 + 31.9288i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 32 q^{4} - 72 q^{6} - 112 q^{9} - 72 q^{10} - 128 q^{16} + 672 q^{19} - 416 q^{24} + 496 q^{25} - 248 q^{30} + 240 q^{34} - 608 q^{36} - 1344 q^{40} + 336 q^{46} + 3520 q^{49} - 544 q^{51} - 952 q^{54} - 2064 q^{60} + 2176 q^{64} - 176 q^{66} + 672 q^{70} - 1600 q^{75} + 2304 q^{76} - 2304 q^{81} - 736 q^{84} - 1432 q^{90} - 2752 q^{91} + 4496 q^{94} + 640 q^{96} + 256 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/120\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(41\) \(61\) \(97\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.80496 0.363625i −0.991702 0.128561i
\(3\) 3.73183 3.61572i 0.718191 0.695846i
\(4\) 7.73555 + 2.03990i 0.966944 + 0.254988i
\(5\) 2.66357 10.8584i 0.238237 0.971207i
\(6\) −11.7824 + 8.78495i −0.801690 + 0.597740i
\(7\) 26.3409 1.42227 0.711137 0.703053i \(-0.248181\pi\)
0.711137 + 0.703053i \(0.248181\pi\)
\(8\) −20.9561 8.53468i −0.926139 0.377183i
\(9\) 0.853113 26.9865i 0.0315968 0.999501i
\(10\) −11.4196 + 29.4889i −0.361119 + 0.932520i
\(11\) 37.4262i 1.02586i 0.858431 + 0.512928i \(0.171439\pi\)
−0.858431 + 0.512928i \(0.828561\pi\)
\(12\) 36.2435 20.3570i 0.871883 0.489714i
\(13\) 30.8736 0.658676 0.329338 0.944212i \(-0.393174\pi\)
0.329338 + 0.944212i \(0.393174\pi\)
\(14\) −73.8850 9.57820i −1.41047 0.182849i
\(15\) −29.3211 50.1525i −0.504711 0.863288i
\(16\) 55.6776 + 31.5596i 0.869962 + 0.493118i
\(17\) −54.0168 −0.770648 −0.385324 0.922781i \(-0.625910\pi\)
−0.385324 + 0.922781i \(0.625910\pi\)
\(18\) −12.2059 + 75.3858i −0.159831 + 0.987144i
\(19\) −4.70847 −0.0568524 −0.0284262 0.999596i \(-0.509050\pi\)
−0.0284262 + 0.999596i \(0.509050\pi\)
\(20\) 42.7543 78.5625i 0.478008 0.878356i
\(21\) 98.2997 95.2413i 1.02146 0.989684i
\(22\) 13.6091 104.979i 0.131885 1.01734i
\(23\) 129.048i 1.16993i −0.811058 0.584966i \(-0.801108\pi\)
0.811058 0.584966i \(-0.198892\pi\)
\(24\) −109.064 + 43.9215i −0.927606 + 0.373560i
\(25\) −110.811 57.8443i −0.886486 0.462755i
\(26\) −86.5990 11.2264i −0.653210 0.0846799i
\(27\) −94.3921 103.794i −0.672806 0.739819i
\(28\) 203.761 + 53.7329i 1.37526 + 0.362663i
\(29\) 230.566 1.47638 0.738191 0.674591i \(-0.235680\pi\)
0.738191 + 0.674591i \(0.235680\pi\)
\(30\) 64.0076 + 151.337i 0.389538 + 0.921011i
\(31\) 123.860i 0.717610i −0.933413 0.358805i \(-0.883184\pi\)
0.933413 0.358805i \(-0.116816\pi\)
\(32\) −144.697 108.769i −0.799347 0.600869i
\(33\) 135.323 + 139.668i 0.713838 + 0.736761i
\(34\) 151.515 + 19.6419i 0.764253 + 0.0990751i
\(35\) 70.1608 286.021i 0.338838 1.38132i
\(36\) 61.6492 207.015i 0.285413 0.958405i
\(37\) −349.557 −1.55316 −0.776579 0.630020i \(-0.783047\pi\)
−0.776579 + 0.630020i \(0.783047\pi\)
\(38\) 13.2070 + 1.71212i 0.0563807 + 0.00730900i
\(39\) 115.215 111.630i 0.473055 0.458337i
\(40\) −148.491 + 204.818i −0.586963 + 0.809614i
\(41\) 74.8414i 0.285080i 0.989789 + 0.142540i \(0.0455269\pi\)
−0.989789 + 0.142540i \(0.954473\pi\)
\(42\) −310.358 + 231.403i −1.14022 + 0.850151i
\(43\) 364.853i 1.29394i 0.762515 + 0.646971i \(0.223965\pi\)
−0.762515 + 0.646971i \(0.776035\pi\)
\(44\) −76.3458 + 289.512i −0.261581 + 0.991946i
\(45\) −290.759 81.1439i −0.963195 0.268805i
\(46\) −46.9252 + 361.975i −0.150407 + 1.16022i
\(47\) 45.7642i 0.142030i 0.997475 + 0.0710148i \(0.0226238\pi\)
−0.997475 + 0.0710148i \(0.977376\pi\)
\(48\) 321.890 83.5397i 0.967933 0.251207i
\(49\) 350.842 1.02286
\(50\) 289.786 + 202.544i 0.819638 + 0.572882i
\(51\) −201.582 + 195.310i −0.553472 + 0.536252i
\(52\) 238.824 + 62.9791i 0.636903 + 0.167954i
\(53\) 682.936i 1.76997i 0.465619 + 0.884985i \(0.345832\pi\)
−0.465619 + 0.884985i \(0.654168\pi\)
\(54\) 227.024 + 325.460i 0.572111 + 0.820176i
\(55\) 406.390 + 99.6872i 0.996319 + 0.244397i
\(56\) −552.003 224.811i −1.31722 0.536458i
\(57\) −17.5712 + 17.0245i −0.0408309 + 0.0395605i
\(58\) −646.728 83.8397i −1.46413 0.189805i
\(59\) 256.129i 0.565172i 0.959242 + 0.282586i \(0.0911923\pi\)
−0.959242 + 0.282586i \(0.908808\pi\)
\(60\) −124.508 447.770i −0.267899 0.963447i
\(61\) 435.099i 0.913259i 0.889657 + 0.456629i \(0.150943\pi\)
−0.889657 + 0.456629i \(0.849057\pi\)
\(62\) −45.0386 + 347.422i −0.0922566 + 0.711655i
\(63\) 22.4718 710.849i 0.0449393 1.42156i
\(64\) 366.318 + 357.708i 0.715466 + 0.698648i
\(65\) 82.2339 335.238i 0.156921 0.639711i
\(66\) −328.787 440.970i −0.613196 0.822419i
\(67\) 862.064i 1.57191i −0.618285 0.785954i \(-0.712172\pi\)
0.618285 0.785954i \(-0.287828\pi\)
\(68\) −417.850 110.189i −0.745173 0.196506i
\(69\) −466.603 481.586i −0.814092 0.840235i
\(70\) −300.802 + 776.763i −0.513610 + 1.32630i
\(71\) 366.537 0.612675 0.306338 0.951923i \(-0.400896\pi\)
0.306338 + 0.951923i \(0.400896\pi\)
\(72\) −248.199 + 558.252i −0.406258 + 0.913759i
\(73\) 215.240i 0.345095i −0.985001 0.172547i \(-0.944800\pi\)
0.985001 0.172547i \(-0.0551998\pi\)
\(74\) 980.492 + 127.108i 1.54027 + 0.199675i
\(75\) −622.676 + 184.796i −0.958673 + 0.284512i
\(76\) −36.4226 9.60482i −0.0549731 0.0144967i
\(77\) 985.839i 1.45905i
\(78\) −363.764 + 271.223i −0.528054 + 0.393717i
\(79\) 340.273i 0.484604i −0.970201 0.242302i \(-0.922097\pi\)
0.970201 0.242302i \(-0.0779026\pi\)
\(80\) 490.988 520.510i 0.686177 0.727435i
\(81\) −727.544 46.0451i −0.998003 0.0631620i
\(82\) 27.2142 209.927i 0.0366501 0.282714i
\(83\) 605.094 0.800214 0.400107 0.916469i \(-0.368973\pi\)
0.400107 + 0.916469i \(0.368973\pi\)
\(84\) 954.686 536.222i 1.24006 0.696508i
\(85\) −143.878 + 586.538i −0.183597 + 0.748458i
\(86\) 132.670 1023.40i 0.166350 1.28320i
\(87\) 860.434 833.664i 1.06032 1.02733i
\(88\) 319.421 784.308i 0.386936 0.950086i
\(89\) 517.431i 0.616265i 0.951343 + 0.308132i \(0.0997040\pi\)
−0.951343 + 0.308132i \(0.900296\pi\)
\(90\) 786.060 + 333.332i 0.920644 + 0.390403i
\(91\) 813.237 0.936818
\(92\) 263.246 998.260i 0.298319 1.13126i
\(93\) −447.843 462.225i −0.499346 0.515381i
\(94\) 16.6410 128.367i 0.0182595 0.140851i
\(95\) −12.5413 + 51.1265i −0.0135443 + 0.0552155i
\(96\) −933.264 + 117.278i −0.992197 + 0.124684i
\(97\) 1441.60i 1.50900i 0.656302 + 0.754498i \(0.272120\pi\)
−0.656302 + 0.754498i \(0.727880\pi\)
\(98\) −984.097 127.575i −1.01438 0.131500i
\(99\) 1010.00 + 31.9288i 1.02534 + 0.0324138i
\(100\) −739.186 673.501i −0.739186 0.673501i
\(101\) −422.189 −0.415934 −0.207967 0.978136i \(-0.566685\pi\)
−0.207967 + 0.978136i \(0.566685\pi\)
\(102\) 636.447 474.535i 0.617820 0.460647i
\(103\) 1058.99 1.01307 0.506533 0.862221i \(-0.330927\pi\)
0.506533 + 0.862221i \(0.330927\pi\)
\(104\) −646.990 263.496i −0.610025 0.248441i
\(105\) −772.343 1321.06i −0.717837 1.22783i
\(106\) 248.332 1915.60i 0.227549 1.75528i
\(107\) −819.034 −0.739991 −0.369995 0.929034i \(-0.620641\pi\)
−0.369995 + 0.929034i \(0.620641\pi\)
\(108\) −518.446 995.453i −0.461921 0.886921i
\(109\) 1139.42i 1.00125i 0.865663 + 0.500627i \(0.166897\pi\)
−0.865663 + 0.500627i \(0.833103\pi\)
\(110\) −1103.66 427.392i −0.956632 0.370456i
\(111\) −1304.49 + 1263.90i −1.11546 + 1.08076i
\(112\) 1466.60 + 831.307i 1.23732 + 0.701349i
\(113\) 1448.12 1.20555 0.602776 0.797911i \(-0.294061\pi\)
0.602776 + 0.797911i \(0.294061\pi\)
\(114\) 55.4770 41.3637i 0.0455780 0.0339830i
\(115\) −1401.26 343.729i −1.13625 0.278721i
\(116\) 1783.56 + 470.333i 1.42758 + 0.376460i
\(117\) 26.3387 833.170i 0.0208120 0.658347i
\(118\) 93.1349 718.430i 0.0726590 0.560482i
\(119\) −1422.85 −1.09607
\(120\) 186.420 + 1301.25i 0.141815 + 0.989893i
\(121\) −69.7203 −0.0523819
\(122\) 158.213 1220.43i 0.117409 0.905680i
\(123\) 270.606 + 279.295i 0.198372 + 0.204742i
\(124\) 252.662 958.126i 0.182982 0.693889i
\(125\) −923.250 + 1049.16i −0.660624 + 0.750717i
\(126\) −321.515 + 1985.73i −0.227324 + 1.40399i
\(127\) −1075.20 −0.751245 −0.375623 0.926773i \(-0.622571\pi\)
−0.375623 + 0.926773i \(0.622571\pi\)
\(128\) −897.436 1136.56i −0.619710 0.784831i
\(129\) 1319.21 + 1361.57i 0.900384 + 0.929298i
\(130\) −352.563 + 910.426i −0.237860 + 0.614228i
\(131\) 729.865i 0.486784i 0.969928 + 0.243392i \(0.0782601\pi\)
−0.969928 + 0.243392i \(0.921740\pi\)
\(132\) 761.886 + 1356.46i 0.502377 + 0.894427i
\(133\) −124.025 −0.0808598
\(134\) −313.468 + 2418.05i −0.202086 + 1.55886i
\(135\) −1378.46 + 748.488i −0.878805 + 0.477182i
\(136\) 1131.98 + 461.016i 0.713727 + 0.290675i
\(137\) −505.557 −0.315275 −0.157637 0.987497i \(-0.550388\pi\)
−0.157637 + 0.987497i \(0.550388\pi\)
\(138\) 1133.68 + 1520.50i 0.699316 + 0.937922i
\(139\) −677.815 −0.413608 −0.206804 0.978382i \(-0.566306\pi\)
−0.206804 + 0.978382i \(0.566306\pi\)
\(140\) 1126.19 2069.41i 0.679858 1.24926i
\(141\) 165.471 + 170.784i 0.0988308 + 0.102004i
\(142\) −1028.12 133.282i −0.607591 0.0787660i
\(143\) 1155.48i 0.675707i
\(144\) 899.182 1475.62i 0.520360 0.853947i
\(145\) 614.129 2503.59i 0.351729 1.43387i
\(146\) −78.2666 + 603.739i −0.0443657 + 0.342231i
\(147\) 1309.28 1268.55i 0.734612 0.711756i
\(148\) −2704.02 713.063i −1.50182 0.396037i
\(149\) 2640.39 1.45174 0.725869 0.687833i \(-0.241438\pi\)
0.725869 + 0.687833i \(0.241438\pi\)
\(150\) 1813.78 291.924i 0.987294 0.158903i
\(151\) 2466.32i 1.32918i −0.747207 0.664591i \(-0.768606\pi\)
0.747207 0.664591i \(-0.231394\pi\)
\(152\) 98.6712 + 40.1853i 0.0526532 + 0.0214438i
\(153\) −46.0825 + 1457.73i −0.0243500 + 0.770263i
\(154\) 358.476 2765.24i 0.187577 1.44694i
\(155\) −1344.92 329.910i −0.696948 0.170961i
\(156\) 1118.97 628.494i 0.574288 0.322563i
\(157\) 1553.13 0.789512 0.394756 0.918786i \(-0.370829\pi\)
0.394756 + 0.918786i \(0.370829\pi\)
\(158\) −123.732 + 954.452i −0.0623011 + 0.480583i
\(159\) 2469.31 + 2548.60i 1.23163 + 1.27118i
\(160\) −1566.47 + 1281.47i −0.774002 + 0.633183i
\(161\) 3399.25i 1.66396i
\(162\) 2023.99 + 393.708i 0.981601 + 0.190942i
\(163\) 3936.58i 1.89164i 0.324694 + 0.945819i \(0.394739\pi\)
−0.324694 + 0.945819i \(0.605261\pi\)
\(164\) −152.669 + 578.940i −0.0726919 + 0.275656i
\(165\) 1877.02 1097.38i 0.885610 0.517761i
\(166\) −1697.26 220.027i −0.793573 0.102876i
\(167\) 1998.86i 0.926208i 0.886304 + 0.463104i \(0.153264\pi\)
−0.886304 + 0.463104i \(0.846736\pi\)
\(168\) −2872.84 + 1156.93i −1.31931 + 0.531305i
\(169\) −1243.82 −0.566146
\(170\) 616.850 1592.90i 0.278295 0.718644i
\(171\) −4.01686 + 127.065i −0.00179635 + 0.0568241i
\(172\) −744.264 + 2822.34i −0.329940 + 1.25117i
\(173\) 2816.75i 1.23788i −0.785438 0.618940i \(-0.787562\pi\)
0.785438 0.618940i \(-0.212438\pi\)
\(174\) −2716.62 + 2025.51i −1.18360 + 0.882493i
\(175\) −2918.85 1523.67i −1.26083 0.658164i
\(176\) −1181.15 + 2083.80i −0.505869 + 0.892457i
\(177\) 926.091 + 955.830i 0.393273 + 0.405901i
\(178\) 188.151 1451.37i 0.0792275 0.611151i
\(179\) 905.857i 0.378251i −0.981953 0.189125i \(-0.939435\pi\)
0.981953 0.189125i \(-0.0605653\pi\)
\(180\) −2083.65 1220.81i −0.862814 0.505522i
\(181\) 174.804i 0.0717851i −0.999356 0.0358925i \(-0.988573\pi\)
0.999356 0.0358925i \(-0.0114274\pi\)
\(182\) −2281.09 295.713i −0.929044 0.120438i
\(183\) 1573.20 + 1623.72i 0.635487 + 0.655894i
\(184\) −1101.39 + 2704.35i −0.441279 + 1.08352i
\(185\) −931.069 + 3795.64i −0.370019 + 1.50844i
\(186\) 1088.10 + 1459.37i 0.428945 + 0.575301i
\(187\) 2021.65i 0.790574i
\(188\) −93.3546 + 354.011i −0.0362159 + 0.137335i
\(189\) −2486.37 2734.02i −0.956915 1.05223i
\(190\) 53.7687 138.847i 0.0205305 0.0530160i
\(191\) 1267.32 0.480107 0.240053 0.970760i \(-0.422835\pi\)
0.240053 + 0.970760i \(0.422835\pi\)
\(192\) 2660.41 + 10.3984i 0.999992 + 0.00390856i
\(193\) 2265.21i 0.844838i 0.906401 + 0.422419i \(0.138819\pi\)
−0.906401 + 0.422419i \(0.861181\pi\)
\(194\) 524.203 4043.63i 0.193998 1.49647i
\(195\) −905.246 1548.39i −0.332441 0.568627i
\(196\) 2713.96 + 715.684i 0.989052 + 0.260818i
\(197\) 630.779i 0.228128i −0.993473 0.114064i \(-0.963613\pi\)
0.993473 0.114064i \(-0.0363868\pi\)
\(198\) −2821.40 456.821i −1.01267 0.163964i
\(199\) 3357.04i 1.19585i −0.801551 0.597926i \(-0.795992\pi\)
0.801551 0.597926i \(-0.204008\pi\)
\(200\) 1828.48 + 2157.93i 0.646466 + 0.762943i
\(201\) −3116.98 3217.08i −1.09381 1.12893i
\(202\) 1184.22 + 153.518i 0.412482 + 0.0534728i
\(203\) 6073.32 2.09982
\(204\) −1957.76 + 1099.62i −0.671915 + 0.377397i
\(205\) 812.660 + 199.345i 0.276871 + 0.0679165i
\(206\) −2970.43 385.077i −1.00466 0.130241i
\(207\) −3482.56 110.093i −1.16935 0.0369661i
\(208\) 1718.97 + 974.356i 0.573023 + 0.324805i
\(209\) 176.220i 0.0583225i
\(210\) 1686.02 + 3986.36i 0.554029 + 1.30993i
\(211\) 3809.37 1.24288 0.621440 0.783462i \(-0.286548\pi\)
0.621440 + 0.783462i \(0.286548\pi\)
\(212\) −1393.12 + 5282.89i −0.451321 + 1.71146i
\(213\) 1367.85 1325.30i 0.440018 0.426327i
\(214\) 2297.35 + 297.821i 0.733850 + 0.0951338i
\(215\) 3961.73 + 971.810i 1.25669 + 0.308265i
\(216\) 1092.25 + 2980.72i 0.344064 + 0.938946i
\(217\) 3262.58i 1.02064i
\(218\) 414.322 3196.03i 0.128722 0.992946i
\(219\) −778.248 803.239i −0.240133 0.247844i
\(220\) 2940.30 + 1600.13i 0.901067 + 0.490367i
\(221\) −1667.69 −0.507607
\(222\) 4118.62 3070.84i 1.24515 0.928385i
\(223\) −4261.82 −1.27979 −0.639894 0.768463i \(-0.721022\pi\)
−0.639894 + 0.768463i \(0.721022\pi\)
\(224\) −3811.46 2865.07i −1.13689 0.854601i
\(225\) −1655.55 + 2941.05i −0.490534 + 0.871422i
\(226\) −4061.90 526.571i −1.19555 0.154987i
\(227\) −4481.95 −1.31047 −0.655236 0.755424i \(-0.727431\pi\)
−0.655236 + 0.755424i \(0.727431\pi\)
\(228\) −170.651 + 95.8504i −0.0495687 + 0.0278414i
\(229\) 1157.74i 0.334085i 0.985950 + 0.167042i \(0.0534216\pi\)
−0.985950 + 0.167042i \(0.946578\pi\)
\(230\) 3805.49 + 1473.68i 1.09098 + 0.422485i
\(231\) 3564.52 + 3678.98i 1.01527 + 1.04788i
\(232\) −4831.78 1967.81i −1.36733 0.556867i
\(233\) 2549.55 0.716852 0.358426 0.933558i \(-0.383314\pi\)
0.358426 + 0.933558i \(0.383314\pi\)
\(234\) −376.840 + 2327.43i −0.105277 + 0.650208i
\(235\) 496.927 + 121.896i 0.137940 + 0.0338367i
\(236\) −522.478 + 1981.30i −0.144112 + 0.546490i
\(237\) −1230.33 1269.84i −0.337210 0.348039i
\(238\) 3991.04 + 517.384i 1.08698 + 0.140912i
\(239\) 714.592 0.193402 0.0967010 0.995313i \(-0.469171\pi\)
0.0967010 + 0.995313i \(0.469171\pi\)
\(240\) −49.7339 3717.73i −0.0133763 0.999911i
\(241\) −2330.00 −0.622774 −0.311387 0.950283i \(-0.600794\pi\)
−0.311387 + 0.950283i \(0.600794\pi\)
\(242\) 195.562 + 25.3520i 0.0519472 + 0.00673426i
\(243\) −2881.56 + 2458.77i −0.760708 + 0.649094i
\(244\) −887.561 + 3365.74i −0.232870 + 0.883070i
\(245\) 934.492 3809.60i 0.243684 0.993413i
\(246\) −657.478 881.810i −0.170404 0.228545i
\(247\) −145.367 −0.0374473
\(248\) −1057.11 + 2595.63i −0.270670 + 0.664607i
\(249\) 2258.11 2187.85i 0.574706 0.556825i
\(250\) 2971.18 2607.13i 0.751655 0.659557i
\(251\) 3006.17i 0.755966i 0.925812 + 0.377983i \(0.123382\pi\)
−0.925812 + 0.377983i \(0.876618\pi\)
\(252\) 1623.89 5452.97i 0.405935 1.36311i
\(253\) 4829.79 1.20018
\(254\) 3015.88 + 390.968i 0.745011 + 0.0965807i
\(255\) 1583.83 + 2709.08i 0.388954 + 0.665291i
\(256\) 2103.99 + 3514.32i 0.513669 + 0.857989i
\(257\) −7814.60 −1.89674 −0.948369 0.317170i \(-0.897267\pi\)
−0.948369 + 0.317170i \(0.897267\pi\)
\(258\) −3205.21 4298.83i −0.773441 1.03734i
\(259\) −9207.64 −2.20902
\(260\) 1319.98 2425.51i 0.314852 0.578552i
\(261\) 196.699 6222.18i 0.0466490 1.47565i
\(262\) 265.397 2047.24i 0.0625813 0.482744i
\(263\) 4366.70i 1.02381i −0.859042 0.511905i \(-0.828940\pi\)
0.859042 0.511905i \(-0.171060\pi\)
\(264\) −1643.82 4081.84i −0.383219 0.951591i
\(265\) 7415.61 + 1819.05i 1.71901 + 0.421672i
\(266\) 347.885 + 45.0987i 0.0801888 + 0.0103954i
\(267\) 1870.89 + 1930.96i 0.428825 + 0.442596i
\(268\) 1758.53 6668.54i 0.400818 1.51995i
\(269\) −4336.63 −0.982933 −0.491467 0.870896i \(-0.663539\pi\)
−0.491467 + 0.870896i \(0.663539\pi\)
\(270\) 4138.68 1598.23i 0.932859 0.360242i
\(271\) 4429.78i 0.992952i −0.868050 0.496476i \(-0.834627\pi\)
0.868050 0.496476i \(-0.165373\pi\)
\(272\) −3007.53 1704.75i −0.670434 0.380020i
\(273\) 3034.86 2940.44i 0.672814 0.651881i
\(274\) 1418.07 + 183.833i 0.312659 + 0.0405320i
\(275\) 2164.89 4147.23i 0.474720 0.909408i
\(276\) −2627.04 4677.16i −0.572932 1.02004i
\(277\) 3024.43 0.656030 0.328015 0.944673i \(-0.393620\pi\)
0.328015 + 0.944673i \(0.393620\pi\)
\(278\) 1901.24 + 246.470i 0.410176 + 0.0531738i
\(279\) −3342.55 105.667i −0.717252 0.0226742i
\(280\) −3911.39 + 5395.08i −0.834823 + 1.15149i
\(281\) 330.776i 0.0702223i −0.999383 0.0351112i \(-0.988821\pi\)
0.999383 0.0351112i \(-0.0111785\pi\)
\(282\) −402.036 539.211i −0.0848969 0.113864i
\(283\) 5051.97i 1.06116i −0.847635 0.530580i \(-0.821974\pi\)
0.847635 0.530580i \(-0.178026\pi\)
\(284\) 2835.37 + 747.700i 0.592423 + 0.156225i
\(285\) 138.057 + 236.141i 0.0286941 + 0.0490801i
\(286\) 420.161 3241.07i 0.0868695 0.670100i
\(287\) 1971.39i 0.405461i
\(288\) −3058.74 + 3812.08i −0.625826 + 0.779963i
\(289\) −1995.18 −0.406102
\(290\) −2632.97 + 6799.14i −0.533150 + 1.37676i
\(291\) 5212.44 + 5379.82i 1.05003 + 1.08375i
\(292\) 439.069 1665.00i 0.0879950 0.333688i
\(293\) 1269.80i 0.253182i −0.991955 0.126591i \(-0.959596\pi\)
0.991955 0.126591i \(-0.0404036\pi\)
\(294\) −4133.76 + 3082.13i −0.820020 + 0.611407i
\(295\) 2781.16 + 682.217i 0.548899 + 0.134645i
\(296\) 7325.36 + 2983.36i 1.43844 + 0.585825i
\(297\) 3884.60 3532.74i 0.758948 0.690203i
\(298\) −7406.17 960.111i −1.43969 0.186637i
\(299\) 3984.18i 0.770606i
\(300\) −5193.71 + 159.299i −0.999530 + 0.0306572i
\(301\) 9610.54i 1.84034i
\(302\) −896.817 + 6917.93i −0.170881 + 1.31815i
\(303\) −1575.54 + 1526.52i −0.298720 + 0.289426i
\(304\) −262.156 148.597i −0.0494595 0.0280350i
\(305\) 4724.50 + 1158.92i 0.886963 + 0.217572i
\(306\) 659.325 4072.10i 0.123174 0.760740i
\(307\) 5056.64i 0.940057i 0.882651 + 0.470029i \(0.155756\pi\)
−0.882651 + 0.470029i \(0.844244\pi\)
\(308\) −2011.02 + 7626.01i −0.372040 + 1.41082i
\(309\) 3951.99 3829.03i 0.727575 0.704938i
\(310\) 3652.49 + 1414.43i 0.669186 + 0.259143i
\(311\) −2886.68 −0.526329 −0.263165 0.964751i \(-0.584766\pi\)
−0.263165 + 0.964751i \(0.584766\pi\)
\(312\) −3367.19 + 1356.01i −0.610992 + 0.246055i
\(313\) 5771.03i 1.04217i 0.853506 + 0.521083i \(0.174472\pi\)
−0.853506 + 0.521083i \(0.825528\pi\)
\(314\) −4356.47 564.758i −0.782961 0.101500i
\(315\) −7658.84 2137.40i −1.36993 0.382314i
\(316\) 694.125 2632.20i 0.123568 0.468585i
\(317\) 1124.02i 0.199153i −0.995030 0.0995765i \(-0.968251\pi\)
0.995030 0.0995765i \(-0.0317488\pi\)
\(318\) −5999.56 8046.61i −1.05798 1.41897i
\(319\) 8629.22i 1.51456i
\(320\) 4859.86 3024.86i 0.848982 0.528422i
\(321\) −3056.50 + 2961.40i −0.531455 + 0.514920i
\(322\) −1236.05 + 9534.74i −0.213921 + 1.65016i
\(323\) 254.337 0.0438132
\(324\) −5534.03 1840.30i −0.948908 0.315553i
\(325\) −3421.12 1785.86i −0.583907 0.304805i
\(326\) 1431.44 11041.9i 0.243191 1.87594i
\(327\) 4119.83 + 4252.13i 0.696719 + 0.719092i
\(328\) 638.747 1568.39i 0.107527 0.264023i
\(329\) 1205.47i 0.202005i
\(330\) −5663.99 + 2395.56i −0.944825 + 0.399610i
\(331\) 10427.1 1.73150 0.865752 0.500474i \(-0.166841\pi\)
0.865752 + 0.500474i \(0.166841\pi\)
\(332\) 4680.74 + 1234.33i 0.773762 + 0.204045i
\(333\) −298.212 + 9433.33i −0.0490748 + 1.55238i
\(334\) 726.836 5606.72i 0.119074 0.918522i
\(335\) −9360.65 2296.17i −1.52665 0.374486i
\(336\) 8478.87 2200.51i 1.37667 0.357285i
\(337\) 4932.89i 0.797364i −0.917089 0.398682i \(-0.869468\pi\)
0.917089 0.398682i \(-0.130532\pi\)
\(338\) 3488.87 + 452.285i 0.561448 + 0.0727842i
\(339\) 5404.12 5235.99i 0.865816 0.838878i
\(340\) −2309.45 + 4243.70i −0.368376 + 0.676903i
\(341\) 4635.61 0.736165
\(342\) 57.4712 354.951i 0.00908680 0.0561216i
\(343\) 206.574 0.0325187
\(344\) 3113.90 7645.90i 0.488053 1.19837i
\(345\) −6472.10 + 3783.83i −1.00999 + 0.590478i
\(346\) −1024.24 + 7900.85i −0.159143 + 1.22761i
\(347\) −3247.36 −0.502385 −0.251192 0.967937i \(-0.580823\pi\)
−0.251192 + 0.967937i \(0.580823\pi\)
\(348\) 8356.53 4693.65i 1.28723 0.723005i
\(349\) 11995.6i 1.83986i 0.392086 + 0.919929i \(0.371754\pi\)
−0.392086 + 0.919929i \(0.628246\pi\)
\(350\) 7633.21 + 5335.20i 1.16575 + 0.814795i
\(351\) −2914.22 3204.48i −0.443161 0.487301i
\(352\) 4070.81 5415.47i 0.616406 0.820016i
\(353\) −6654.12 −1.00330 −0.501648 0.865072i \(-0.667273\pi\)
−0.501648 + 0.865072i \(0.667273\pi\)
\(354\) −2250.08 3017.81i −0.337826 0.453093i
\(355\) 976.296 3980.01i 0.145962 0.595034i
\(356\) −1055.51 + 4002.61i −0.157140 + 0.595894i
\(357\) −5309.84 + 5144.64i −0.787189 + 0.762697i
\(358\) −329.392 + 2540.89i −0.0486283 + 0.375112i
\(359\) −5238.10 −0.770073 −0.385037 0.922901i \(-0.625811\pi\)
−0.385037 + 0.922901i \(0.625811\pi\)
\(360\) 5400.64 + 4181.99i 0.790663 + 0.612251i
\(361\) −6836.83 −0.996768
\(362\) −63.5632 + 490.318i −0.00922875 + 0.0711894i
\(363\) −260.184 + 252.089i −0.0376202 + 0.0364497i
\(364\) 6290.84 + 1658.93i 0.905851 + 0.238877i
\(365\) −2337.17 573.306i −0.335159 0.0822143i
\(366\) −3822.33 5126.51i −0.545892 0.732150i
\(367\) 3524.68 0.501326 0.250663 0.968074i \(-0.419351\pi\)
0.250663 + 0.968074i \(0.419351\pi\)
\(368\) 4072.71 7185.10i 0.576915 1.01780i
\(369\) 2019.71 + 63.8482i 0.284937 + 0.00900760i
\(370\) 3991.80 10308.0i 0.560875 1.44835i
\(371\) 17989.1i 2.51738i
\(372\) −2521.42 4489.12i −0.351424 0.625672i
\(373\) −3078.40 −0.427328 −0.213664 0.976907i \(-0.568540\pi\)
−0.213664 + 0.976907i \(0.568540\pi\)
\(374\) −735.121 + 5670.63i −0.101637 + 0.784014i
\(375\) 348.052 + 7253.50i 0.0479289 + 0.998851i
\(376\) 390.583 959.040i 0.0535712 0.131539i
\(377\) 7118.41 0.972458
\(378\) 5980.00 + 8572.91i 0.813699 + 1.16652i
\(379\) −3244.44 −0.439725 −0.219863 0.975531i \(-0.570561\pi\)
−0.219863 + 0.975531i \(0.570561\pi\)
\(380\) −201.307 + 369.909i −0.0271759 + 0.0499367i
\(381\) −4012.45 + 3887.61i −0.539538 + 0.522751i
\(382\) −3554.79 460.831i −0.476123 0.0617229i
\(383\) 5023.39i 0.670191i −0.942184 0.335096i \(-0.891231\pi\)
0.942184 0.335096i \(-0.108769\pi\)
\(384\) −7458.55 996.558i −0.991192 0.132436i
\(385\) 10704.7 + 2625.85i 1.41704 + 0.347599i
\(386\) 823.688 6353.83i 0.108613 0.837827i
\(387\) 9846.10 + 311.261i 1.29330 + 0.0408844i
\(388\) −2940.73 + 11151.6i −0.384776 + 1.45912i
\(389\) 289.283 0.0377049 0.0188525 0.999822i \(-0.493999\pi\)
0.0188525 + 0.999822i \(0.493999\pi\)
\(390\) 1976.14 + 4672.33i 0.256579 + 0.606647i
\(391\) 6970.78i 0.901605i
\(392\) −7352.30 2994.33i −0.947314 0.385807i
\(393\) 2638.99 + 2723.73i 0.338726 + 0.349604i
\(394\) −229.367 + 1769.31i −0.0293283 + 0.226235i
\(395\) −3694.83 906.342i −0.470651 0.115451i
\(396\) 7747.80 + 2307.30i 0.983186 + 0.292793i
\(397\) −10915.5 −1.37993 −0.689964 0.723843i \(-0.742374\pi\)
−0.689964 + 0.723843i \(0.742374\pi\)
\(398\) −1220.71 + 9416.36i −0.153740 + 1.18593i
\(399\) −462.841 + 448.441i −0.0580728 + 0.0562659i
\(400\) −4344.14 6717.77i −0.543017 0.839722i
\(401\) 9711.60i 1.20941i −0.796449 0.604706i \(-0.793291\pi\)
0.796449 0.604706i \(-0.206709\pi\)
\(402\) 7573.19 + 10157.2i 0.939593 + 1.26018i
\(403\) 3824.00i 0.472673i
\(404\) −3265.86 861.224i −0.402185 0.106058i
\(405\) −2437.84 + 7777.34i −0.299105 + 0.954220i
\(406\) −17035.4 2208.41i −2.08240 0.269955i
\(407\) 13082.6i 1.59332i
\(408\) 5891.28 2372.50i 0.714857 0.287883i
\(409\) 611.519 0.0739307 0.0369653 0.999317i \(-0.488231\pi\)
0.0369653 + 0.999317i \(0.488231\pi\)
\(410\) −2206.99 854.658i −0.265842 0.102948i
\(411\) −1886.65 + 1827.95i −0.226428 + 0.219383i
\(412\) 8191.91 + 2160.25i 0.979578 + 0.258320i
\(413\) 6746.66i 0.803830i
\(414\) 9728.41 + 1575.15i 1.15489 + 0.186992i
\(415\) 1611.71 6570.37i 0.190640 0.777173i
\(416\) −4467.32 3358.09i −0.526511 0.395778i
\(417\) −2529.49 + 2450.79i −0.297050 + 0.287807i
\(418\) −64.0780 + 494.289i −0.00749798 + 0.0578385i
\(419\) 5936.35i 0.692147i −0.938207 0.346073i \(-0.887515\pi\)
0.938207 0.346073i \(-0.112485\pi\)
\(420\) −3279.66 11794.7i −0.381026 1.37029i
\(421\) 7758.48i 0.898159i −0.893492 0.449080i \(-0.851752\pi\)
0.893492 0.449080i \(-0.148248\pi\)
\(422\) −10685.1 1385.18i −1.23257 0.159786i
\(423\) 1235.02 + 39.0421i 0.141959 + 0.00448768i
\(424\) 5828.64 14311.7i 0.667603 1.63924i
\(425\) 5985.65 + 3124.57i 0.683169 + 0.356621i
\(426\) −4318.68 + 3220.01i −0.491175 + 0.366221i
\(427\) 11460.9i 1.29890i
\(428\) −6335.68 1670.75i −0.715530 0.188689i
\(429\) 4177.89 + 4312.06i 0.470188 + 0.485287i
\(430\) −10759.1 4166.47i −1.20663 0.467267i
\(431\) 3682.13 0.411513 0.205756 0.978603i \(-0.434035\pi\)
0.205756 + 0.978603i \(0.434035\pi\)
\(432\) −1979.84 8757.96i −0.220498 0.975388i
\(433\) 9874.56i 1.09594i −0.836499 0.547969i \(-0.815401\pi\)
0.836499 0.547969i \(-0.184599\pi\)
\(434\) −1186.36 + 9151.40i −0.131214 + 1.01217i
\(435\) −6760.45 11563.5i −0.745146 1.27454i
\(436\) −2324.31 + 8814.06i −0.255308 + 0.968158i
\(437\) 607.620i 0.0665135i
\(438\) 1890.87 + 2536.04i 0.206277 + 0.276659i
\(439\) 12519.6i 1.36111i −0.732698 0.680554i \(-0.761739\pi\)
0.732698 0.680554i \(-0.238261\pi\)
\(440\) −7665.55 5557.46i −0.830547 0.602140i
\(441\) 299.308 9468.01i 0.0323192 1.02235i
\(442\) 4677.80 + 606.415i 0.503395 + 0.0652584i
\(443\) −7308.73 −0.783856 −0.391928 0.919996i \(-0.628192\pi\)
−0.391928 + 0.919996i \(0.628192\pi\)
\(444\) −12669.2 + 7115.95i −1.35417 + 0.760603i
\(445\) 5618.48 + 1378.21i 0.598521 + 0.146817i
\(446\) 11954.2 + 1549.71i 1.26917 + 0.164531i
\(447\) 9853.48 9546.91i 1.04263 1.01019i
\(448\) 9649.15 + 9422.34i 1.01759 + 0.993669i
\(449\) 7884.95i 0.828761i 0.910104 + 0.414380i \(0.136002\pi\)
−0.910104 + 0.414380i \(0.863998\pi\)
\(450\) 5713.19 7647.52i 0.598494 0.801127i
\(451\) −2801.03 −0.292451
\(452\) 11202.0 + 2954.02i 1.16570 + 0.307401i
\(453\) −8917.54 9203.90i −0.924906 0.954607i
\(454\) 12571.7 + 1629.75i 1.29960 + 0.168475i
\(455\) 2166.11 8830.47i 0.223184 0.909844i
\(456\) 513.523 206.803i 0.0527367 0.0212378i
\(457\) 197.196i 0.0201847i 0.999949 + 0.0100924i \(0.00321256\pi\)
−0.999949 + 0.0100924i \(0.996787\pi\)
\(458\) 420.982 3247.40i 0.0429502 0.331312i
\(459\) 5098.76 + 5606.61i 0.518496 + 0.570140i
\(460\) −10138.4 5517.37i −1.02762 0.559237i
\(461\) −8936.49 −0.902850 −0.451425 0.892309i \(-0.649084\pi\)
−0.451425 + 0.892309i \(0.649084\pi\)
\(462\) −8660.55 11615.5i −0.872133 1.16971i
\(463\) 18183.1 1.82514 0.912571 0.408919i \(-0.134094\pi\)
0.912571 + 0.408919i \(0.134094\pi\)
\(464\) 12837.4 + 7276.57i 1.28440 + 0.728031i
\(465\) −6211.89 + 3631.71i −0.619505 + 0.362186i
\(466\) −7151.37 927.079i −0.710903 0.0921590i
\(467\) 81.4817 0.00807393 0.00403696 0.999992i \(-0.498715\pi\)
0.00403696 + 0.999992i \(0.498715\pi\)
\(468\) 1903.33 6391.30i 0.187995 0.631278i
\(469\) 22707.5i 2.23568i
\(470\) −1349.53 522.608i −0.132445 0.0512896i
\(471\) 5796.03 5615.69i 0.567021 0.549379i
\(472\) 2185.98 5367.47i 0.213173 0.523428i
\(473\) −13655.0 −1.32740
\(474\) 2989.29 + 4009.23i 0.289668 + 0.388502i
\(475\) 521.749 + 272.358i 0.0503989 + 0.0263087i
\(476\) −11006.5 2902.48i −1.05984 0.279485i
\(477\) 18430.1 + 582.622i 1.76909 + 0.0559254i
\(478\) −2004.40 259.843i −0.191797 0.0248639i
\(479\) 19196.4 1.83112 0.915559 0.402183i \(-0.131748\pi\)
0.915559 + 0.402183i \(0.131748\pi\)
\(480\) −1212.36 + 10446.2i −0.115284 + 0.993333i
\(481\) −10792.1 −1.02303
\(482\) 6535.55 + 847.246i 0.617606 + 0.0800643i
\(483\) −12290.7 12685.4i −1.15786 1.19504i
\(484\) −539.325 142.223i −0.0506504 0.0133567i
\(485\) 15653.5 + 3839.81i 1.46555 + 0.359498i
\(486\) 8976.71 5848.92i 0.837844 0.545910i
\(487\) −2061.46 −0.191814 −0.0959072 0.995390i \(-0.530575\pi\)
−0.0959072 + 0.995390i \(0.530575\pi\)
\(488\) 3713.43 9118.00i 0.344466 0.845804i
\(489\) 14233.6 + 14690.7i 1.31629 + 1.35856i
\(490\) −4006.47 + 10345.9i −0.369376 + 0.953841i
\(491\) 10688.0i 0.982371i −0.871055 0.491186i \(-0.836564\pi\)
0.871055 0.491186i \(-0.163436\pi\)
\(492\) 1523.55 + 2712.51i 0.139608 + 0.248556i
\(493\) −12454.5 −1.13777
\(494\) 407.748 + 52.8591i 0.0371366 + 0.00481426i
\(495\) 3036.91 10882.0i 0.275755 0.988100i
\(496\) 3908.97 6896.23i 0.353867 0.624294i
\(497\) 9654.91 0.871392
\(498\) −7129.45 + 5315.73i −0.641523 + 0.478320i
\(499\) −5962.49 −0.534906 −0.267453 0.963571i \(-0.586182\pi\)
−0.267453 + 0.963571i \(0.586182\pi\)
\(500\) −9282.04 + 6232.48i −0.830210 + 0.557450i
\(501\) 7227.33 + 7459.42i 0.644498 + 0.665194i
\(502\) 1093.12 8432.16i 0.0971876 0.749693i
\(503\) 9237.66i 0.818861i 0.912341 + 0.409430i \(0.134273\pi\)
−0.912341 + 0.409430i \(0.865727\pi\)
\(504\) −6537.79 + 14704.8i −0.577810 + 1.29962i
\(505\) −1124.53 + 4584.30i −0.0990908 + 0.403958i
\(506\) −13547.3 1756.23i −1.19022 0.154296i
\(507\) −4641.74 + 4497.32i −0.406601 + 0.393950i
\(508\) −8317.23 2193.29i −0.726412 0.191559i
\(509\) −9365.55 −0.815561 −0.407781 0.913080i \(-0.633697\pi\)
−0.407781 + 0.913080i \(0.633697\pi\)
\(510\) −3457.49 8174.77i −0.300196 0.709775i
\(511\) 5669.61i 0.490820i
\(512\) −4623.70 10622.6i −0.399102 0.916906i
\(513\) 444.442 + 488.709i 0.0382507 + 0.0420605i
\(514\) 21919.6 + 2841.58i 1.88100 + 0.243846i
\(515\) 2820.70 11499.0i 0.241350 0.983897i
\(516\) 7427.32 + 13223.5i 0.633662 + 1.12817i
\(517\) −1712.78 −0.145702
\(518\) 25827.0 + 3348.13i 2.19068 + 0.283993i
\(519\) −10184.6 10511.6i −0.861374 0.889035i
\(520\) −4584.45 + 6323.46i −0.386619 + 0.533273i
\(521\) 10927.3i 0.918874i −0.888210 0.459437i \(-0.848051\pi\)
0.888210 0.459437i \(-0.151949\pi\)
\(522\) −2814.27 + 17381.4i −0.235972 + 1.45740i
\(523\) 5024.90i 0.420122i −0.977688 0.210061i \(-0.932634\pi\)
0.977688 0.210061i \(-0.0673662\pi\)
\(524\) −1488.86 + 5645.91i −0.124124 + 0.470693i
\(525\) −16401.8 + 4867.69i −1.36350 + 0.404654i
\(526\) −1587.84 + 12248.4i −0.131622 + 1.01531i
\(527\) 6690.53i 0.553025i
\(528\) 3126.57 + 12047.1i 0.257702 + 0.992961i
\(529\) −4486.47 −0.368741
\(530\) −20139.0 7798.84i −1.65053 0.639170i
\(531\) 6912.03 + 218.507i 0.564890 + 0.0178576i
\(532\) −959.404 252.999i −0.0781869 0.0206183i
\(533\) 2310.62i 0.187775i
\(534\) −4545.61 6096.57i −0.368366 0.494053i
\(535\) −2181.55 + 8893.42i −0.176293 + 0.718684i
\(536\) −7357.44 + 18065.5i −0.592897 + 1.45580i
\(537\) −3275.33 3380.50i −0.263204 0.271656i
\(538\) 12164.1 + 1576.91i 0.974776 + 0.126367i
\(539\) 13130.7i 1.04931i
\(540\) −12190.0 + 2978.05i −0.971431 + 0.237324i
\(541\) 4558.22i 0.362243i −0.983461 0.181121i \(-0.942027\pi\)
0.983461 0.181121i \(-0.0579727\pi\)
\(542\) −1610.78 + 12425.3i −0.127655 + 0.984712i
\(543\) −632.044 652.340i −0.0499514 0.0515554i
\(544\) 7816.09 + 5875.36i 0.616015 + 0.463058i
\(545\) 12372.3 + 3034.93i 0.972426 + 0.238536i
\(546\) −9581.87 + 7144.25i −0.751037 + 0.559974i
\(547\) 6925.96i 0.541376i −0.962667 0.270688i \(-0.912749\pi\)
0.962667 0.270688i \(-0.0872512\pi\)
\(548\) −3910.76 1031.29i −0.304853 0.0803913i
\(549\) 11741.8 + 371.189i 0.912803 + 0.0288560i
\(550\) −7580.46 + 10845.6i −0.587695 + 0.840831i
\(551\) −1085.61 −0.0839360
\(552\) 5668.00 + 14074.5i 0.437040 + 1.08524i
\(553\) 8963.10i 0.689240i
\(554\) −8483.38 1099.76i −0.650586 0.0843397i
\(555\) 10249.4 + 17531.2i 0.783896 + 1.34082i
\(556\) −5243.27 1382.68i −0.399936 0.105465i
\(557\) 13278.5i 1.01010i 0.863089 + 0.505052i \(0.168527\pi\)
−0.863089 + 0.505052i \(0.831473\pi\)
\(558\) 9337.28 + 1511.82i 0.708385 + 0.114697i
\(559\) 11264.3i 0.852288i
\(560\) 12933.1 13710.7i 0.975932 1.03461i
\(561\) −7309.71 7544.44i −0.550118 0.567783i
\(562\) −120.279 + 927.813i −0.00902784 + 0.0696396i
\(563\) 14521.4 1.08704 0.543520 0.839396i \(-0.317091\pi\)
0.543520 + 0.839396i \(0.317091\pi\)
\(564\) 931.623 + 1658.65i 0.0695539 + 0.123833i
\(565\) 3857.16 15724.3i 0.287207 1.17084i
\(566\) −1837.02 + 14170.5i −0.136424 + 1.05235i
\(567\) −19164.2 1212.87i −1.41943 0.0898337i
\(568\) −7681.19 3128.28i −0.567422 0.231091i
\(569\) 1852.91i 0.136517i −0.997668 0.0682583i \(-0.978256\pi\)
0.997668 0.0682583i \(-0.0217442\pi\)
\(570\) −301.378 712.568i −0.0221462 0.0523617i
\(571\) 10888.0 0.797980 0.398990 0.916955i \(-0.369361\pi\)
0.398990 + 0.916955i \(0.369361\pi\)
\(572\) −2357.07 + 8938.28i −0.172297 + 0.653371i
\(573\) 4729.44 4582.29i 0.344808 0.334080i
\(574\) 716.846 5529.66i 0.0521265 0.402097i
\(575\) −7464.71 + 14299.9i −0.541391 + 1.03713i
\(576\) 9965.80 9580.50i 0.720905 0.693034i
\(577\) 23942.9i 1.72748i 0.503941 + 0.863738i \(0.331883\pi\)
−0.503941 + 0.863738i \(0.668117\pi\)
\(578\) 5596.39 + 725.497i 0.402732 + 0.0522088i
\(579\) 8190.38 + 8453.39i 0.587877 + 0.606755i
\(580\) 9857.71 18113.9i 0.705722 1.29679i
\(581\) 15938.7 1.13812
\(582\) −12664.4 16985.5i −0.901988 1.20975i
\(583\) −25559.7 −1.81574
\(584\) −1837.00 + 4510.60i −0.130164 + 0.319606i
\(585\) −8976.76 2505.20i −0.634433 0.177055i
\(586\) −461.730 + 3561.72i −0.0325493 + 0.251081i
\(587\) 10172.0 0.715239 0.357620 0.933867i \(-0.383588\pi\)
0.357620 + 0.933867i \(0.383588\pi\)
\(588\) 12715.8 7142.11i 0.891818 0.500911i
\(589\) 583.191i 0.0407979i
\(590\) −7552.95 2924.89i −0.527034 0.204094i
\(591\) −2280.72 2353.96i −0.158742 0.163839i
\(592\) −19462.5 11031.9i −1.35119 0.765890i
\(593\) −17454.1 −1.20869 −0.604346 0.796722i \(-0.706565\pi\)
−0.604346 + 0.796722i \(0.706565\pi\)
\(594\) −12180.7 + 8496.63i −0.841383 + 0.586904i
\(595\) −3789.86 + 15449.9i −0.261125 + 1.06451i
\(596\) 20424.9 + 5386.14i 1.40375 + 0.370176i
\(597\) −12138.1 12527.9i −0.832129 0.858850i
\(598\) −1448.75 + 11175.5i −0.0990697 + 0.764211i
\(599\) −239.830 −0.0163592 −0.00817961 0.999967i \(-0.502604\pi\)
−0.00817961 + 0.999967i \(0.502604\pi\)
\(600\) 14626.1 + 1441.73i 0.995177 + 0.0980976i
\(601\) 387.340 0.0262894 0.0131447 0.999914i \(-0.495816\pi\)
0.0131447 + 0.999914i \(0.495816\pi\)
\(602\) 3494.63 26957.1i 0.236596 1.82507i
\(603\) −23264.1 735.438i −1.57112 0.0496673i
\(604\) 5031.06 19078.4i 0.338926 1.28525i
\(605\) −185.705 + 757.053i −0.0124793 + 0.0508737i
\(606\) 4974.39 3708.91i 0.333450 0.248621i
\(607\) −3054.14 −0.204223 −0.102112 0.994773i \(-0.532560\pi\)
−0.102112 + 0.994773i \(0.532560\pi\)
\(608\) 681.303 + 512.135i 0.0454448 + 0.0341609i
\(609\) 22664.6 21959.4i 1.50807 1.46115i
\(610\) −12830.6 4968.66i −0.851632 0.329795i
\(611\) 1412.90i 0.0935515i
\(612\) −3330.10 + 11182.3i −0.219953 + 0.738592i
\(613\) −1899.37 −0.125146 −0.0625732 0.998040i \(-0.519931\pi\)
−0.0625732 + 0.998040i \(0.519931\pi\)
\(614\) 1838.72 14183.6i 0.120855 0.932256i
\(615\) 3753.49 2194.43i 0.246106 0.143883i
\(616\) 8413.82 20659.4i 0.550329 1.35128i
\(617\) −5098.97 −0.332701 −0.166351 0.986067i \(-0.553198\pi\)
−0.166351 + 0.986067i \(0.553198\pi\)
\(618\) −12477.5 + 9303.21i −0.812165 + 0.605550i
\(619\) −11519.4 −0.747988 −0.373994 0.927431i \(-0.622012\pi\)
−0.373994 + 0.927431i \(0.622012\pi\)
\(620\) −9730.75 5295.55i −0.630317 0.343023i
\(621\) −13394.4 + 12181.1i −0.865538 + 0.787137i
\(622\) 8097.00 + 1049.67i 0.521962 + 0.0676653i
\(623\) 13629.6i 0.876498i
\(624\) 9937.89 2579.17i 0.637554 0.165464i
\(625\) 8933.07 + 12819.6i 0.571716 + 0.820451i
\(626\) 2098.49 16187.5i 0.133982 1.03352i
\(627\) −637.163 657.623i −0.0405834 0.0418867i
\(628\) 12014.3 + 3168.24i 0.763414 + 0.201316i
\(629\) 18882.0 1.19694
\(630\) 20705.5 + 8780.27i 1.30941 + 0.555261i
\(631\) 11392.7i 0.718757i 0.933192 + 0.359379i \(0.117011\pi\)
−0.933192 + 0.359379i \(0.882989\pi\)
\(632\) −2904.12 + 7130.81i −0.182785 + 0.448811i
\(633\) 14215.9 13773.6i 0.892625 0.864853i
\(634\) −408.723 + 3152.84i −0.0256033 + 0.197500i
\(635\) −2863.86 + 11674.9i −0.178974 + 0.729615i
\(636\) 13902.5 + 24752.0i 0.866780 + 1.54321i
\(637\) 10831.8 0.673736
\(638\) 3137.80 24204.6i 0.194713 1.50199i
\(639\) 312.698 9891.56i 0.0193586 0.612369i
\(640\) −14731.6 + 6717.44i −0.909871 + 0.414891i
\(641\) 2495.47i 0.153768i 0.997040 + 0.0768838i \(0.0244970\pi\)
−0.997040 + 0.0768838i \(0.975503\pi\)
\(642\) 9650.17 7195.18i 0.593243 0.442322i
\(643\) 1618.30i 0.0992527i −0.998768 0.0496263i \(-0.984197\pi\)
0.998768 0.0496263i \(-0.0158030\pi\)
\(644\) 6934.14 26295.1i 0.424291 1.60896i
\(645\) 18298.3 10697.9i 1.11705 0.653067i
\(646\) −713.403 92.4831i −0.0434496 0.00563266i
\(647\) 21039.5i 1.27844i 0.769025 + 0.639219i \(0.220742\pi\)
−0.769025 + 0.639219i \(0.779258\pi\)
\(648\) 14853.5 + 7174.29i 0.900466 + 0.434927i
\(649\) −9585.93 −0.579785
\(650\) 8946.72 + 6253.27i 0.539876 + 0.377343i
\(651\) −11796.6 12175.4i −0.710207 0.733013i
\(652\) −8030.25 + 30451.7i −0.482345 + 1.82911i
\(653\) 3169.58i 0.189947i −0.995480 0.0949735i \(-0.969723\pi\)
0.995480 0.0949735i \(-0.0302766\pi\)
\(654\) −10009.8 13425.1i −0.598490 0.802696i
\(655\) 7925.19 + 1944.05i 0.472768 + 0.115970i
\(656\) −2361.96 + 4166.99i −0.140578 + 0.248009i
\(657\) −5808.58 183.624i −0.344923 0.0109039i
\(658\) 438.339 3381.29i 0.0259699 0.200329i
\(659\) 3243.75i 0.191743i −0.995394 0.0958714i \(-0.969436\pi\)
0.995394 0.0958714i \(-0.0305638\pi\)
\(660\) 16758.3 4659.87i 0.988358 0.274826i
\(661\) 18084.9i 1.06418i −0.846689 0.532088i \(-0.821408\pi\)
0.846689 0.532088i \(-0.178592\pi\)
\(662\) −29247.7 3791.57i −1.71713 0.222603i
\(663\) −6223.55 + 6029.91i −0.364559 + 0.353216i
\(664\) −12680.4 5164.29i −0.741109 0.301827i
\(665\) −330.350 + 1346.72i −0.0192638 + 0.0785316i
\(666\) 4266.66 26351.6i 0.248243 1.53319i
\(667\) 29754.2i 1.72727i
\(668\) −4077.49 + 15462.3i −0.236172 + 0.895591i
\(669\) −15904.4 + 15409.6i −0.919133 + 0.890536i
\(670\) 25421.3 + 9844.41i 1.46584 + 0.567646i
\(671\) −16284.1 −0.936873
\(672\) −24583.0 + 3089.21i −1.41118 + 0.177334i
\(673\) 19706.8i 1.12874i −0.825523 0.564368i \(-0.809120\pi\)
0.825523 0.564368i \(-0.190880\pi\)
\(674\) −1793.72 + 13836.5i −0.102510 + 0.790747i
\(675\) 4455.78 + 16961.5i 0.254079 + 0.967184i
\(676\) −9621.66 2537.28i −0.547432 0.144360i
\(677\) 22320.7i 1.26714i −0.773686 0.633569i \(-0.781589\pi\)
0.773686 0.633569i \(-0.218411\pi\)
\(678\) −17062.3 + 12721.6i −0.966478 + 0.720607i
\(679\) 37973.1i 2.14621i
\(680\) 8021.03 11063.6i 0.452342 0.623927i
\(681\) −16725.9 + 16205.5i −0.941170 + 0.911887i
\(682\) −13002.7 1685.62i −0.730056 0.0946420i
\(683\) 12949.2 0.725458 0.362729 0.931895i \(-0.381845\pi\)
0.362729 + 0.931895i \(0.381845\pi\)
\(684\) −290.273 + 974.725i −0.0162264 + 0.0544876i
\(685\) −1346.59 + 5489.55i −0.0751101 + 0.306197i
\(686\) −579.430 75.1153i −0.0322489 0.00418063i
\(687\) 4186.05 + 4320.48i 0.232471 + 0.239937i
\(688\) −11514.6 + 20314.1i −0.638066 + 1.12568i
\(689\) 21084.7i 1.16584i
\(690\) 19529.8 8260.07i 1.07752 0.455733i
\(691\) 14104.3 0.776489 0.388244 0.921556i \(-0.373082\pi\)
0.388244 + 0.921556i \(0.373082\pi\)
\(692\) 5745.89 21789.1i 0.315645 1.19696i
\(693\) 26604.4 + 841.033i 1.45832 + 0.0461013i
\(694\) 9108.70 + 1180.82i 0.498216 + 0.0645870i
\(695\) −1805.41 + 7360.00i −0.0985366 + 0.401699i
\(696\) −25146.4 + 10126.8i −1.36950 + 0.551518i
\(697\) 4042.70i 0.219696i
\(698\) 4361.90 33647.2i 0.236534 1.82459i
\(699\) 9514.48 9218.46i 0.514836 0.498818i
\(700\) −19470.8 17740.6i −1.05133 0.957903i
\(701\) −26508.0 −1.42823 −0.714117 0.700026i \(-0.753172\pi\)
−0.714117 + 0.700026i \(0.753172\pi\)
\(702\) 7009.03 + 10048.1i 0.376836 + 0.540230i
\(703\) 1645.88 0.0883008
\(704\) −13387.6 + 13709.9i −0.716712 + 0.733965i
\(705\) 2295.19 1341.85i 0.122613 0.0716839i
\(706\) 18664.5 + 2419.60i 0.994970 + 0.128984i
\(707\) −11120.8 −0.591572
\(708\) 5214.03 + 9283.01i 0.276773 + 0.492764i
\(709\) 5707.61i 0.302333i 0.988508 + 0.151166i \(0.0483029\pi\)
−0.988508 + 0.151166i \(0.951697\pi\)
\(710\) −4185.70 + 10808.8i −0.221249 + 0.571332i
\(711\) −9182.80 290.292i −0.484362 0.0153119i
\(712\) 4416.11 10843.3i 0.232445 0.570747i
\(713\) −15983.9 −0.839555
\(714\) 16764.6 12499.7i 0.878710 0.655167i
\(715\) 12546.7 + 3077.70i 0.656252 + 0.160978i
\(716\) 1847.86 7007.30i 0.0964494 0.365748i
\(717\) 2666.73 2583.76i 0.138900 0.134578i
\(718\) 14692.6 + 1904.70i 0.763683 + 0.0990012i
\(719\) −6320.76 −0.327851 −0.163925 0.986473i \(-0.552416\pi\)
−0.163925 + 0.986473i \(0.552416\pi\)
\(720\) −13627.9 13694.1i −0.705390 0.708819i
\(721\) 27894.8 1.44086
\(722\) 19177.0 + 2486.04i 0.988496 + 0.128145i
\(723\) −8695.17 + 8424.63i −0.447271 + 0.433355i
\(724\) 356.584 1352.21i 0.0183043 0.0694122i
\(725\) −25549.2 13337.0i −1.30879 0.683203i
\(726\) 821.471 612.489i 0.0419940 0.0313108i
\(727\) 7788.82 0.397347 0.198674 0.980066i \(-0.436337\pi\)
0.198674 + 0.980066i \(0.436337\pi\)
\(728\) −17042.3 6940.72i −0.867623 0.353352i
\(729\) −1863.28 + 19594.6i −0.0946642 + 0.995509i
\(730\) 6347.18 + 2457.95i 0.321808 + 0.124620i
\(731\) 19708.2i 0.997173i
\(732\) 8857.34 + 15769.5i 0.447236 + 0.796255i
\(733\) 37009.1 1.86489 0.932443 0.361317i \(-0.117673\pi\)
0.932443 + 0.361317i \(0.117673\pi\)
\(734\) −9886.57 1281.66i −0.497166 0.0644509i
\(735\) −10287.1 17595.6i −0.516251 0.883027i
\(736\) −14036.4 + 18672.9i −0.702976 + 0.935182i
\(737\) 32263.8 1.61255
\(738\) −5641.98 913.508i −0.281415 0.0455646i
\(739\) 8679.66 0.432052 0.216026 0.976388i \(-0.430690\pi\)
0.216026 + 0.976388i \(0.430690\pi\)
\(740\) −14945.1 + 27462.1i −0.742422 + 1.36422i
\(741\) −542.486 + 525.607i −0.0268943 + 0.0260576i
\(742\) 6541.30 50458.7i 0.323637 2.49649i
\(743\) 18604.8i 0.918634i −0.888272 0.459317i \(-0.848094\pi\)
0.888272 0.459317i \(-0.151906\pi\)
\(744\) 5440.12 + 13508.6i 0.268071 + 0.665659i
\(745\) 7032.85 28670.5i 0.345857 1.40994i
\(746\) 8634.77 + 1119.38i 0.423782 + 0.0549377i
\(747\) 516.214 16329.4i 0.0252842 0.799814i
\(748\) 4123.96 15638.5i 0.201587 0.764441i
\(749\) −21574.1 −1.05247
\(750\) 1661.28 20472.3i 0.0808819 0.996724i
\(751\) 23589.9i 1.14621i 0.819481 + 0.573107i \(0.194262\pi\)
−0.819481 + 0.573107i \(0.805738\pi\)
\(752\) −1444.30 + 2548.04i −0.0700374 + 0.123560i
\(753\) 10869.5 + 11218.5i 0.526036 + 0.542928i
\(754\) −19966.8 2588.43i −0.964388 0.125020i
\(755\) −26780.4 6569.22i −1.29091 0.316660i
\(756\) −13656.3 26221.1i −0.656978 1.26144i
\(757\) 28338.1 1.36059 0.680294 0.732939i \(-0.261852\pi\)
0.680294 + 0.732939i \(0.261852\pi\)
\(758\) 9100.52 + 1179.76i 0.436076 + 0.0565314i
\(759\) 18023.9 17463.2i 0.861960 0.835142i
\(760\) 699.166 964.378i 0.0333703 0.0460285i
\(761\) 9122.56i 0.434550i 0.976110 + 0.217275i \(0.0697168\pi\)
−0.976110 + 0.217275i \(0.930283\pi\)
\(762\) 12668.4 9445.54i 0.602266 0.449050i
\(763\) 30013.4i 1.42406i
\(764\) 9803.46 + 2585.22i 0.464236 + 0.122421i
\(765\) 15705.9 + 4383.14i 0.742284 + 0.207154i
\(766\) −1826.63 + 14090.4i −0.0861603 + 0.664630i
\(767\) 7907.61i 0.372265i
\(768\) 20558.5 + 5507.42i 0.965940 + 0.258765i
\(769\) −28401.1 −1.33182 −0.665910 0.746032i \(-0.731956\pi\)
−0.665910 + 0.746032i \(0.731956\pi\)
\(770\) −29071.3 11257.9i −1.36059 0.526890i